1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
|
dnl ******************************************************************************
dnl Copyright 2009 Paul Zimmermann and Alexander Kruppa.
dnl
dnl This file is part of the ECM Library.
dnl
dnl The ECM Library is free software; you can redistribute it and/or modify
dnl it under the terms of the GNU Lesser General Public License as published by
dnl the Free Software Foundation; either version 3 of the License, or (at your
dnl option) any later version.
dnl
dnl The ECM Library is distributed in the hope that it will be useful, but
dnl WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
dnl or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
dnl License for more details.
dnl
dnl You should have received a copy of the GNU Lesser General Public License
dnl along with the ECM Library; see the file COPYING.LIB. If not, write to
dnl the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
dnl MA 02110-1301, USA.
dnl ******************************************************************************
dnl
dnl void ecm_redc3(mp_limb_t * c, const mp_limb_t * m, size_t n, mp_limb_t m_inv)
dnl
dnl input arguments:
dnl
dnl r3: ptr to c[0], the least significant word of the number to be reduced
dnl c[0 ... 2*n-1] is of length 2*n words
dnl r4: ptr to m[0], the least significant word of the modulus m of length n
dnl r5: the length n
dnl r6: m_inv = -1/m mod 2^64
dnl
dnl the residue (before adding the word carries) will be in c[n ... 2*n-1].
dnl c[0 ... n-1] will contain the high word carries from each inner loop pass.
dnl These carry words are added by the calling routine to obtain the final
dnl residue.
dnl Use `C' to remove comments in .asm -> .s conversion.
dnl Copied from GMP 4.2.
define(C, `
dnl')
include(`config.m4')
GLOBL GSYM_PREFIX`'ecm_redc3
GLOBL .GSYM_PREFIX`'ecm_redc3
.section ".opd", "aw"
.align 3
GSYM_PREFIX`'ecm_redc3:
.quad .GSYM_PREFIX`'ecm_redc3, .TOC.@tocbase, 0
.size GSYM_PREFIX`'ecm_redc3, 24
TEXT
.align 5 C 32 byte alignment
.GSYM_PREFIX`'ecm_redc3:
cmpdi r5, 1 C length = 1?
bne 1f
ld r12, 0(r3) C c[0]
ld r0, 0(r4) C m[0]
mulld r7, r6, r12 C u = c[0] * m_inv mod 2^64
mulld r11, r0, r7 C m[0]*u low
mulhdu r10, r0, r7 C m[0]*u high
addc r11, r11, r12 C c[0] + m[0]*u low = 0
addze r10, r10 C carry to high half
std r10, 0(r3) C store the "carry" word
blr
nop
nop
nop
nop
nop
1:
mflr r0 C save return addr
stdu r0, -8(r1) C on the stack
stdu r13, -8(r1) C save r13
dnl
dnl get inner loop count and jump offset
dnl
subi r7, r5, 2 C r7 = n - 2
andi. r8, r7, 15 C r8 = (n - 2) mod 16
sldi r8, r8, 5 C r8 * 32 = byte offset
srdi r7, r7, 4 C int((n - 2)/16)
dnl
dnl compute the address of inner loop end and subtract the offset
dnl
bl nxt C put the address of the next instruction
C into the link register
nxt: C
mflr r9 C r9 = address of this instruction
addi r9, r9, 640 C add offset to v_1 from nxt
C WARNING: any changes to the code between
C the labels "nxt" and "v_1" may require
C recomputation of the offset above.
