File: fold.cpp

package info (click to toggle)
gmqcc 0.3.5%2Bgit20251116-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,860 kB
  • sloc: cpp: 22,921; makefile: 137; sh: 41
file content (1679 lines) | stat: -rw-r--r-- 55,782 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
#include <string.h>
#include <math.h>

#include "fold.h"
#include "ast.h"
#include "ir.h"

#include "parser.h"

#define FOLD_STRING_UNTRANSLATE_HTSIZE 1024
#define FOLD_STRING_DOTRANSLATE_HTSIZE 1024

/* The options to use for inexact and arithmetic exceptions */
#define FOLD_ROUNDING SFLOAT_ROUND_NEAREST_EVEN
#define FOLD_TINYNESS SFLOAT_TBEFORE

/*
 * Comparing float values is an unsafe operation when the operands to the
 * comparison are floating point values that are inexact. For instance 1/3 is an
 * inexact value. The FPU is meant to raise exceptions when these sorts of things
 * happen, including division by zero, underflows and overflows. The C standard
 * library provides us with the <fenv.h> header to gain access to the floating-
 * point environment and lets us set the rounding mode and check for these exceptions.
 * The problem is the standard C library allows an implementation to leave these
 * stubbed out and does not require they be implemented. Furthermore, depending
 * on implementations there is no control over the FPU. This is an IEE 754
 * conforming implementation in software to compensate.
 */
typedef uint32_t sfloat_t;

union sfloat_cast_t {
    qcfloat_t f;
    sfloat_t s;
};

/* Exception flags */
enum sfloat_exceptionflags_t {
    SFLOAT_NOEXCEPT  = 0,
    SFLOAT_INVALID   = 1,
    SFLOAT_DIVBYZERO = 4,
    SFLOAT_OVERFLOW  = 8,
    SFLOAT_UNDERFLOW = 16,
    SFLOAT_INEXACT   = 32
};

/* Rounding modes */
enum sfloat_roundingmode_t {
    SFLOAT_ROUND_NEAREST_EVEN,
    SFLOAT_ROUND_DOWN,
    SFLOAT_ROUND_UP,
    SFLOAT_ROUND_TO_ZERO
};

/* Underflow tininess-detection mode */
enum sfloat_tdetect_t {
    SFLOAT_TAFTER,
    SFLOAT_TBEFORE
};

struct sfloat_state_t {
    sfloat_roundingmode_t roundingmode;
    sfloat_exceptionflags_t exceptionflags;
    sfloat_tdetect_t tiny;
};

/* Counts the number of leading zero bits before the most-significand one bit. */
#ifdef _MSC_VER
/* MSVC has an intrinsic for this */
    static GMQCC_INLINE uint32_t sfloat_clz(uint32_t x) {
        int r = 0;
        _BitScanForward(&r, x);
        return r;
    }
#   define SFLOAT_CLZ(X, SUB) \
        (sfloat_clz((X)) - (SUB))
#elif defined(__GNUC__) || defined(__CLANG__)
/* Clang and GCC have a builtin for this */
#   define SFLOAT_CLZ(X, SUB) \
        (__builtin_clz((X)) - (SUB))
#else
/* Native fallback */
    static GMQCC_INLINE uint32_t sfloat_popcnt(uint32_t x) {
        x -= ((x >> 1) & 0x55555555);
        x  = (((x >> 2) & 0x33333333) + (x & 0x33333333));
        x  = (((x >> 4) + x) & 0x0F0F0F0F);
        x += x >> 8;
        x += x >> 16;
        return x & 0x0000003F;
    }
    static GMQCC_INLINE uint32_t sfloat_clz(uint32_t x) {
        x |= (x >> 1);
        x |= (x >> 2);
        x |= (x >> 4);
        x |= (x >> 8);
        x |= (x >> 16);
        return 32 - sfloat_popcnt(x);
    }
#   define SFLOAT_CLZ(X, SUB) \
        (sfloat_clz((X) - (SUB)))
#endif

