1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
|
#include <string.h>
#include <math.h>
#include "fold.h"
#include "ast.h"
#include "ir.h"
#include "parser.h"
#define FOLD_STRING_UNTRANSLATE_HTSIZE 1024
#define FOLD_STRING_DOTRANSLATE_HTSIZE 1024
/* The options to use for inexact and arithmetic exceptions */
#define FOLD_ROUNDING SFLOAT_ROUND_NEAREST_EVEN
#define FOLD_TINYNESS SFLOAT_TBEFORE
/*
* Comparing float values is an unsafe operation when the operands to the
* comparison are floating point values that are inexact. For instance 1/3 is an
* inexact value. The FPU is meant to raise exceptions when these sorts of things
* happen, including division by zero, underflows and overflows. The C standard
* library provides us with the <fenv.h> header to gain access to the floating-
* point environment and lets us set the rounding mode and check for these exceptions.
* The problem is the standard C library allows an implementation to leave these
* stubbed out and does not require they be implemented. Furthermore, depending
* on implementations there is no control over the FPU. This is an IEE 754
* conforming implementation in software to compensate.
*/
typedef uint32_t sfloat_t;
union sfloat_cast_t {
qcfloat_t f;
sfloat_t s;
};
/* Exception flags */
enum sfloat_exceptionflags_t {
SFLOAT_NOEXCEPT = 0,
SFLOAT_INVALID = 1,
SFLOAT_DIVBYZERO = 4,
SFLOAT_OVERFLOW = 8,
SFLOAT_UNDERFLOW = 16,
SFLOAT_INEXACT = 32
};
/* Rounding modes */
enum sfloat_roundingmode_t {
SFLOAT_ROUND_NEAREST_EVEN,
SFLOAT_ROUND_DOWN,
SFLOAT_ROUND_UP,
SFLOAT_ROUND_TO_ZERO
};
/* Underflow tininess-detection mode */
enum sfloat_tdetect_t {
SFLOAT_TAFTER,
SFLOAT_TBEFORE
};
struct sfloat_state_t {
sfloat_roundingmode_t roundingmode;
sfloat_exceptionflags_t exceptionflags;
sfloat_tdetect_t tiny;
};
/* Counts the number of leading zero bits before the most-significand one bit. */
#ifdef _MSC_VER
/* MSVC has an intrinsic for this */
static GMQCC_INLINE uint32_t sfloat_clz(uint32_t x) {
int r = 0;
_BitScanForward(&r, x);
return r;
}
# define SFLOAT_CLZ(X, SUB) \
(sfloat_clz((X)) - (SUB))
#elif defined(__GNUC__) || defined(__CLANG__)
/* Clang and GCC have a builtin for this */
# define SFLOAT_CLZ(X, SUB) \
(__builtin_clz((X)) - (SUB))
#else
/* Native fallback */
static GMQCC_INLINE uint32_t sfloat_popcnt(uint32_t x) {
x -= ((x >> 1) & 0x55555555);
x = (((x >> 2) & 0x33333333) + (x & 0x33333333));
x = (((x >> 4) + x) & 0x0F0F0F0F);
x += x >> 8;
x += x >> 16;
return x & 0x0000003F;
}
static GMQCC_INLINE uint32_t sfloat_clz(uint32_t x) {
x |= (x >> 1);
x |= (x >> 2);
x |= (x >> 4);
x |= (x >> 8);
x |= (x >> 16);
return 32 - sfloat_popcnt(x);
}
# define SFLOAT_CLZ(X, SUB) \
(sfloat_clz((X) - (SUB)))
#endif
/* The value of a NaN */
#define SFLOAT_NAN 0xFFFFFFFF
/* Test if NaN */
#define SFLOAT_ISNAN(A) \
(0xFF000000 < (uint32_t)((A) << 1))
/* Test if signaling NaN */
#define SFLOAT_ISSNAN(A) \
(((((A) >> 22) & 0x1FF) == 0x1FE) && ((A) & 0x003FFFFF))
/* Raise exception */
#define SFLOAT_RAISE(STATE, FLAGS) \
((STATE)->exceptionflags = (sfloat_exceptionflags_t)((STATE)->exceptionflags | (FLAGS)))
/*
* Shifts `A' right by the number of bits given in `COUNT'. If any non-zero bits
* are shifted off they are forced into the least significand bit of the result
* by setting it to one. As a result of this, the value of `COUNT' can be
* arbitrarily large; if `COUNT' is greater than 32, the result will be either
* zero or one, depending on whether `A' is a zero or non-zero. The result is
* stored into the value pointed by `Z'.
*/
#define SFLOAT_SHIFT(SIZE, A, COUNT, Z) \
*(Z) = ((COUNT) == 0) \
? 1 \
: (((COUNT) < (SIZE)) \
? ((A) >> (COUNT)) | (((A) << ((-(COUNT)) & ((SIZE) - 1))) != 0) \
: ((A) != 0))
/* Extract fractional component */
#define SFLOAT_EXTRACT_FRAC(X) \
((uint32_t)((X) & 0x007FFFFF))
/* Extract exponent component */
#define SFLOAT_EXTRACT_EXP(X) \
((int16_t)((X) >> 23) & 0xFF)
/* Extract sign bit */
#define SFLOAT_EXTRACT_SIGN(X) \
((X) >> 31)
/*
* Normalizes the subnormal value represented by the denormalized significand
* `SA'. The normalized exponent and significand are stored at the locations
* pointed by `Z' and `SZ' respectively.
*/
#define SFLOAT_SUBNORMALIZE(SA, Z, SZ) \
(void)(*(SZ) = (SA) << SFLOAT_CLZ((SA), 8), *(Z) = 1 - SFLOAT_CLZ((SA), 8))
/*
* Packs the sign `SIGN', exponent `EXP' and significand `SIG' into the value
* giving the result.
*
* After the shifting into their proper positions, the fields are added together
* to form the result. This means any integer portion of `SIG' will be added
* to the exponent. Similarly, because a properly normalized significand will
* always have an integer portion equal to one, the exponent input `EXP' should
* be one less than the desired result exponent whenever the significant input
* `SIG' is a complete, normalized significand.
*/
#define SFLOAT_PACK(SIGN, EXP, SIG) \
(sfloat_t)((((uint32_t)(SIGN)) << 31) + (((uint32_t)(EXP)) << 23) + (SIG))
/*
* Takes two values `a' and `b', one of which is a NaN, and returns the appropriate
* NaN result. If either `a' or `b' is a signaling NaN than an invalid exception is
* raised.
*/
static sfloat_t sfloat_propagate_nan(sfloat_state_t *state, sfloat_t a, sfloat_t b) {
bool isnan_a = SFLOAT_ISNAN(a);
bool issnan_a = SFLOAT_ISSNAN(a);
bool isnan_b = SFLOAT_ISNAN(b);
bool issnan_b = SFLOAT_ISSNAN(b);
a |= 0x00400000;
b |= 0x00400000;
if (issnan_a | issnan_b)
SFLOAT_RAISE(state, SFLOAT_INVALID);
if (isnan_a)
return (issnan_a & isnan_b) ? b : a;
return b;
}
/*
* Takes an abstract value having sign `sign_z', exponent `exp_z', and significand
* `sig_z' and returns the appropriate value corresponding to the abstract input.
*
* The abstract value is simply rounded and packed into the format. If the abstract
* input cannot be represented exactly an inexact exception is raised. If the
* abstract input is too large, the overflow and inexact exceptions are both raised
* and an infinity or maximal finite value is returned. If the abstract value is
* too small, the value is rounded to a subnormal and the underflow and inexact
* exceptions are only raised if the value cannot be represented exactly with
* a subnormal.
*
* The input significand `sig_z' has it's binary point between bits 30 and 29,
* this is seven bits to the left of its usual location. The shifted significand
* must be normalized or smaller than this. If it's not normalized then the exponent
* `exp_z' must be zero; in that case, the result returned is a subnormal number
* which must not require rounding. In the more usual case where the significand
* is normalized, the exponent must be one less than the *true* exponent.
*
* The handling of underflow and overflow is otherwise in alignment with IEC/IEEE.
