1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
/* primesieve (BIT_ARRAY, N) -- Fills the BIT_ARRAY with a mask for primes up to N.
Contributed to the GNU project by Marco Bodrato.
THE FUNCTION IN THIS FILE IS INTERNAL WITH A MUTABLE INTERFACE.
IT IS ONLY SAFE TO REACH IT THROUGH DOCUMENTED INTERFACES.
IN FACT, IT IS ALMOST GUARANTEED THAT IT WILL CHANGE OR
DISAPPEAR IN A FUTURE GNU MP RELEASE.
Copyright 2010-2012, 2015, 2016, 2021, 2022 Free Software Foundation, Inc.
This file is part of the GNU MP Library.
The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of either:
* the GNU Lesser General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at your
option) any later version.
or
* the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any
later version.
or both in parallel, as here.
The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received copies of the GNU General Public License and the
GNU Lesser General Public License along with the GNU MP Library. If not,
see https://www.gnu.org/licenses/. */
#include "gmp-impl.h"
#if 0
static mp_limb_t
bit_to_n (mp_limb_t bit) { return (bit*3+4)|1; }
#endif
/* id_to_n (x) = bit_to_n (x-1) = (id*3+1)|1*/
static mp_limb_t
id_to_n (mp_limb_t id) { return id*3+1+(id&1); }
/* n_fto_bit (n) = ((n-1)&(-CNST_LIMB(2)))/3U-1 */
static mp_limb_t
n_fto_bit (mp_limb_t n) { return ((n-5)|1)/3U; }
/* n_cto_bit (n) = ((n-2)&(-CNST_LIMB(2)))/3U */
static mp_limb_t
n_cto_bit (mp_limb_t n) { return (n|1)/3U-1; }
#if 0
static mp_size_t
primesieve_size (mp_limb_t n) { return n_fto_bit(n) / GMP_LIMB_BITS + 1; }
#endif
#define SET_OFF1(m1, m2, M1, M2, off, BITS) \
if (off) { \
if (off < GMP_LIMB_BITS) { \
m1 = (M1 >> off) | (M2 << (GMP_LIMB_BITS - off)); \
if (off <= BITS - GMP_LIMB_BITS) { \
m2 = M1 << (BITS - GMP_LIMB_BITS - off) \
| M2 >> off; \
} else { \
m1 |= M1 << (BITS - off); \
m2 = M1 >> (off + GMP_LIMB_BITS - BITS); \
} \
} else { \
m1 = M1 << (BITS - off) \
| M2 >> (off - GMP_LIMB_BITS); \
m2 = M2 << (BITS - off) \
| M1 >> (off + GMP_LIMB_BITS - BITS); \
} \
} else { \
m1 = M1; m2 = M2; \
}
#define SET_OFF2(m1, m2, m3, M1, M2, M3, off, BITS) \
if (off) { \
if (off <= GMP_LIMB_BITS) { \
m1 = M2 << (GMP_LIMB_BITS - off); \
m2 = M3 << (GMP_LIMB_BITS - off); \
if (off != GMP_LIMB_BITS) { \
m1 |= (M1 >> off); \
m2 |= (M2 >> off); \
} \
if (off <= BITS - 2 * GMP_LIMB_BITS) { \
m3 = M1 << (BITS - 2 * GMP_LIMB_BITS - off) \
| M3 >> off; \
} else { \
m2 |= M1 << (BITS - GMP_LIMB_BITS - off); \
m3 = M1 >> (off + 2 * GMP_LIMB_BITS - BITS); \
} \
} else if (off < 2 *GMP_LIMB_BITS) { \
m1 = M2 >> (off - GMP_LIMB_BITS) \
| M3 << (2 * GMP_LIMB_BITS - off); \
if (off <= BITS - GMP_LIMB_BITS) { \
m2 = M3 >> (off - GMP_LIMB_BITS) \
