1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
|
/* List and count primes.
Written by tege while on holiday in Rodupp, August 2001.
Between 10 and 500 times faster than previous program.
Copyright 2001, 2002, 2006, 2012 Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 3 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program. If not, see https://www.gnu.org/licenses/. */
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <assert.h>
/* IDEAS:
* Do not fill primes[] with real primes when the range [fr,to] is small,
when fr,to are relatively large. Fill primes[] with odd numbers instead.
[Probably a bad idea, since the primes[] array would become very large.]
* Separate small primes and large primes when sieving. Either the Montgomery
way (i.e., having a large array a multiple of L1 cache size), or just
separate loops for primes <= S and primes > S. The latter primes do not
require an inner loop, since they will touch the sieving array at most once.
* Pre-fill sieving array with an appropriately aligned ...00100100... pattern,
then omit 3 from primes array. (May require similar special handling of 3
as we now have for 2.)
* A large SIEVE_LIMIT currently implies very large memory usage, mainly due
to the sieving array in make_primelist, but also because of the primes[]
array. We might want to stage the program, using sieve_region/find_primes
to build primes[]. Make report() a function pointer, as part of achieving
this.
* Store primes[] as two arrays, one array with primes represented as delta
values using just 8 bits (if gaps are too big, store bogus primes!)
and one array with "rem" values. The latter needs 32-bit values.
* A new entry point, mpz_probab_prime_likely_p, would be useful.
* Improve command line syntax and versatility. "primes -f FROM -t TO",
allow either to be omitted for open interval. (But disallow
"primes -c -f FROM" since that would be infinity.) Allow printing a
limited *number* of primes using syntax like "primes -f FROM -n NUMBER".
* When looking for maxgaps, we should not perform any primality testing until
we find possible record gaps. Should speed up the searches tremendously.
*/
#include "gmp.h"
struct primes
{
unsigned int prime;
int rem;
};
struct primes *primes;
unsigned long n_primes;
void find_primes (unsigned char *, mpz_t, unsigned long, mpz_t);
void sieve_region (unsigned char *, mpz_t, unsigned long);
void make_primelist (unsigned long);
int flag_print = 1;
int flag_count = 0;
int flag_maxgap = 0;
unsigned long maxgap = 0;
unsigned long total_primes = 0;
void
report (mpz_t prime)
{
total_primes += 1;
if (flag_print)
{
mpz_out_str (stdout, 10, prime);
printf ("\n");
}
if (flag_maxgap)
{
static unsigned long prev_prime_low = 0;
unsigned long gap;
if (prev_prime_low != 0)
{
gap = mpz_get_ui (prime) - prev_prime_low;
if (maxgap < gap)
maxgap = gap;
}
prev_prime_low = mpz_get_ui (prime);
}
}
int
main (int argc, char *argv[])
{
char *progname = argv[0];
mpz_t fr, to;
mpz_t fr2, to2;
unsigned long sieve_lim;
unsigned long est_n_primes;
unsigned char *s;
mpz_t tmp;
mpz_t siev_sqr_lim;
while (argc != 1)
{
if (strcmp (argv[1], "-c") == 0)
{
flag_count = 1;
argv++;
argc--;
}
else if (strcmp (argv[1], "-p") == 0)
{
flag_print = 2;
argv++;
argc--;
}
else if (strcmp (argv[1], "-g") == 0)
{
flag_maxgap = 1;
argv++;
argc--;
}
else
break;
}
if (flag_count || flag_maxgap)
flag_print--; /* clear unless an explicit -p */
mpz_init (fr);
mpz_init (to);
mpz_init (fr2);
mpz_init (to2);
if (argc == 3)
{
mpz_set_str (fr, argv[1], 0);
if (argv[2][0] == '+')
{
mpz_set_str (to, argv[2] + 1, 0);
mpz_add (to, to, fr);
}
else
mpz_set_str (to, argv[2], 0);
}
else if (argc == 2)
{
mpz_set_ui (fr, 0);
mpz_set_str (to, argv[1], 0);
}
else
{
fprintf (stderr, "usage: %s [-c] [-p] [-g] [from [+]]to\n", progname);
exit (1);
}
mpz_set (fr2, fr);
if (mpz_cmp_ui (fr2, 3) < 0)
{
mpz_set_ui (fr2, 2);
report (fr2);
mpz_set_ui (fr2, 3);
}
mpz_setbit (fr2, 0); /* make odd */
mpz_sub_ui (to2, to, 1);
mpz_setbit (to2, 0); /* make odd */
mpz_init (tmp);
mpz_init (siev_sqr_lim);
mpz_sqrt (tmp, to2);
#define SIEVE_LIMIT 10000000
if (mpz_cmp_ui (tmp, SIEVE_LIMIT) < 0)
{
sieve_lim = mpz_get_ui (tmp);
}
else
{
sieve_lim = SIEVE_LIMIT;
mpz_sub (tmp, to2, fr2);