*/
static sfloat_t SFLOAT_PACK_round(sfloat_state_t *state, bool sign_z, int16_t exp_z, uint32_t sig_z) {
sfloat_roundingmode_t mode = state->roundingmode;
bool even = !!(mode == SFLOAT_ROUND_NEAREST_EVEN);
unsigned char increment = 0x40;
unsigned char bits = sig_z & 0x7F;
if (!even) {
if (mode == SFLOAT_ROUND_TO_ZERO)
increment = 0;
else {
increment = 0x7F;
if (sign_z) {
if (mode == SFLOAT_ROUND_UP)
increment = 0;
} else {
if (mode == SFLOAT_ROUND_DOWN)
increment = 0;
}
}
}
if (0xFD <= (uint16_t)exp_z) {
if ((0xFD < exp_z) || ((exp_z == 0xFD) && ((int32_t)(sig_z + increment) < 0))) {
SFLOAT_RAISE(state, SFLOAT_OVERFLOW | SFLOAT_INEXACT);
return SFLOAT_PACK(sign_z, 0xFF, 0) - (increment == 0);
}
if (exp_z < 0) {
/* Check for underflow */
bool tiny = (state->tiny == SFLOAT_TBEFORE) || (exp_z < -1) || (sig_z + increment < 0x80000000);
SFLOAT_SHIFT(32, sig_z, -exp_z, &sig_z);
exp_z = 0;
bits = sig_z & 0x7F;
if (tiny && bits)
SFLOAT_RAISE(state, SFLOAT_UNDERFLOW);
}
}
if (bits)
SFLOAT_RAISE(state, SFLOAT_INEXACT);
sig_z = (sig_z + increment) >> 7;
sig_z &= ~(((bits ^ 0x40) == 0) & even);
if (sig_z == 0)
exp_z = 0;
return SFLOAT_PACK(sign_z, exp_z, sig_z);
}
/*
* Takes an abstract value having sign `sign_z', exponent `exp_z' and significand
* `sig_z' and returns the appropriate value corresponding to the abstract input.
* This function is exactly like `PACK_round' except the significand does not have
* to be normalized.
*
* Bit 31 of the significand must be zero and the exponent must be one less than
* the *true* exponent.
*/
static sfloat_t SFLOAT_PACK_normal(sfloat_state_t *state, bool sign_z, int16_t exp_z, uint32_t sig_z) {
unsigned char c = SFLOAT_CLZ(sig_z, 1);
return SFLOAT_PACK_round(state, sign_z, exp_z - c, sig_z << c);
}
/*
* Returns the result of adding the absolute values of `a' and `b'. The sign
* `sign_z' is ignored if the result is a NaN.
*/
static sfloat_t sfloat_add_impl(sfloat_state_t *state, sfloat_t a, sfloat_t b, bool sign_z) {
int16_t exp_a = SFLOAT_EXTRACT_EXP(a);
int16_t exp_b = SFLOAT_EXTRACT_EXP(b);
int16_t exp_z = 0;
int16_t exp_d = exp_a - exp_b;
uint32_t sig_a = SFLOAT_EXTRACT_FRAC(a) << 6;
uint32_t sig_b = SFLOAT_EXTRACT_FRAC(b) << 6;
uint32_t sig_z = 0;
if (0 < exp_d) {
if (exp_a == 0xFF)
return sig_a ? sfloat_propagate_nan(state, a, b) : a;
if (exp_b == 0)
--exp_d;
else
sig_b |= 0x20000000;
SFLOAT_SHIFT(32, sig_b, exp_d, &sig_b);
exp_z = exp_a;
} else if (exp_d < 0) {
if (exp_b == 0xFF)
return sig_b ? sfloat_propagate_nan(state, a, b) : SFLOAT_PACK(sign_z, 0xFF, 0);
if (exp_a == 0)
++exp_d;
else
sig_a |= 0x20000000;
SFLOAT_SHIFT(32, sig_a, -exp_d, &sig_a);
exp_z = exp_b;
} else {
if (exp_a == 0xFF)
return (sig_a | sig_b) ? sfloat_propagate_nan(state, a, b) : a;
if (exp_a == 0)
return SFLOAT_PACK(sign_z, 0, (sig_a + sig_b) >> 6);
sig_z = 0x40000000 + sig_a + sig_b;
exp_z = exp_a;
goto end;
}
sig_a |= 0x20000000;
sig_z = (sig_a + sig_b) << 1;
--exp_z;
if ((int32_t)sig_z < 0) {
sig_z = sig_a + sig_b;
++exp_z;
}
end:
return SFLOAT_PACK_round(state, sign_z, exp_z, sig_z);
}
/*
* Returns the result of subtracting the absolute values of `a' and `b'. If the
* sign `sign_z' is one, the difference is negated before being returned. The
* sign is ignored if the result is a NaN.
*/
static sfloat_t sfloat_sub_impl(sfloat_state_t *state, sfloat_t a, sfloat_t b, bool sign_z) {
int16_t exp_a = SFLOAT_EXTRACT_EXP(a);
int16_t exp_b = SFLOAT_EXTRACT_EXP(b);
int16_t exp_z = 0;
int16_t exp_d = exp_a - exp_b;
uint32_t sig_a = SFLOAT_EXTRACT_FRAC(a) << 7;
uint32_t sig_b = SFLOAT_EXTRACT_FRAC(b) << 7;
uint32_t sig_z = 0;
if (0 < exp_d) goto exp_greater_a;
if (exp_d < 0) goto exp_greater_b;
if (exp_a == 0xFF) {
if (sig_a | sig_b)
return sfloat_propagate_nan(state, a, b);
SFLOAT_RAISE(state, SFLOAT_INVALID);
return SFLOAT_NAN;
}
if (exp_a == 0)
exp_a = exp_b = 1;
if (sig_b < sig_a) goto greater_a;
if (sig_a < sig_b) goto greater_b;
return SFLOAT_PACK(state->roundingmode == SFLOAT_ROUND_DOWN, 0, 0);
exp_greater_b:
if (exp_b == 0xFF)
return (sig_b) ? sfloat_propagate_nan(state, a, b) : SFLOAT_PACK(sign_z ^ 1, 0xFF, 0);
if (exp_a == 0)
++exp_d;
else
sig_a |= 0x40000000;
SFLOAT_SHIFT(32, sig_a, -exp_d, &sig_a);
sig_b |= 0x40000000;
greater_b:
sig_z = sig_b - sig_a;
exp_z = exp_b;
sign_z ^= 1;
goto end;
exp_greater_a:
if (exp_a == 0xFF)
return (sig_a) ? sfloat_propagate_nan(state, a, b) : a;
if (exp_b == 0)
--exp_d;
else
sig_b |= 0x40000000;
SFLOAT_SHIFT(32, sig_b, exp_d, &sig_b);
sig_a |= 0x40000000;
greater_a:
sig_z = sig_a - sig_b;
exp_z = exp_a;
end:
--exp_z;
return SFLOAT_PACK_normal(state, sign_z, exp_z, sig_z);
}
static GMQCC_INLINE sfloat_t sfloat_add(sfloat_state_t *state, sfloat_t a, sfloat_t b) {
bool sign_a = SFLOAT_EXTRACT_SIGN(a);
bool sign_b = SFLOAT_EXTRACT_SIGN(b);
return (sign_a == sign_b) ? sfloat_add_impl(state, a, b, sign_a)
: sfloat_sub_impl(state, a, b, sign_a);
}
static GMQCC_INLINE sfloat_t sfloat_sub(sfloat_state_t *state, sfloat_t a, sfloat_t b) {