| M1 << (BITS - GMP_LIMB_BITS - off); \
m3 = M2 << (BITS - GMP_LIMB_BITS - off); \
if (off != BITS - GMP_LIMB_BITS) { \
m3 |= M1 >> (off + 2 * GMP_LIMB_BITS - BITS); \
} \
} else { \
m1 |= M1 << (BITS - off); \
m2 = M2 << (BITS - off) \
| M1 >> (GMP_LIMB_BITS - BITS + off); \
m3 = M2 >> (GMP_LIMB_BITS - BITS + off); \
} \
} else { \
m1 = M1 << (BITS - off) \
| M3 >> (off - 2 * GMP_LIMB_BITS); \
m2 = M2 << (BITS - off) \
| M1 >> (off + GMP_LIMB_BITS - BITS); \
m3 = M3 << (BITS - off) \
| M2 >> (off + GMP_LIMB_BITS - BITS); \
} \
} else { \
m1 = M1; m2 = M2; m3 = M3; \
}
#define ROTATE1(m1, m2, BITS) \
do { \
mp_limb_t __tmp; \
__tmp = m1 >> (2 * GMP_LIMB_BITS - BITS); \
m1 = (m1 << (BITS - GMP_LIMB_BITS)) | m2; \
m2 = __tmp; \
} while (0)
#define ROTATE2(m1, m2, m3, BITS) \
do { \
mp_limb_t __tmp; \
__tmp = m2 >> (3 * GMP_LIMB_BITS - BITS); \
m2 = m2 << (BITS - GMP_LIMB_BITS * 2) \
| m1 >> (3 * GMP_LIMB_BITS - BITS); \
m1 = m1 << (BITS - GMP_LIMB_BITS * 2) | m3; \
m3 = __tmp; \
} while (0)
static mp_limb_t
fill_bitpattern (mp_ptr bit_array, mp_size_t limbs, mp_limb_t offset)
{
#ifdef SIEVE_2MSK2
mp_limb_t m11, m12, m21, m22, m23;
{ /* correctly handle offset == 0... */
mp_limb_t off1 = offset % (11 * 5 * 2);
SET_OFF1 (m11, m12, SIEVE_MASK1, SIEVE_MASKT, off1, 11 * 5 * 2);
offset %= 13 * 7 * 2;
SET_OFF2 (m21, m22, m23, SIEVE_2MSK1, SIEVE_2MSK2, SIEVE_2MSKT, offset, 13 * 7 * 2);
}
/* THINK: Consider handling odd values of 'limbs' outside the loop,
to have a single exit condition. */
do {
bit_array[0] = m11 | m21;
if (--limbs == 0)
break;
ROTATE1 (m11, m12, 11 * 5 * 2);
bit_array[1] = m11 | m22;
bit_array += 2;
ROTATE1 (m11, m12, 11 * 5 * 2);
ROTATE2 (m21, m22, m23, 13 * 7 * 2);
} while (--limbs != 0);
return n_cto_bit (13 + 1);
#else
#ifdef SIEVE_MASK2
mp_limb_t mask, mask2, tail;
{ /* correctly handle offset == 0... */
offset %= 7 * 5 * 2;
SET_OFF2 (mask, mask2, tail, SIEVE_MASK1, SIEVE_MASK2, SIEVE_MASKT, offset, 7 * 5 * 2);
}
/* THINK: Consider handling odd values of 'limbs' outside the loop,
to have a single exit condition. */
do {
bit_array[0] = mask;
if (--limbs == 0)
break;
bit_array[1] = mask2;
bit_array += 2;
ROTATE2 (mask, mask2, tail, 7 * 5 * 2);
} while (--limbs != 0);
return n_cto_bit (7 + 1);
#else
MPN_FILL (bit_array, limbs, CNST_LIMB(0));
return 0;
#endif
#endif
}
static void
block_resieve (mp_ptr bit_array, mp_size_t limbs, mp_limb_t offset,
mp_srcptr sieve)
{
mp_size_t bits, off = offset;
mp_limb_t mask, i;
ASSERT (limbs > 0);
bits = limbs * GMP_LIMB_BITS - 1;
i = fill_bitpattern (bit_array, limbs, offset);
ASSERT (i < GMP_LIMB_BITS);
mask = CNST_LIMB(1) << i;
do {
++i;
if ((*sieve & mask) == 0)
{
mp_size_t step, lindex;
mp_limb_t lmask;