if (mpz_cmp_ui (tmp, sieve_lim) < 0)
sieve_lim = mpz_get_ui (tmp); /* limit sieving for small ranges */
}
mpz_set_ui (siev_sqr_lim, sieve_lim + 1);
mpz_mul_ui (siev_sqr_lim, siev_sqr_lim, sieve_lim + 1);
est_n_primes = (size_t) (sieve_lim / log((double) sieve_lim) * 1.13) + 10;
primes = malloc (est_n_primes * sizeof primes[0]);
make_primelist (sieve_lim);
assert (est_n_primes >= n_primes);
#if DEBUG
printf ("sieve_lim = %lu\n", sieve_lim);
printf ("n_primes = %lu (3..%u)\n",
n_primes, primes[n_primes - 1].prime);
#endif
#define S (1 << 15) /* FIXME: Figure out L1 cache size */
s = malloc (S/2);
while (mpz_cmp (fr2, to2) <= 0)
{
unsigned long rsize;
rsize = S;
mpz_add_ui (tmp, fr2, rsize);
if (mpz_cmp (tmp, to2) > 0)
{
mpz_sub (tmp, to2, fr2);
rsize = mpz_get_ui (tmp) + 2;
}
#if DEBUG
printf ("Sieving region ["); mpz_out_str (stdout, 10, fr2);
printf (","); mpz_add_ui (tmp, fr2, rsize - 2);
mpz_out_str (stdout, 10, tmp); printf ("]\n");
#endif
sieve_region (s, fr2, rsize);
find_primes (s, fr2, rsize / 2, siev_sqr_lim);
mpz_add_ui (fr2, fr2, S);
}
free (s);
if (flag_count)
printf ("Pi(interval) = %lu\n", total_primes);
if (flag_maxgap)
printf ("max gap: %lu\n", maxgap);
return 0;
}
/* Find primes in region [fr,fr+rsize). Requires that fr is odd and that
rsize is even. The sieving array s should be aligned for "long int" and
have rsize/2 entries, rounded up to the nearest multiple of "long int". */
void
sieve_region (unsigned char *s, mpz_t fr, unsigned long rsize)
{
unsigned long ssize = rsize / 2;
unsigned long start, start2, prime;
unsigned long i;
mpz_t tmp;
mpz_init (tmp);
#if 0
/* initialize sieving array */
for (ii = 0; ii < (ssize + sizeof (long) - 1) / sizeof (long); ii++)
((long *) s) [ii] = ~0L;
#else
{
long k;
long *se = (long *) (s + ((ssize + sizeof (long) - 1) & -sizeof (long)));
for (k = -((ssize + sizeof (long) - 1) / sizeof (long)); k < 0; k++)
se[k] = ~0L;
}
#endif
for (i = 0; i < n_primes; i++)
{
prime = primes[i].prime;
if (primes[i].rem >= 0)
{
start2 = primes[i].rem;
}
else
{
mpz_set_ui (tmp, prime);
mpz_mul_ui (tmp, tmp, prime);
if (mpz_cmp (fr, tmp) <= 0)
{
mpz_sub (tmp, tmp, fr);
if (mpz_cmp_ui (tmp, 2 * ssize) > 0)
break; /* avoid overflow at next line, also speedup */
start = mpz_get_ui (tmp);
}
else
{
start = (prime - mpz_tdiv_ui (fr, prime)) % prime;
if (start % 2 != 0)
start += prime; /* adjust if even divisible */
}
start2 = start / 2;
}
#if 0
for (ii = start2; ii < ssize; ii += prime)
s[ii] = 0;
primes[i].rem = ii - ssize;
#else
{
long k;
unsigned char *se = s + ssize; /* point just beyond sieving range */
for (k = start2 - ssize; k < 0; k += prime)
se[k] = 0;
primes[i].rem = k;
}
#endif
}
mpz_clear (tmp);
}
/* Find primes in region [fr,fr+rsize), using the previously sieved s[]. */
void
find_primes (unsigned char *s, mpz_t fr, unsigned long ssize,
mpz_t siev_sqr_lim)
{
unsigned long j, ij;
mpz_t tmp;
mpz_init (tmp);
for (j = 0; j < (ssize + sizeof (long) - 1) / sizeof (long); j++)
{
if (((long *) s) [j] != 0)
{
for (ij = 0; ij < sizeof (long); ij++)
{
if (s[j * sizeof (long) + ij] != 0)
{
if (j * sizeof (long) + ij >= ssize)
goto out;
mpz_add_ui (tmp, fr, (j * sizeof (long) + ij) * 2);
if (mpz_cmp (tmp, siev_sqr_lim) < 0 ||
mpz_probab_prime_p (tmp, 10))
report (tmp);
}
}
}
}
out:
mpz_clear (tmp);
}
/* Generate a list of primes and store in the global array primes[]. */
void
make_primelist (unsigned long maxprime)
{
#if 1
unsigned char *s;
unsigned long ssize = maxprime / 2;
unsigned long i, ii, j;
s = malloc (ssize);
memset (s, ~0, ssize);
for (i = 3; ; i += 2)
{
unsigned long isqr = i * i;
if (isqr >= maxprime)
break;
if (s[i * i / 2 - 1] == 0)
continue; /* only sieve with primes */
for (ii = i * i / 2 - 1; ii < ssize; ii += i)
s[ii] = 0;
}
n_primes = 0;
for (j = 0; j < ssize; j++)
{
if (s[j] != 0)
{
primes[n_primes].prime = j * 2 + 3;
primes[n_primes].rem = -1;
n_primes++;
}
}
/* FIXME: This should not be needed if fencepost errors were fixed... */
if (primes[n_primes - 1].prime > maxprime)
n_primes--;
free (s);
#else
unsigned long i;
n_primes = 0;
for (i = 3; i <= maxprime; i += 2)
{
if (i < 7 || (i % 3 != 0 && i % 5 != 0 && i % 7 != 0))
{
primes[n_primes].prime = i;
primes[n_primes].rem = -1;
n_primes++;
}
}
#endif
}
|