bool sign_a = SFLOAT_EXTRACT_SIGN(a);
bool sign_b = SFLOAT_EXTRACT_SIGN(b);
return (sign_a == sign_b) ? sfloat_sub_impl(state, a, b, sign_a)
: sfloat_add_impl(state, a, b, sign_a);
}
static sfloat_t sfloat_mul(sfloat_state_t *state, sfloat_t a, sfloat_t b) {
int16_t exp_a = SFLOAT_EXTRACT_EXP(a);
int16_t exp_b = SFLOAT_EXTRACT_EXP(b);
int16_t exp_z = 0;
uint32_t sig_a = SFLOAT_EXTRACT_FRAC(a);
uint32_t sig_b = SFLOAT_EXTRACT_FRAC(b);
uint32_t sig_z = 0;
uint64_t sig_z64 = 0;
bool sign_a = SFLOAT_EXTRACT_SIGN(a);
bool sign_b = SFLOAT_EXTRACT_SIGN(b);
bool sign_z = sign_a ^ sign_b;
if (exp_a == 0xFF) {
if (sig_a || ((exp_b == 0xFF) && sig_b))
return sfloat_propagate_nan(state, a, b);
if ((exp_b | sig_b) == 0) {
SFLOAT_RAISE(state, SFLOAT_INVALID);
return SFLOAT_NAN;
}
return SFLOAT_PACK(sign_z, 0xFF, 0);
}
if (exp_b == 0xFF) {
if (sig_b)
return sfloat_propagate_nan(state, a, b);
if ((exp_a | sig_a) == 0) {
SFLOAT_RAISE(state, SFLOAT_INVALID);
return SFLOAT_NAN;
}
return SFLOAT_PACK(sign_z, 0xFF, 0);
}
if (exp_a == 0) {
if (sig_a == 0)
return SFLOAT_PACK(sign_z, 0, 0);
SFLOAT_SUBNORMALIZE(sig_a, &exp_a, &sig_a);
}
if (exp_b == 0) {
if (sig_b == 0)
return SFLOAT_PACK(sign_z, 0, 0);
SFLOAT_SUBNORMALIZE(sig_b, &exp_b, &sig_b);
}
exp_z = exp_a + exp_b - 0x7F;
sig_a = (sig_a | 0x00800000) << 7;
sig_b = (sig_b | 0x00800000) << 8;
SFLOAT_SHIFT(64, ((uint64_t)sig_a) * sig_b, 32, &sig_z64);
sig_z = sig_z64;
if (0 <= (int32_t)(sig_z << 1)) {
sig_z <<= 1;
--exp_z;
}
return SFLOAT_PACK_round(state, sign_z, exp_z, sig_z);
}
static sfloat_t sfloat_div(sfloat_state_t *state, sfloat_t a, sfloat_t b) {
int16_t exp_a = SFLOAT_EXTRACT_EXP(a);
int16_t exp_b = SFLOAT_EXTRACT_EXP(b);
int16_t exp_z = 0;
uint32_t sig_a = SFLOAT_EXTRACT_FRAC(a);
uint32_t sig_b = SFLOAT_EXTRACT_FRAC(b);
uint32_t sig_z = 0;
bool sign_a = SFLOAT_EXTRACT_SIGN(a);
bool sign_b = SFLOAT_EXTRACT_SIGN(b);
bool sign_z = sign_a ^ sign_b;
if (exp_a == 0xFF) {
if (sig_a)
return sfloat_propagate_nan(state, a, b);
if (exp_b == 0xFF) {
if (sig_b)
return sfloat_propagate_nan(state, a, b);
SFLOAT_RAISE(state, SFLOAT_INVALID);
return SFLOAT_NAN;
}
return SFLOAT_PACK(sign_z, 0xFF, 0);
}
if (exp_b == 0xFF)
return (sig_b) ? sfloat_propagate_nan(state, a, b) : SFLOAT_PACK(sign_z, 0, 0);
if (exp_b == 0) {
if (sig_b == 0) {
if ((exp_a | sig_a) == 0) {
SFLOAT_RAISE(state, SFLOAT_INVALID);
return SFLOAT_NAN;
}
SFLOAT_RAISE(state, SFLOAT_DIVBYZERO);
return SFLOAT_PACK(sign_z, 0xFF, 0);
}
SFLOAT_SUBNORMALIZE(sig_b, &exp_b, &sig_b);
}
if (exp_a == 0) {
if (sig_a == 0)
return SFLOAT_PACK(sign_z, 0, 0);
SFLOAT_SUBNORMALIZE(sig_a, &exp_a, &sig_a);
}
exp_z = exp_a - exp_b + 0x7D;
sig_a = (sig_a | 0x00800000) << 7;
sig_b = (sig_b | 0x00800000) << 8;
if (sig_b <= (sig_a + sig_a)) {
sig_a >>= 1;
++exp_z;
}
sig_z = (((uint64_t)sig_a) << 32) / sig_b;
if ((sig_z & 0x3F) == 0)
sig_z |= ((uint64_t)sig_b * sig_z != ((uint64_t)sig_a) << 32);
return SFLOAT_PACK_round(state, sign_z, exp_z, sig_z);
}
static sfloat_t sfloat_neg(sfloat_state_t *state, sfloat_t a) {
sfloat_cast_t neg;
neg.f = -1;
return sfloat_mul(state, a, neg.s);
}
static GMQCC_INLINE void sfloat_check(lex_ctx_t ctx, sfloat_state_t *state, const char *vec) {
/* Exception comes from vector component */
if (vec) {
if (state->exceptionflags & SFLOAT_DIVBYZERO)
compile_error(ctx, "division by zero in `%s' component", vec);
if (state->exceptionflags & SFLOAT_INVALID)
compile_error(ctx, "undefined (inf) in `%s' component", vec);
if (state->exceptionflags & SFLOAT_OVERFLOW)
compile_error(ctx, "arithmetic overflow in `%s' component", vec);
if (state->exceptionflags & SFLOAT_UNDERFLOW)
compile_error(ctx, "arithmetic underflow in `%s' component", vec);
return;
}
if (state->exceptionflags & SFLOAT_DIVBYZERO)
compile_error(ctx, "division by zero");
if (state->exceptionflags & SFLOAT_INVALID)
compile_error(ctx, "undefined (inf)");
if (state->exceptionflags & SFLOAT_OVERFLOW)
compile_error(ctx, "arithmetic overflow");
if (state->exceptionflags & SFLOAT_UNDERFLOW)
compile_error(ctx, "arithmetic underflow");
}
static GMQCC_INLINE void sfloat_init(sfloat_state_t *state) {
state->exceptionflags = SFLOAT_NOEXCEPT;
state->roundingmode = FOLD_ROUNDING;
state->tiny = FOLD_TINYNESS;
}
/*
* There is two stages to constant folding in GMQCC: there is the parse
* stage constant folding, where, with the help of the AST, operator
* usages can be constant folded. Then there is the constant folding
* in the IR for things like eliding if statements, can occur.
*
* This file is thus, split into two parts.
*/
#define isfloat(X) (((X))->m_vtype == TYPE_FLOAT)
#define isvector(X) (((X))->m_vtype == TYPE_VECTOR)
#define isstring(X) (((X))->m_vtype == TYPE_STRING)
#define isarray(X) (((X))->m_vtype == TYPE_ARRAY)
#define isfloats(X,Y) (isfloat (X) && isfloat (Y))
/*
* Implementation of basic vector math for vec3_t, for trivial constant
* folding.