unsigned maskrot;
step = id_to_n(i);
/* lindex = n_to_bit(id_to_n(i)*id_to_n(i)); */
lindex = i*(step+1)-1+(-(i&1)&(i+1));
/* lindex = i*(step+1+(i&1))-1+(i&1); */
if (lindex > bits + off)
break;
step <<= 1;
maskrot = step % GMP_LIMB_BITS;
if (lindex < off)
lindex += step * ((off - lindex - 1) / step + 1);
lindex -= off;
lmask = CNST_LIMB(1) << (lindex % GMP_LIMB_BITS);
for ( ; lindex <= bits; lindex += step) {
bit_array[lindex / GMP_LIMB_BITS] |= lmask;
lmask = lmask << maskrot | lmask >> (GMP_LIMB_BITS - maskrot);
};
/* lindex = n_to_bit(id_to_n(i)*bit_to_n(i)); */
lindex = i*(i*3+6)+(i&1);
if (lindex < off)
lindex += step * ((off - lindex - 1) / step + 1);
lindex -= off;
lmask = CNST_LIMB(1) << (lindex % GMP_LIMB_BITS);
for ( ; lindex <= bits; lindex += step) {
bit_array[lindex / GMP_LIMB_BITS] |= lmask;
lmask = lmask << maskrot | lmask >> (GMP_LIMB_BITS - maskrot);
};
}
mask = mask << 1 | mask >> (GMP_LIMB_BITS-1);
sieve += mask & 1;
} while (1);
}
#define BLOCK_SIZE 2048
/* Fills bit_array with the characteristic function of composite
numbers up to the parameter n. I.e. a bit set to "1" represents a
composite, a "0" represents a prime.
The primesieve_size(n) limbs pointed to by bit_array are
overwritten. The returned value counts prime integers in the
interval [4, n]. Note that n > 4.
Even numbers and multiples of 3 are excluded "a priori", only
numbers equivalent to +/- 1 mod 6 have their bit in the array.
Once sieved, if the bit b is ZERO it represent a prime, the
represented prime is bit_to_n(b), if the LSbit is bit 0, or
id_to_n(b), if you call "1" the first bit.
*/
mp_limb_t
gmp_primesieve (mp_ptr bit_array, mp_limb_t n)
{
mp_size_t size;
mp_limb_t bits;
static mp_limb_t presieved[] = {PRIMESIEVE_INIT_TABLE};
ASSERT (n > 4);
bits = n_fto_bit(n);
size = bits / GMP_LIMB_BITS + 1;
for (mp_size_t j = 0, lim = MIN (size, PRIMESIEVE_NUMBEROF_TABLE);
j < lim; ++j)
bit_array [j] = presieved [j]; /* memcopy? */
if (size > PRIMESIEVE_NUMBEROF_TABLE) {
mp_size_t off;
off = size > 2 * BLOCK_SIZE ? BLOCK_SIZE + (size % BLOCK_SIZE) : size;
block_resieve (bit_array + PRIMESIEVE_NUMBEROF_TABLE,
off - PRIMESIEVE_NUMBEROF_TABLE,
GMP_LIMB_BITS * PRIMESIEVE_NUMBEROF_TABLE, bit_array);
for (; off < size; off += BLOCK_SIZE)
block_resieve (bit_array + off, BLOCK_SIZE, off * GMP_LIMB_BITS, bit_array);
}
if ((bits + 1) % GMP_LIMB_BITS != 0)
bit_array[size-1] |= MP_LIMB_T_MAX << ((bits + 1) % GMP_LIMB_BITS);
return size * GMP_LIMB_BITS - mpn_popcount (bit_array, size);
}
#undef BLOCK_SIZE
#undef SIEVE_MASK1
#undef SIEVE_MASK2
#undef SIEVE_MASKT
#undef SIEVE_2MSK1
#undef SIEVE_2MSK2
#undef SIEVE_2MSKT
#undef SET_OFF1
#undef SET_OFF2
#undef ROTATE1
#undef ROTATE2
|