sub r9, r9, r8 C offset back to desired starting point
mtlr r9 C and now we can branch directly to our target
mtctr r5 C outer loop count n
addi r13, r7, 1 C inner loop counter
nop
nop
OuterLoop: C execute n times
dnl compute u, set addr's
ld r12, 0(r3) C c[0]
mr r8, r4 C r8 = working copy of m address
ld r0, 0(r8) C m[0]
mulld r7, r6, r12 C u = c[0] * m_inv mod 2^64
mfctr r5 C save current outer loop count
dnl start inner
mulld r11, r0, r7 C m[0]*u low
mtctr r13 C inner loop count
mulhdu r10, r0, r7 C m[0]*u high
ldu r0, 8(r8) C m[1]
addc r11, r11, r12 C m[0]*u low + c[0] (don't bother storing zero)
mulld r11, r0, r7 C m[1]*u low
ldu r12, 8(r3) C c[1], update c address
mr r9, r3 C r9 = working copy of c addr
mulhdu r0, r0, r7 C m[1]*u high
adde r11, r10, r11 C m[1]*u low + m[0]*u high + cy
addze r10, r0 C m[1]*u high + cy
blr C jump to start of the (n-2) mod 16 section
C (or to v_1, if (n-2) mod 16 = 0)
nop
nop
nop
nop
nop
nop
nop
ILoop:
ldu r0, 8(r8) C m[i]
addc r11, r11, r12 C m[i-1]*u low + m[i-2]*u high + c[i-1]
std r11, 0(r9) C store it in c[i-1]
mulld r11, r0, r7 C m[i]*u low
ldu r12, 8(r9) C c[i]
mulhdu r0, r0, r7 C m[i]*u high
adde r11, r10, r11 C m[i]*u low + m[i-1]*u high + cy
addze r10, r0 C r10 = m[i]*u + cy
dnl
dnl start (n-2) mod 16 = 15
dnl
ldu r0, 8(r8) C m[i]
addc r11, r11, r12 C m[i-1]*u low + m[i-2]*u high + c[i-1]
std r11, 0(r9) C store it in c[i-1]
mulld r11, r0, r7 C m[i]*u low
ldu r12, 8(r9) C c[i]
mulhdu r0, r0, r7 C m[i]*u high
adde r11, r10, r11 C m[i]*u low + m[i-1]*u high + cy
addze r10, r0 C r10 = m[i]*u + cy
dnl
dnl start (n-2) mod 16 = 14
dnl
ldu r0, 8(r8) C m[i]
addc r11, r11, r12 C m[i-1]*u low + m[i-2]*u high + c[i-1]
std r11, 0(r9) C store it in c[i-1]
mulld r11, r0, r7 C m[i]*u low
ldu r12, 8(r9) C c[i]
mulhdu r0, r0, r7 C m[i]*u high
adde r11, r10, r11 C m[i]*u low + m[i-1]*u high + cy
addze r10, r0 C r10 = m[i]*u + cy
dnl
dnl start (n-2) mod 16 = 13
dnl
ldu r0, 8(r8) C m[i]
addc r11, r11, r12 C m[i-1]*u low + m[i-2]*u high + c[i-1]
std r11, 0(r9) C store it in c[i-1]
mulld r11, r0, r7 C m[i]*u low
ldu r12, 8(r9) C c[i]
mulhdu r0, r0, r7 C m[i]*u high
adde r11, r10, r11 C m[i]*u low + m[i-1]*u high + cy
addze r10, r0 C r10 = m[i]*u + cy
dnl
dnl start (n-2) mod 16 = 12
dnl
ldu r0, 8(r8) C m[i]
addc r11, r11, r12 C m[i-1]*u low + m[i-2]*u high + c[i-1]
std r11, 0(r9) C store it in c[i-1]
mulld r11, r0, r7 C m[i]*u low
ldu r12, 8(r9) C c[i]
mulhdu r0, r0, r7 C m[i]*u high
adde r11, r10, r11 C m[i]*u low + m[i-1]*u high + cy
addze r10, r0 C r10 = m[i]*u + cy
dnl
dnl start (n-2) mod 16 = 11
dnl
ldu r0, 8(r8) C m[i]
addc r11, r11, r12 C m[i-1]*u low + m[i-2]*u high + c[i-1]
std r11, 0(r9) C store it in c[i-1]
mulld r11, r0, r7 C m[i]*u low
ldu r12, 8(r9) C c[i]
mulhdu r0, r0, r7 C m[i]*u high
adde r11, r10, r11 C m[i]*u low + m[i-1]*u high + cy
addze r10, r0 C r10 = m[i]*u + cy
dnl
dnl start (n-2) mod 16 = 10
dnl
ldu r0, 8(r8) C m[i]
addc r11, r11, r12 C m[i-1]*u low + m[i-2]*u high + c[i-1]
std r11, 0(r9) C store it in c[i-1]
mulld r11, r0, r7 C m[i]*u low
ldu r12, 8(r9) C c[i]
mulhdu r0, r0, r7 C m[i]*u high
adde r11, r10, r11 C m[i]*u low + m[i-1]*u high + cy
addze r10, r0 C r10 = m[i]*u + cy
dnl
dnl start (n-2) mod 16 = 9
dnl
ldu r0, 8(r8) C m[i]
addc r11, r11, r12 C m[i-1]*u low + m[i-2]*u high + c[i-1]