*
* TODO: gcc/clang hinting for autovectorization
*/
enum vec3_comp_t {
VEC_COMP_X = 1 << 0,
VEC_COMP_Y = 1 << 1,
VEC_COMP_Z = 1 << 2
};
struct vec3_soft_t {
sfloat_cast_t x;
sfloat_cast_t y;
sfloat_cast_t z;
};
struct vec3_soft_state_t {
vec3_comp_t faults;
sfloat_state_t state[3];
};
static GMQCC_INLINE vec3_soft_t vec3_soft_convert(vec3_t vec) {
vec3_soft_t soft;
soft.x.f = vec.x;
soft.y.f = vec.y;
soft.z.f = vec.z;
return soft;
}
static GMQCC_INLINE bool vec3_soft_exception(vec3_soft_state_t *vstate, size_t index) {
sfloat_exceptionflags_t flags = vstate->state[index].exceptionflags;
if (flags & SFLOAT_DIVBYZERO) return true;
if (flags & SFLOAT_INVALID) return true;
if (flags & SFLOAT_OVERFLOW) return true;
if (flags & SFLOAT_UNDERFLOW) return true;
return false;
}
static GMQCC_INLINE void vec3_soft_eval(vec3_soft_state_t *state,
sfloat_t (*callback)(sfloat_state_t *, sfloat_t, sfloat_t),
vec3_t a,
vec3_t b)
{
vec3_soft_t sa = vec3_soft_convert(a);
vec3_soft_t sb = vec3_soft_convert(b);
callback(&state->state[0], sa.x.s, sb.x.s);
if (vec3_soft_exception(state, 0)) state->faults = (vec3_comp_t)(state->faults | VEC_COMP_X);
callback(&state->state[1], sa.y.s, sb.y.s);
if (vec3_soft_exception(state, 1)) state->faults = (vec3_comp_t)(state->faults | VEC_COMP_Y);
callback(&state->state[2], sa.z.s, sb.z.s);
if (vec3_soft_exception(state, 2)) state->faults = (vec3_comp_t)(state->faults | VEC_COMP_Z);
}
static GMQCC_INLINE void vec3_check_except(vec3_t a,
vec3_t b,
lex_ctx_t ctx,
sfloat_t (*callback)(sfloat_state_t *, sfloat_t, sfloat_t))
{
vec3_soft_state_t state = {};
if (!OPTS_FLAG(ARITHMETIC_EXCEPTIONS))
return;
sfloat_init(&state.state[0]);
sfloat_init(&state.state[1]);
sfloat_init(&state.state[2]);
vec3_soft_eval(&state, callback, a, b);
if (state.faults & VEC_COMP_X) sfloat_check(ctx, &state.state[0], "x");
if (state.faults & VEC_COMP_Y) sfloat_check(ctx, &state.state[1], "y");
if (state.faults & VEC_COMP_Z) sfloat_check(ctx, &state.state[2], "z");
}
static GMQCC_INLINE vec3_t vec3_add(lex_ctx_t ctx, vec3_t a, vec3_t b) {
vec3_t out;
vec3_check_except(a, b, ctx, &sfloat_add);
out.x = a.x + b.x;
out.y = a.y + b.y;
out.z = a.z + b.z;
return out;
}
static GMQCC_INLINE vec3_t vec3_sub(lex_ctx_t ctx, vec3_t a, vec3_t b) {
vec3_t out;
vec3_check_except(a, b, ctx, &sfloat_sub);
out.x = a.x - b.x;
out.y = a.y - b.y;
out.z = a.z - b.z;
return out;
}
static GMQCC_INLINE vec3_t vec3_neg(lex_ctx_t ctx, vec3_t a) {
vec3_t out;
sfloat_cast_t v[3];
sfloat_state_t s[3];
if (!OPTS_FLAG(ARITHMETIC_EXCEPTIONS))
goto end;
v[0].f = a.x;
v[1].f = a.y;
v[2].f = a.z;
sfloat_init(&s[0]);
sfloat_init(&s[1]);
sfloat_init(&s[2]);
sfloat_neg(&s[0], v[0].s);
sfloat_neg(&s[1], v[1].s);
sfloat_neg(&s[2], v[2].s);
sfloat_check(ctx, &s[0], nullptr);
sfloat_check(ctx, &s[1], nullptr);
sfloat_check(ctx, &s[2], nullptr);
end:
out.x = -a.x;
out.y = -a.y;
out.z = -a.z;
return out;
}
static GMQCC_INLINE vec3_t vec3_or(vec3_t a, vec3_t b) {
vec3_t out;
out.x = (qcfloat_t)(((qcint_t)a.x) | ((qcint_t)b.x));
out.y = (qcfloat_t)(((qcint_t)a.y) | ((qcint_t)b.y));
out.z = (qcfloat_t)(((qcint_t)a.z) | ((qcint_t)b.z));
return out;
}
static GMQCC_INLINE vec3_t vec3_orvf(vec3_t a, qcfloat_t b) {
vec3_t out;
out.x = (qcfloat_t)(((qcint_t)a.x) | ((qcint_t)b));
out.y = (qcfloat_t)(((qcint_t)a.y) | ((qcint_t)b));
out.z = (qcfloat_t)(((qcint_t)a.z) | ((qcint_t)b));
return out;
}
static GMQCC_INLINE vec3_t vec3_and(vec3_t a, vec3_t b) {
vec3_t out;
out.x = (qcfloat_t)(((qcint_t)a.x) & ((qcint_t)b.x));
out.y = (qcfloat_t)(((qcint_t)a.y) & ((qcint_t)b.y));
out.z = (qcfloat_t)(((qcint_t)a.z) & ((qcint_t)b.z));
return out;
}
static GMQCC_INLINE vec3_t vec3_andvf(vec3_t a, qcfloat_t b) {
vec3_t out;
out.x = (qcfloat_t)(((qcint_t)a.x) & ((qcint_t)b));
out.y = (qcfloat_t)(((qcint_t)a.y) & ((qcint_t)b));
out.z = (qcfloat_t)(((qcint_t)a.z) & ((qcint_t)b));
return out;
}
static GMQCC_INLINE vec3_t vec3_xor(vec3_t a, vec3_t b) {
vec3_t out;
out.x = (qcfloat_t)(((qcint_t)a.x) ^ ((qcint_t)b.x));
out.y = (qcfloat_t)(((qcint_t)a.y) ^ ((qcint_t)b.y));
out.z = (qcfloat_t)(((qcint_t)a.z) ^ ((qcint_t)b.z));
return out;
}
static GMQCC_INLINE vec3_t vec3_xorvf(vec3_t a, qcfloat_t b) {
vec3_t out;
out.x = (qcfloat_t)(((qcint_t)a.x) ^ ((qcint_t)b));
out.y = (qcfloat_t)(((qcint_t)a.y) ^ ((qcint_t)b));
out.z = (qcfloat_t)(((qcint_t)a.z) ^ ((qcint_t)b));
return out;
}
static GMQCC_INLINE vec3_t vec3_not(vec3_t a) {
vec3_t out;
out.x = -1-a.x;
out.y = -1-a.y;
out.z = -1-a.z;
return out;
}
static GMQCC_INLINE qcfloat_t vec3_mulvv(lex_ctx_t ctx, vec3_t a, vec3_t b) {
vec3_soft_t sa;
vec3_soft_t sb;
sfloat_state_t s[5];
sfloat_t r[5];
if (!OPTS_FLAG(ARITHMETIC_EXCEPTIONS))
goto end;
sa = vec3_soft_convert(a);
sb = vec3_soft_convert(b);
sfloat_init(&s[0]);
sfloat_init(&s[1]);
sfloat_init(&s[2]);
sfloat_init(&s[3]);
sfloat_init(&s[4]);
r[0] = sfloat_mul(&s[0], sa.x.s, sb.x.s);
r[1] = sfloat_mul(&s[1], sa.y.s, sb.y.s);
r[2] = sfloat_mul(&s[2], sa.z.s, sb.z.s);
r[3] = sfloat_add(&s[3], r[0], r[1]);
r[4] = sfloat_add(&s[4], r[3], r[2]);
sfloat_check(ctx, &s[0], nullptr);
sfloat_check(ctx, &s[1], nullptr);
sfloat_check(ctx, &s[2], nullptr);
sfloat_check(ctx, &s[3], nullptr);
sfloat_check(ctx, &s[4], nullptr);
end:
return (a.x * b.x + a.y * b.y + a.z * b.z);
}
static GMQCC_INLINE vec3_t vec3_mulvf(lex_ctx_t ctx, vec3_t a, qcfloat_t b) {
vec3_t out;
vec3_soft_t sa;
sfloat_cast_t sb;
sfloat_state_t s[3];
if (!OPTS_FLAG(ARITHMETIC_EXCEPTIONS))
goto end;
sa = vec3_soft_convert(a);
sb.f = b;
sfloat_init(&s[0]);
sfloat_init(&s[1]);
sfloat_init(&s[2]);
sfloat_mul(&s[0], sa.x.s, sb.s);
sfloat_mul(&s[1], sa.y.s, sb.s);
sfloat_mul(&s[2], sa.z.s, sb.s);
sfloat_check(ctx, &s[0], "x");
sfloat_check(ctx, &s[1], "y");
sfloat_check(ctx, &s[2], "z");
end:
out.x = a.x * b;
out.y = a.y * b;
out.z = a.z * b;
return out;
}
static GMQCC_INLINE bool vec3_cmp(vec3_t a, vec3_t b) {
return a.x == b.x &&
a.y == b.y &&
a.z == b.z;
}
static GMQCC_INLINE vec3_t vec3_create(float x, float y, float z) {
vec3_t out;
out.x = x;
out.y = y;
out.z = z;
return out;
}
static GMQCC_INLINE qcfloat_t vec3_notf(vec3_t a) {
return (!a.x && !a.y && !a.z);
}
static GMQCC_INLINE bool vec3_pbool(vec3_t a) {
return (a.x || a.y || a.z);
}
static GMQCC_INLINE vec3_t vec3_cross(lex_ctx_t ctx, vec3_t a, vec3_t b) {
vec3_t out;
vec3_soft_t sa;
vec3_soft_t sb;
sfloat_t r[9];
sfloat_state_t s[9];
