1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
/* mpz_lucnum_ui -- calculate Lucas number.
Copyright 2001, 2003, 2005, 2011, 2012, 2015, 2016 Free Software Foundation, Inc.
This file is part of the GNU MP Library.
The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of either:
* the GNU Lesser General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at your
option) any later version.
or
* the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any
later version.
or both in parallel, as here.
The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received copies of the GNU General Public License and the
GNU Lesser General Public License along with the GNU MP Library. If not,
see https://www.gnu.org/licenses/. */
#include <stdio.h>
#include "gmp-impl.h"
/* change this to "#define TRACE(x) x" for diagnostics */
#define TRACE(x)
/* Notes:
For the +4 in L[2k+1] when k is even, all L[4m+3] == 4, 5 or 7 mod 8, so
there can't be an overflow applying +4 to just the low limb (since that
would leave 0, 1, 2 or 3 mod 8).
For the -4 in L[2k+1] when k is even, it seems (no proof) that
L[3*2^(b-2)-3] == -4 mod 2^b, so for instance with a 32-bit limb
L[0xBFFFFFFD] == 0xFFFFFFFC mod 2^32, and this implies a borrow from the
low limb. Obviously L[0xBFFFFFFD] is a huge number, but it's at least
conceivable to calculate it, so it probably should be handled.
For the -2 in L[2k] with k even, it seems (no proof) L[2^(b-1)] == -1 mod
2^b, so for instance in 32-bits L[0x80000000] has a low limb of
0xFFFFFFFF so there would have been a borrow. Again L[0x80000000] is
obviously huge, but probably should be made to work. */
void
mpz_lucnum_ui (mpz_ptr ln, unsigned long n)
{
mp_size_t lalloc, xalloc, lsize, xsize;
mp_ptr lp, xp;
mp_limb_t c;
int zeros;
TMP_DECL;
TRACE (printf ("mpn_lucnum_ui n=%lu\n", n));
if (n <= FIB_TABLE_LUCNUM_LIMIT)
{
/* L[n] = F[n] + 2F[n-1] */
MPZ_NEWALLOC (ln, 1)[0] = FIB_TABLE(n) + 2 * FIB_TABLE ((int) n - 1);
SIZ(ln) = 1;
return;
}
/* +1 since L[n]=F[n]+2F[n-1] might be 1 limb bigger than F[n], further +1
since square or mul used below might need an extra limb over the true
size */
lalloc = MPN_FIB2_SIZE (n) + 2;
lp = MPZ_NEWALLOC (ln, lalloc);
TMP_MARK;
xalloc = lalloc;
xp = TMP_ALLOC_LIMBS (xalloc);
/* Strip trailing zeros from n, until either an odd number is reached
where the L[2k+1] formula can be used, or until n fits within the
FIB_TABLE data. The table is preferred of course. */
zeros = 0;
for (;;)
{
if (n & 1)
{
/* L[2k+1] = 5*F[k-1]*(2*F[k]+F[k-1]) - 4*(-1)^k */
mp_size_t yalloc, ysize;
mp_ptr yp;
TRACE (printf (" initial odd n=%lu\n", n));
yalloc = MPN_FIB2_SIZE (n/2);
yp = TMP_ALLOC_LIMBS (yalloc);
ASSERT (xalloc >= yalloc);
xsize = mpn_fib2_ui (xp, yp, n/2);
/* possible high zero on F[k-1] */
ysize = xsize;
ysize -= (yp[ysize-1] == 0);
ASSERT (yp[ysize-1] != 0);
/* xp = 2*F[k] + F[k-1] */
#if HAVE_NATIVE_mpn_addlsh1_n
c = mpn_addlsh1_n (xp, yp, xp, xsize);
#else
c = mpn_lshift (xp, xp, xsize, 1);
c += mpn_add_n (xp, xp, yp, xsize);
#endif
ASSERT (xalloc >= xsize+1);
xp[xsize] = c;
xsize += (c != 0);
ASSERT (xp[xsize-1] != 0);
ASSERT (lalloc >= xsize + ysize);
c = mpn_mul (lp, xp, xsize, yp, ysize);
lsize = xsize + ysize;
lsize -= (c == 0);
/* lp = 5*lp */
#if HAVE_NATIVE_mpn_addlsh2_n
c = mpn_addlsh2_n (lp, lp, lp, lsize);
#else
/* FIXME: Is this faster than mpn_mul_1 ? */
c = mpn_lshift (xp, lp, lsize, 2);
c += mpn_add_n (lp, lp, xp, lsize);
#endif
ASSERT (lalloc >= lsize+1);
lp[lsize] = c;
lsize += (c != 0);
/* lp = lp - 4*(-1)^k */
if (n & 2)
{
/* no overflow, see comments above */
ASSERT (lp[0] <= MP_LIMB_T_MAX-4);
lp[0] += 4;
}
else
{
/* won't go negative */
MPN_DECR_U (lp, lsize, CNST_LIMB(4));
}
TRACE (mpn_trace (" l",lp, lsize));
break;
}
MP_PTR_SWAP (xp, lp); /* balance the swaps wanted in the L[2k] below */
zeros++;
n /= 2;
if (n <= FIB_TABLE_LUCNUM_LIMIT)
{
/* L[n] = F[n] + 2F[n-1] */
lp[0] = FIB_TABLE (n) + 2 * FIB_TABLE ((int) n - 1);
lsize = 1;
TRACE (printf (" initial small n=%lu\n", n);
mpn_trace (" l",lp, lsize));
break;
}
}
for ( ; zeros != 0; zeros--)
{
/* L[2k] = L[k]^2 + 2*(-1)^k */
TRACE (printf (" zeros=%d\n", zeros));
ASSERT (xalloc >= 2*lsize);
mpn_sqr (xp, lp, lsize);
lsize *= 2;
lsize -= (xp[lsize-1] == 0);
/* First time around the loop k==n determines (-1)^k, after that k is
always even and we set n=0 to indicate that. */
if (n & 1)
{
/* L[n]^2 == 0 or 1 mod 4, like all squares, so +2 gives no carry */
ASSERT (xp[0] <= MP_LIMB_T_MAX-2);
xp[0] += 2;
n = 0;
}
else
{
/* won't go negative */
MPN_DECR_U (xp, lsize, CNST_LIMB(2));
}
MP_PTR_SWAP (xp, lp);
ASSERT (lp[lsize-1] != 0);
}
/* should end up in the right spot after all the xp/lp swaps */
ASSERT (lp == PTR(ln));
SIZ(ln) = lsize;
TMP_FREE;
}
|