std r11, 0(r9) C store it in c[i-1]
mulld r11, r0, r7 C m[i]*u low
ldu r12, 8(r9) C c[i]
mulhdu r0, r0, r7 C m[i]*u high
adde r11, r10, r11 C m[i]*u low + m[i-1]*u high + cy
addze r10, r0 C r10 = m[i]*u + cy
dnl
dnl start (n-2) mod 16 = 8
dnl
ldu r0, 8(r8) C m[i]
addc r11, r11, r12 C m[i-1]*u low + m[i-2]*u high + c[i-1]
std r11, 0(r9) C store it in c[i-1]
mulld r11, r0, r7 C m[i]*u low
ldu r12, 8(r9) C c[i]
mulhdu r0, r0, r7 C m[i]*u high
adde r11, r10, r11 C m[i]*u low + m[i-1]*u high + cy
addze r10, r0 C r10 = m[i]*u + cy
dnl
dnl start (n-2) mod 16 = 7
dnl
ldu r0, 8(r8) C m[i]
addc r11, r11, r12 C m[i-1]*u low + m[i-2]*u high + c[i-1]
std r11, 0(r9) C store it in c[i-1]
mulld r11, r0, r7 C m[i]*u low
ldu r12, 8(r9) C c[i]
mulhdu r0, r0, r7 C m[i]*u high
adde r11, r10, r11 C m[i]*u low + m[i-1]*u high + cy
addze r10, r0 C r10 = m[i]*u + cy
dnl
dnl start (n-2) mod 16 = 6
dnl
ldu r0, 8(r8) C m[i]
addc r11, r11, r12 C m[i-1]*u low + m[i-2]*u high + c[i-1]
std r11, 0(r9) C store it in c[i-1]
mulld r11, r0, r7 C m[i]*u low
ldu r12, 8(r9) C c[i]
mulhdu r0, r0, r7 C m[i]*u high
adde r11, r10, r11 C m[i]*u low + m[i-1]*u high + cy
addze r10, r0 C r10 = m[i]*u + cy
dnl
dnl start (n-2) mod 16 = 5
dnl
ldu r0, 8(r8) C m[i]
addc r11, r11, r12 C m[i-1]*u low + m[i-2]*u high + c[i-1]
std r11, 0(r9) C store it in c[i-1]
mulld r11, r0, r7 C m[i]*u low
ldu r12, 8(r9) C c[i]
mulhdu r0, r0, r7 C m[i]*u high
adde r11, r10, r11 C m[i]*u low + m[i-1]*u high + cy
addze r10, r0 C r10 = m[i]*u + cy
dnl
dnl start (n-2) mod 16 = 4
dnl
ldu r0, 8(r8) C m[i]
addc r11, r11, r12 C m[i-1]*u low + m[i-2]*u high + c[i-1]
std r11, 0(r9) C store it in c[i-1]
mulld r11, r0, r7 C m[i]*u low
ldu r12, 8(r9) C c[i]
mulhdu r0, r0, r7 C m[i]*u high
adde r11, r10, r11 C m[i]*u low + m[i-1]*u high + cy
addze r10, r0 C r10 = m[i]*u + cy
dnl
dnl start (n-2) mod 16 = 3
dnl
ldu r0, 8(r8) C m[i]
addc r11, r11, r12 C m[i-1]*u low + m[i-2]*u high + c[i-1]
std r11, 0(r9) C store it in c[i-1]
mulld r11, r0, r7 C m[i]*u low
ldu r12, 8(r9) C c[i]
mulhdu r0, r0, r7 C m[i]*u high
adde r11, r10, r11 C m[i]*u low + m[i-1]*u high + cy
addze r10, r0 C r10 = m[i]*u + cy
dnl
dnl start (n-2) mod 16 = 2
dnl
ldu r0, 8(r8) C m[i]
addc r11, r11, r12 C m[i-1]*u low + m[i-2]*u high + c[i-1]
std r11, 0(r9) C store it in c[i-1]
mulld r11, r0, r7 C m[i]*u low
ldu r12, 8(r9) C c[i]
mulhdu r0, r0, r7 C m[i]*u high
adde r11, r10, r11 C m[i]*u low + m[i-1]*u high + cy
addze r10, r0 C r10 = m[i]*u + cy
dnl
dnl start (n-2) mod 16 = 1
dnl
ldu r0, 8(r8) C m[i]
addc r11, r11, r12 C m[i-1]*u low + m[i-2]*u high + c[i-1]
std r11, 0(r9) C store it in c[i-1]
mulld r11, r0, r7 C m[i]*u low
ldu r12, 8(r9) C c[i]
mulhdu r0, r0, r7 C m[i]*u high
adde r11, r10, r11 C m[i]*u low + m[i-1]*u high + cy
addze r10, r0 C r10 = m[i]*u + cy
v_1:
bdnz ILoop C blr above jumps directly to this bdnz instruction
C when (n-2) mod 16 = 0
dnl finish inner
addc r11, r11, r12 C m[i-1]*u low + m[i-2]*u high + c[i-1]
std r11, 0(r9) C store it in c[i-1]
addze r10, r10 C result cy = 0 always
std r10, -8(r3) C store the "carry" word
mtctr r5 C restore outer loop count
bdnz OuterLoop
ld r13, 0(r1) C restore r13
ld r0, 8(r1) C original return address
addi r1, r1, 16 C restore stack ptr
mtlr r0
blr
.size .GSYM_PREFIX`'ecm_redc3, .-.GSYM_PREFIX`'ecm_redc3
|