if (!OPTS_FLAG(ARITHMETIC_EXCEPTIONS))
goto end;
sa = vec3_soft_convert(a);
sb = vec3_soft_convert(b);
sfloat_init(&s[0]);
sfloat_init(&s[1]);
sfloat_init(&s[2]);
sfloat_init(&s[3]);
sfloat_init(&s[4]);
sfloat_init(&s[5]);
sfloat_init(&s[6]);
sfloat_init(&s[7]);
sfloat_init(&s[8]);
r[0] = sfloat_mul(&s[0], sa.y.s, sb.z.s);
r[1] = sfloat_mul(&s[1], sa.z.s, sb.y.s);
r[2] = sfloat_mul(&s[2], sa.z.s, sb.x.s);
r[3] = sfloat_mul(&s[3], sa.x.s, sb.z.s);
r[4] = sfloat_mul(&s[4], sa.x.s, sb.y.s);
r[5] = sfloat_mul(&s[5], sa.y.s, sb.x.s);
r[6] = sfloat_sub(&s[6], r[0], r[1]);
r[7] = sfloat_sub(&s[7], r[2], r[3]);
r[8] = sfloat_sub(&s[8], r[4], r[5]);
sfloat_check(ctx, &s[0], nullptr);
sfloat_check(ctx, &s[1], nullptr);
sfloat_check(ctx, &s[2], nullptr);
sfloat_check(ctx, &s[3], nullptr);
sfloat_check(ctx, &s[4], nullptr);
sfloat_check(ctx, &s[5], nullptr);
sfloat_check(ctx, &s[6], "x");
sfloat_check(ctx, &s[7], "y");
sfloat_check(ctx, &s[8], "z");
end:
out.x = a.y * b.z - a.z * b.y;
out.y = a.z * b.x - a.x * b.z;
out.z = a.x * b.y - a.y * b.x;
return out;
}
qcfloat_t fold::immvalue_float(ast_value *value) {
return value->m_constval.vfloat;
}
vec3_t fold::immvalue_vector(ast_value *value) {
return value->m_constval.vvec;
}
const char *fold::immvalue_string(ast_value *value) {
return value->m_constval.vstring;
}
lex_ctx_t fold::ctx() {
lex_ctx_t ctx;
if (m_parser->lex)
return parser_ctx(m_parser);
memset(&ctx, 0, sizeof(ctx));
return ctx;
}
bool fold::immediate_true(ast_value *v) {
switch (v->m_vtype) {
case TYPE_FLOAT:
return !!v->m_constval.vfloat;
case TYPE_INTEGER:
return !!v->m_constval.vint;
case TYPE_VECTOR:
if (OPTS_FLAG(CORRECT_LOGIC))
return vec3_pbool(v->m_constval.vvec);
return !!(v->m_constval.vvec.x);
case TYPE_STRING:
if (!v->m_constval.vstring)
return false;
if (OPTS_FLAG(TRUE_EMPTY_STRINGS))
return true;
return !!v->m_constval.vstring[0];
default:
compile_error(ctx(), "internal error: fold_immediate_true on invalid type");
break;
}
return !!v->m_constval.vfunc;
}
/* Handy macros to determine if an ast_value can be constant folded. */
#define fold_can_1(X) \
(ast_istype(((X)), ast_value) && (X)->m_hasvalue && ((X)->m_cvq == CV_CONST) && \
((X))->m_vtype != TYPE_FUNCTION)
#define fold_can_2(X, Y) (fold_can_1(X) && fold_can_1(Y))
fold::fold()
: m_parser(nullptr)
{
}
fold::fold(parser_t *parser)
: m_parser(parser)
{
m_imm_string_untranslate = util_htnew(FOLD_STRING_UNTRANSLATE_HTSIZE);
m_imm_string_dotranslate = util_htnew(FOLD_STRING_DOTRANSLATE_HTSIZE);
constgen_float(0.0f, false);
constgen_float(1.0f, false);
constgen_float(-1.0f, false);
constgen_float(2.0f, false);
constgen_vector(vec3_create(0.0f, 0.0f, 0.0f));
constgen_vector(vec3_create(-1.0f, -1.0f, -1.0f));
}
bool fold::generate(ir_builder *ir) {
// generate globals for immediate folded values
ast_value *cur;
for (auto &it : m_imm_float)
if (!(cur = it)->generateGlobal(ir, false)) goto err;
for (auto &it : m_imm_vector)
if (!(cur = it)->generateGlobal(ir, false)) goto err;
for (auto &it : m_imm_string)
if (!(cur = it)->generateGlobal(ir, false)) goto err;
return true;
err:
con_out("failed to generate global %s\n", cur->m_name.c_str());
delete ir;
return false;
}
fold::~fold() {
// TODO: parser lifetime so this is called when it should be
#if 0
for (auto &it : m_imm_float) ast_delete(it);
for (auto &it : m_imm_vector) ast_delete(it);
for (auto &it : m_imm_string) ast_delete(it);
util_htdel(m_imm_string_untranslate);
util_htdel(m_imm_string_dotranslate);
#endif
}
ast_expression *fold::constgen_float(qcfloat_t value, bool inexact) {
for (auto &it : m_imm_float)
if (!memcmp(&it->m_constval.vfloat, &value, sizeof(qcfloat_t)))
return it;
ast_value *out = new ast_value(ctx(), "#IMMEDIATE", TYPE_FLOAT);
out->m_cvq = CV_CONST;
out->m_hasvalue = true;
out->m_inexact = inexact;
out->m_constval.vfloat = value;
m_imm_float.push_back(out);
return out;
}
ast_expression *fold::constgen_vector(vec3_t value) {
for (auto &it : m_imm_vector)
if (vec3_cmp(it->m_constval.vvec, value))
return it;
ast_value *out = new ast_value(ctx(), "#IMMEDIATE", TYPE_VECTOR);
out->m_cvq = CV_CONST;
out->m_hasvalue = true;
out->m_constval.vvec = value;
m_imm_vector.push_back(out);
return out;
}
ast_expression *fold::constgen_string(const char *str, bool translate) {
hash_table_t *table = translate ? m_imm_string_untranslate : m_imm_string_dotranslate;
ast_value *out = nullptr;
size_t hash = util_hthash(table, str);
if ((out = (ast_value*)util_htgeth(table, str, hash)))
return out;
if (translate) {
char name[32];
util_snprintf(name, sizeof(name), "dotranslate_%zu", m_parser->translated++);
out = new ast_value(ctx(), name, TYPE_STRING);
out->m_flags |= AST_FLAG_INCLUDE_DEF; /* def needs to be included for translatables */
} else {
out = new ast_value(ctx(), "#IMMEDIATE", TYPE_STRING);
}
out->m_cvq = CV_CONST;
out->m_hasvalue = true;
out->m_isimm = true;
out->m_constval.vstring = parser_strdup(str);
m_imm_string.push_back(out);
util_htseth(table, str, hash, out);
return out;
}
ast_expression *fold::constgen_string(const std::string &str, bool translate) {
return constgen_string(str.c_str(), translate);
}
typedef union {
void (*callback)(void);
sfloat_t (*binary)(sfloat_state_t *, sfloat_t, sfloat_t);
sfloat_t (*unary)(sfloat_state_t *, sfloat_t);
} float_check_callback_t;
bool fold::check_except_float_impl(void (*callback)(void), ast_value *a, ast_value *b) {
float_check_callback_t call;
sfloat_state_t s;
sfloat_cast_t ca;
if (!OPTS_FLAG(ARITHMETIC_EXCEPTIONS) && !OPTS_WARN(WARN_INEXACT_COMPARES))
return false;
call.callback = callback;
sfloat_init(&s);
ca.f = immvalue_float(a);
if (b) {
sfloat_cast_t cb;
cb.f = immvalue_float(b);
call.binary(&s, ca.s, cb.s);
} else {
call.unary(&s, ca.s);
}
if (s.exceptionflags == 0)
return false;
if (!OPTS_FLAG(ARITHMETIC_EXCEPTIONS))
goto inexact_possible;
sfloat_check(ctx(), &s, nullptr);
inexact_possible:
return s.exceptionflags & SFLOAT_INEXACT;
}
#define check_except_float(CALLBACK, A, B) \
check_except_float_impl(((void (*)(void))(CALLBACK)), (A), (B))
bool fold::check_inexact_float(ast_value *a, ast_value *b) {
if (!OPTS_WARN(WARN_INEXACT_COMPARES))
return false;
if (!a->m_inexact && !b->m_inexact)
return false;
return compile_warning(ctx(), WARN_INEXACT_COMPARES, "inexact value in comparison");
}
uint32_t fold::cond(ast_value* condval, ast_ifthen *branch) {
// Optimization is disabled.
if (!OPTS_OPTIMIZATION(OPTIM_CONST_FOLD_DCE)) {
// Generate code for both.
return ON_TRUE | ON_FALSE;
}
// Only float literals can be DCE in conditions.
if (!isfloat(condval) || !fold_can_1(condval)) {
// Generate code for both.
return ON_TRUE | ON_FALSE;
}
qcfloat_t value = immvalue_float(condval);
bool is_true = value != 0.0f && branch->m_on_true;
bool is_false = value == 0.0f && branch->m_on_false;
++opts_optimizationcount[OPTIM_CONST_FOLD_DCE];
// Determine which path we want to take based on constant fold.
if (is_true) {
// Generate code only for true path.
return ON_TRUE;
} else if (is_false) {
// Generate code only for false path.
return ON_FALSE;
}
// Generate code for no paths.
return 0;
}
uint32_t fold::cond_ternary(ast_value *condval, ast_ternary *branch) {
return cond(condval, (ast_ifthen*)branch);
}
uint32_t fold::cond_ifthen(ast_value *condval, ast_ifthen *branch) {
return cond(condval, branch);
}
ast_expression *fold::op_mul_vec(vec3_t vec, ast_value *sel, const char *set) {
qcfloat_t x = (&vec.x)[set[0]-'x'];
qcfloat_t y = (&vec.x)[set[1]-'x'];
qcfloat_t z = (&vec.x)[set[2]-'x'];
if (!y && !z) {
ast_expression *out;
++opts_optimizationcount[OPTIM_VECTOR_COMPONENTS];
out = ast_member::make(ctx(), sel, set[0]-'x', "");
out->m_keep_node = false;
((ast_member*)out)->m_rvalue = true;
if (x != -1.0f)
return new ast_binary(ctx(), INSTR_MUL_F, constgen_float(x, false), out);
}
return nullptr;
}
ast_expression *fold::op_neg(ast_value *a) {
if (isfloat(a)) {
if (fold_can_1(a)) {
/* Negation can produce inexact as well */
bool inexact = check_except_float(&sfloat_neg, a, nullptr);
return constgen_float(-immvalue_float(a), inexact);
}
} else if (isvector(a)) {
if (fold_can_1(a))
return constgen_vector(vec3_neg(ctx(), immvalue_vector(a)));
}
return nullptr;
}
ast_expression *fold::op_not(ast_value *a) {
if (isfloat(a)) {
if (fold_can_1(a))
return constgen_float(!immvalue_float(a), false);
} else if (isvector(a)) {
if (fold_can_1(a))
return constgen_float(vec3_notf(immvalue_vector(a)), false);
} else if (isstring(a)) {
if (fold_can_1(a)) {
if (OPTS_FLAG(TRUE_EMPTY_STRINGS))
return constgen_float(!immvalue_string(a), false);
else
return constgen_float(!immvalue_string(a) || !*immvalue_string(a), false);
}
}
return nullptr;
}
ast_expression *fold::op_add(ast_value *a, ast_value *b) {
if (isfloat(a)) {
if (fold_can_2(a, b)) {
bool inexact = check_except_float(&sfloat_add, a, b);
return constgen_float(immvalue_float(a) + immvalue_float(b), inexact);
}
} else if (isvector(a)) {
if (fold_can_2(a, b))
return constgen_vector(vec3_add(ctx(),
immvalue_vector(a),
immvalue_vector(b)));
}
return nullptr;
}
ast_expression *fold::op_sub(ast_value *a, ast_value *b) {
if (isfloat(a)) {
if (fold_can_2(a, b)) {
bool inexact = check_except_float(&sfloat_sub, a, b);
return constgen_float(immvalue_float(a) - immvalue_float(b), inexact);
}
} else if (isvector(a)) {
if (fold_can_2(a, b))
return constgen_vector(vec3_sub(ctx(),
immvalue_vector(a),
immvalue_vector(b)));
}
return nullptr;
}
ast_expression *fold::op_mul(ast_value *a, ast_value *b) {
if (isfloat(a)) {
if (isvector(b)) {
if (fold_can_2(a, b))
return constgen_vector(vec3_mulvf(ctx(), immvalue_vector(b), immvalue_float(a)));
} else {
if (fold_can_2(a, b)) {
bool inexact = check_except_float(&sfloat_mul, a, b);
return constgen_float(immvalue_float(a) * immvalue_float(b), inexact);
}
}
} else if (isvector(a)) {
if (isfloat(b)) {
if (fold_can_2(a, b))
return constgen_vector(vec3_mulvf(ctx(), immvalue_vector(a), immvalue_float(b)));
} else {
if (fold_can_2(a, b)) {
return constgen_float(vec3_mulvv(ctx(), immvalue_vector(a), immvalue_vector(b)), false);
} else if (OPTS_OPTIMIZATION(OPTIM_VECTOR_COMPONENTS) && fold_can_1(a)) {
ast_expression *out;
if ((out = op_mul_vec(immvalue_vector(a), b, "xyz"))) return out;
if ((out = op_mul_vec(immvalue_vector(a), b, "yxz"))) return out;
if ((out = op_mul_vec(immvalue_vector(a), b, "zxy"))) return out;
} else if (OPTS_OPTIMIZATION(OPTIM_VECTOR_COMPONENTS) && fold_can_1(b)) {
ast_expression *out;
if ((out = op_mul_vec(immvalue_vector(b), a, "xyz"))) return out;
if ((out = op_mul_vec(immvalue_vector(b), a, "yxz"))) return out;
if ((out = op_mul_vec(immvalue_vector(b), a, "zxy"))) return out;
}
}
}
return nullptr;
}
ast_expression *fold::op_div(ast_value *a, ast_value *b) {
if (isfloat(a)) {
if (fold_can_2(a, b)) {
bool inexact = check_except_float(&sfloat_div, a, b);
return constgen_float(immvalue_float(a) / immvalue_float(b), inexact);
} else if (fold_can_1(b)) {
return new ast_binary(
ctx(),
INSTR_MUL_F,
a,
constgen_float(1.0f / immvalue_float(b), false)
);
}
} else if (isvector(a)) {
if (fold_can_2(a, b)) {
return constgen_vector(vec3_mulvf(ctx(), immvalue_vector(a), 1.0f / immvalue_float(b)));
} else {
return new ast_binary(
ctx(),
INSTR_MUL_VF,
a,
(fold_can_1(b))
? constgen_float(1.0f / immvalue_float(b), false)
: new ast_binary(ctx(),
INSTR_DIV_F,
m_imm_float[1],
b
)
);
}
}
return nullptr;
}
ast_expression *fold::op_mod(ast_value *a, ast_value *b) {
return (fold_can_2(a, b))
? constgen_float(fmod(immvalue_float(a), immvalue_float(b)), false)
: nullptr;
}
ast_expression *fold::op_bor(ast_value *a, ast_value *b) {
if (isfloat(a)) {
if (fold_can_2(a, b))
return constgen_float((qcfloat_t)(((qcint_t)immvalue_float(a)) | ((qcint_t)immvalue_float(b))), false);
} else {
if (isvector(b)) {
if (fold_can_2(a, b))
return constgen_vector(vec3_or(immvalue_vector(a), immvalue_vector(b)));
} else {
if (fold_can_2(a, b))
return constgen_vector(vec3_orvf(immvalue_vector(a), immvalue_float(b)));
}
}
return nullptr;
}
ast_expression *fold::op_band(ast_value *a, ast_value *b) {
if (isfloat(a)) {
if (fold_can_2(a, b))
return constgen_float((qcfloat_t)(((qcint_t)immvalue_float(a)) & ((qcint_t)immvalue_float(b))), false);
} else {
if (isvector(b)) {
if (fold_can_2(a, b))
return constgen_vector(vec3_and(immvalue_vector(a), immvalue_vector(b)));
} else {
if (fold_can_2(a, b))
return constgen_vector(vec3_andvf(immvalue_vector(a), immvalue_float(b)));
}
}
return nullptr;
}
ast_expression *fold::op_xor(ast_value *a, ast_value *b) {
if (isfloat(a)) {
if (fold_can_2(a, b))
return constgen_float((qcfloat_t)(((qcint_t)immvalue_float(a)) ^ ((qcint_t)immvalue_float(b))), false);
} else {
if (fold_can_2(a, b)) {
if (isvector(b))
return constgen_vector(vec3_xor(immvalue_vector(a), immvalue_vector(b)));
else
return constgen_vector(vec3_xorvf(immvalue_vector(a), immvalue_float(b)));
}
}
return nullptr;
}
ast_expression *fold::op_lshift(ast_value *a, ast_value *b) {
if (fold_can_2(a, b) && isfloats(a, b))
return constgen_float((qcfloat_t)floorf(immvalue_float(a) * powf(2.0f, immvalue_float(b))), false);
return nullptr;
}
ast_expression *fold::op_rshift(ast_value *a, ast_value *b) {
if (fold_can_2(a, b) && isfloats(a, b))
return constgen_float((qcfloat_t)floorf(immvalue_float(a) / powf(2.0f, immvalue_float(b))), false);
return nullptr;
}
ast_expression *fold::op_andor(ast_value *a, ast_value *b, float expr) {
if (fold_can_2(a, b)) {
if (OPTS_FLAG(PERL_LOGIC)) {
if (expr)
return immediate_true(a) ? a : b;
else
return immediate_true(a) ? b : a;
} else {
return constgen_float(
((expr) ? (immediate_true(a) || immediate_true(b))
: (immediate_true(a) && immediate_true(b)))
? 1
: 0,
false
);
}
}
return nullptr;
}
ast_expression *fold::op_tern(ast_value *a, ast_value *b, ast_value *c) {
if (fold_can_1(a)) {
return immediate_true(a)
? b
: c;
}
return nullptr;
}
ast_expression *fold::op_exp(ast_value *a, ast_value *b) {
if (fold_can_2(a, b))
return constgen_float((qcfloat_t)powf(immvalue_float(a), immvalue_float(b)), false);
return nullptr;
}
ast_expression *fold::op_lteqgt(ast_value *a, ast_value *b) {
if (fold_can_2(a,b)) {
check_inexact_float(a, b);
if (immvalue_float(a) < immvalue_float(b)) return m_imm_float[2];
if (immvalue_float(a) == immvalue_float(b)) return m_imm_float[0];
if (immvalue_float(a) > immvalue_float(b)) return m_imm_float[1];
}
return nullptr;
}
ast_expression *fold::op_ltgt(ast_value *a, ast_value *b, bool lt) {
if (fold_can_2(a, b)) {
check_inexact_float(a, b);
return (lt) ? m_imm_float[!!(immvalue_float(a) < immvalue_float(b))]
: m_imm_float[!!(immvalue_float(a) > immvalue_float(b))];
}
return nullptr;
}
ast_expression *fold::op_cmp(ast_value *a, ast_value *b, bool ne) {
if (fold_can_2(a, b)) {
if (isfloat(a) && isfloat(b)) {
float la = immvalue_float(a);
float lb = immvalue_float(b);
check_inexact_float(a, b);
return m_imm_float[ne ? la != lb : la == lb];
} else if (isvector(a) && isvector(b)) {
vec3_t la = immvalue_vector(a);
vec3_t lb = immvalue_vector(b);
bool compare = vec3_cmp(la, lb);
return m_imm_float[ne ? !compare : compare];
} else if (isstring(a) && isstring(b)) {
bool compare = !strcmp(immvalue_string(a), immvalue_string(b));
return m_imm_float[ne ? !compare : compare];
}
}
return nullptr;
}
ast_expression *fold::op_bnot(ast_value *a) {
if (isfloat(a)) {
if (fold_can_1(a))
return constgen_float(-1-immvalue_float(a), false);
} else {
if (isvector(a)) {
if (fold_can_1(a))
return constgen_vector(vec3_not(immvalue_vector(a)));
}
}
return nullptr;
}
ast_expression *fold::op_cross(ast_value *a, ast_value *b) {
if (fold_can_2(a, b))
return constgen_vector(vec3_cross(ctx(),
immvalue_vector(a),
immvalue_vector(b)));
return nullptr;
}
ast_expression *fold::op_length(ast_value *a) {
if (fold_can_1(a) && isstring(a))
return constgen_float(strlen(immvalue_string(a)), false);
if (isarray(a))
return constgen_float(a->m_initlist.size(), false);
return nullptr;
}
ast_expression *fold::op(const oper_info *info, ast_expression **opexprs) {
ast_value *a = (ast_value*)opexprs[0];
ast_value *b = (ast_value*)opexprs[1];
ast_value *c = (ast_value*)opexprs[2];
ast_expression *e = nullptr;
/* can a fold operation be applied to this operator usage? */
if (!info->folds)
return nullptr;
switch(info->operands) {
case 3: if(!c) return nullptr; [[fallthrough]];
case 2: if(!b) return nullptr; [[fallthrough]];
case 1:
if(!a) {
compile_error(ctx(), "internal error: fold_op no operands to fold\n");
return nullptr;
}
}
#define fold_op_case(ARGS, ARGS_OPID, OP, ARGS_FOLD) \
case opid##ARGS ARGS_OPID: \
if ((e = op_##OP ARGS_FOLD)) { \
++opts_optimizationcount[OPTIM_CONST_FOLD]; \
} \
return e
switch(info->id) {
fold_op_case(2, ('-', 'P'), neg, (a));
fold_op_case(2, ('!', 'P'), not, (a));
fold_op_case(1, ('+'), add, (a, b));
fold_op_case(1, ('-'), sub, (a, b));
fold_op_case(1, ('*'), mul, (a, b));
fold_op_case(1, ('/'), div, (a, b));
fold_op_case(1, ('%'), mod, (a, b));
fold_op_case(1, ('|'), bor, (a, b));
fold_op_case(1, ('&'), band, (a, b));
fold_op_case(1, ('^'), xor, (a, b));
fold_op_case(1, ('<'), ltgt, (a, b, true));
fold_op_case(1, ('>'), ltgt, (a, b, false));
fold_op_case(2, ('<', '<'), lshift, (a, b));
fold_op_case(2, ('>', '>'), rshift, (a, b));
fold_op_case(2, ('|', '|'), andor, (a, b, true));
fold_op_case(2, ('&', '&'), andor, (a, b, false));
fold_op_case(2, ('?', ':'), tern, (a, b, c));
fold_op_case(2, ('*', '*'), exp, (a, b));
fold_op_case(3, ('<','=','>'), lteqgt, (a, b));
fold_op_case(2, ('!', '='), cmp, (a, b, true));
fold_op_case(2, ('=', '='), cmp, (a, b, false));
fold_op_case(2, ('~', 'P'), bnot, (a));
fold_op_case(2, ('>', '<'), cross, (a, b));
fold_op_case(3, ('l', 'e', 'n'), length, (a));
}
#undef fold_op_case
compile_error(ctx(), "internal error: attempted to constant-fold for unsupported operator");
return nullptr;
}
/*
* Constant folding for compiler intrinsics, similar approach to operator
* folding, primarily: individual functions for each intrinsics to fold,
* and a generic selection function.
*/
ast_expression *fold::intrinsic_isfinite(ast_value *a) {
return constgen_float(isfinite(immvalue_float(a)), false);
}
ast_expression *fold::intrinsic_isinf(ast_value *a) {
return constgen_float(isinf(immvalue_float(a)), false);
}
ast_expression *fold::intrinsic_isnan(ast_value *a) {
return constgen_float(isnan(immvalue_float(a)), false);
}
ast_expression *fold::intrinsic_isnormal(ast_value *a) {
return constgen_float(isnormal(immvalue_float(a)), false);
}
ast_expression *fold::intrinsic_signbit(ast_value *a) {
return constgen_float(signbit(immvalue_float(a)), false);
}
ast_expression *fold::intrinsic_acosh(ast_value *a) {
return constgen_float(acoshf(immvalue_float(a)), false);
}
ast_expression *fold::intrinsic_asinh(ast_value *a) {
return constgen_float(asinhf(immvalue_float(a)), false);
}
ast_expression *fold::intrinsic_atanh(ast_value *a) {
return constgen_float((float)atanh(immvalue_float(a)), false);
}
ast_expression *fold::intrinsic_exp(ast_value *a) {
return constgen_float(expf(immvalue_float(a)), false);
}
ast_expression *fold::intrinsic_exp2(ast_value *a) {
return constgen_float(exp2f(immvalue_float(a)), false);
}
ast_expression *fold::intrinsic_expm1(ast_value *a) {
return constgen_float(expm1f(immvalue_float(a)), false);
}
ast_expression *fold::intrinsic_mod(ast_value *lhs, ast_value *rhs) {
return constgen_float(fmodf(immvalue_float(lhs), immvalue_float(rhs)), false);
}
ast_expression *fold::intrinsic_pow(ast_value *lhs, ast_value *rhs) {
return constgen_float(powf(immvalue_float(lhs), immvalue_float(rhs)), false);
}
ast_expression *fold::intrinsic_fabs(ast_value *a) {
return constgen_float(fabsf(immvalue_float(a)), false);
}
ast_expression* fold::intrinsic_nan(void) {
return constgen_float(0.0f / 0.0f, false);
}
ast_expression* fold::intrinsic_epsilon(void) {
static bool calculated = false;
static float eps = 1.0f;
if (!calculated) {
do {
eps /= 2.0f;
} while ((1.0f + (eps / 2.0f)) != 1.0f);
calculated = true;
}
return constgen_float(eps, false);
}
ast_expression* fold::intrinsic_inf(void) {
return constgen_float(1.0f / 0.0f, false);
}
ast_expression *fold::intrinsic(const char *intrinsic, size_t n_args, ast_expression **args) {
ast_expression *ret = nullptr;
if (n_args) {
ast_value *a = (ast_value*)args[0];
ast_value *b = (ast_value*)args[1];
if (!strcmp(intrinsic, "isfinite")) ret = intrinsic_isfinite(a);
if (!strcmp(intrinsic, "isinf")) ret = intrinsic_isinf(a);
if (!strcmp(intrinsic, "isnan")) ret = intrinsic_isnan(a);
if (!strcmp(intrinsic, "isnormal")) ret = intrinsic_isnormal(a);
if (!strcmp(intrinsic, "signbit")) ret = intrinsic_signbit(a);
if (!strcmp(intrinsic, "acosh")) ret = intrinsic_acosh(a);
if (!strcmp(intrinsic, "asinh")) ret = intrinsic_asinh(a);
if (!strcmp(intrinsic, "atanh")) ret = intrinsic_atanh(a);
if (!strcmp(intrinsic, "exp")) ret = intrinsic_exp(a);
if (!strcmp(intrinsic, "exp2")) ret = intrinsic_exp2(a);
if (!strcmp(intrinsic, "expm1")) ret = intrinsic_expm1(a);
if (!strcmp(intrinsic, "mod")) ret = intrinsic_mod(a, b);
if (!strcmp(intrinsic, "pow")) ret = intrinsic_pow(a, b);
if (!strcmp(intrinsic, "fabs")) ret = intrinsic_fabs(a);
} else {
if (!strcmp(intrinsic, "nan")) ret = intrinsic_nan();
if (!strcmp(intrinsic, "epsilon")) ret = intrinsic_epsilon();
if (!strcmp(intrinsic, "inf")) ret = intrinsic_inf();
}
if (ret) {
++opts_optimizationcount[OPTIM_CONST_FOLD];
}
return ret;
}
/*
* These are all the actual constant folding methods that happen in between
* the AST/IR stage of the compiler , i.e eliminating branches for const
* expressions, which is the only supported thing so far. We undefine the
* testing macros here because an ir_value is differant than an ast_value.
*/
#undef expect
#undef isfloat
#undef isstring
#undef isvector
#undef fold__immvalue_float
#undef fold__immvalue_string
#undef fold__immvalue_vector
#undef fold_can_1
#undef fold_can_2
#define isfloat(X) ((X)->m_vtype == TYPE_FLOAT)
/*#define isstring(X) ((X)->m_vtype == TYPE_STRING)*/
/*#define isvector(X) ((X)->m_vtype == TYPE_VECTOR)*/
#define fold_can_1(X) ((X)->m_hasvalue && (X)->m_cvq == CV_CONST)
/*#define fold_can_2(X,Y) (fold_can_1(X) && fold_can_1(Y))*/
qcfloat_t fold::immvalue_float(ir_value *value) {
return value->m_constval.vfloat;
}
vec3_t fold::immvalue_vector(ir_value *value) {
return value->m_constval.vvec;
}
ast_expression *fold::superfluous(ast_expression *left, ast_expression *right, int op) {
ast_expression *swapped = nullptr; /* using this as bool */
ast_value *load;
if (!ast_istype(right, ast_value) || !fold_can_1((load = (ast_value*)right))) {
swapped = left;
left = right;
right = swapped;
}
if (!ast_istype(right, ast_value) || !fold_can_1((load = (ast_value*)right)))
return nullptr;
switch (op) {
case INSTR_DIV_F:
if (swapped)
return nullptr;
[[fallthrough]];
case INSTR_MUL_F:
if (immvalue_float(load) == 1.0f) {
++opts_optimizationcount[OPTIM_PEEPHOLE];
ast_unref(right);
return left;
}
break;
case INSTR_SUB_F:
if (swapped)
return nullptr;
[[fallthrough]];
case INSTR_ADD_F:
if (immvalue_float(load) == 0.0f) {
++opts_optimizationcount[OPTIM_PEEPHOLE];
ast_unref(right);
return left;
}
break;
case INSTR_MUL_V:
if (vec3_cmp(immvalue_vector(load), vec3_create(1, 1, 1))) {
++opts_optimizationcount[OPTIM_PEEPHOLE];
ast_unref(right);
return left;
}
break;
case INSTR_SUB_V:
if (swapped)
return nullptr;
[[fallthrough]];
case INSTR_ADD_V:
if (vec3_cmp(immvalue_vector(load), vec3_create(0, 0, 0))) {
++opts_optimizationcount[OPTIM_PEEPHOLE];
ast_unref(right);
return left;
}
break;
}
return nullptr;
}
ast_expression *fold::binary(lex_ctx_t ctx, int op, ast_expression *left, ast_expression *right) {
ast_expression *ret = superfluous(left, right, op);
if (ret)
return ret;
return new ast_binary(ctx, op, left, right);
}
|