/* The value of a NaN */
#define SFLOAT_NAN 0xFFFFFFFF
/* Test if NaN */
#define SFLOAT_ISNAN(A) \
    (0xFF000000 < (uint32_t)((A) << 1))
/* Test if signaling NaN */
#define SFLOAT_ISSNAN(A) \
    (((((A) >> 22) & 0x1FF) == 0x1FE) && ((A) & 0x003FFFFF))
/* Raise exception */
#define SFLOAT_RAISE(STATE, FLAGS) \
    ((STATE)->exceptionflags = (sfloat_exceptionflags_t)((STATE)->exceptionflags | (FLAGS)))
/*
 * Shifts `A' right by the number of bits given in `COUNT'. If any non-zero bits
 * are shifted off they are forced into the least significand bit of the result
 * by setting it to one. As a result of this, the value of `COUNT' can be
 * arbitrarily large; if `COUNT' is greater than 32, the result will be either
 * zero or one, depending on whether `A' is a zero or non-zero. The result is
 * stored into the value pointed by `Z'.
 */
#define SFLOAT_SHIFT(SIZE, A, COUNT, Z)                                      \
    *(Z) = ((COUNT) == 0)                                                    \
        ? 1                                                                  \
        : (((COUNT) < (SIZE))                                                \
            ? ((A) >> (COUNT)) | (((A) << ((-(COUNT)) & ((SIZE) - 1))) != 0) \
            : ((A) != 0))

/* Extract fractional component */
#define SFLOAT_EXTRACT_FRAC(X) \
    ((uint32_t)((X) & 0x007FFFFF))
/* Extract exponent component */
#define SFLOAT_EXTRACT_EXP(X) \
    ((int16_t)((X) >> 23) & 0xFF)
/* Extract sign bit */
#define SFLOAT_EXTRACT_SIGN(X) \
    ((X) >> 31)
/*
 * Normalizes the subnormal value represented by the denormalized significand
 * `SA'. The normalized exponent and significand are stored at the locations
 * pointed by `Z' and `SZ' respectively.
 */
#define SFLOAT_SUBNORMALIZE(SA, Z, SZ) \
    (void)(*(SZ) = (SA) << SFLOAT_CLZ((SA), 8), *(Z) = 1 - SFLOAT_CLZ((SA), 8))
/*
 * Packs the sign `SIGN', exponent `EXP' and significand `SIG' into the value
 * giving the result.
 *
 * After the shifting into their proper positions, the fields are added together
 * to form the result. This means any integer portion of `SIG' will be added
 * to the exponent. Similarly, because a properly normalized significand will
 * always have an integer portion equal to one, the exponent input `EXP' should
 * be one less than the desired result exponent whenever the significant input
 * `SIG' is a complete, normalized significand.
 */
#define SFLOAT_PACK(SIGN, EXP, SIG) \
    (sfloat_t)((((uint32_t)(SIGN)) << 31) + (((uint32_t)(EXP)) << 23) + (SIG))

/*
 * Takes two values `a' and `b', one of which is a NaN, and returns the appropriate
 * NaN result. If either `a' or `b' is a signaling NaN than an invalid exception is
 * raised.
 */
static sfloat_t sfloat_propagate_nan(sfloat_state_t *state, sfloat_t a, sfloat_t b) {
    bool isnan_a  = SFLOAT_ISNAN(a);
    bool issnan_a = SFLOAT_ISSNAN(a);
    bool isnan_b  = SFLOAT_ISNAN(b);
    bool issnan_b = SFLOAT_ISSNAN(b);

    a |= 0x00400000;
    b |= 0x00400000;

    if (issnan_a | issnan_b)
        SFLOAT_RAISE(state, SFLOAT_INVALID);
    if (isnan_a)
        return (issnan_a & isnan_b) ? b : a;
    return b;
}

/*
 * Takes an abstract value having sign `sign_z', exponent `exp_z', and significand
 * `sig_z' and returns the appropriate value corresponding to the abstract input.
 *
 * The abstract value is simply rounded and packed into the format. If the abstract
 * input cannot be represented exactly an inexact exception is raised. If the
 * abstract input is too large, the overflow and inexact exceptions are both raised
 * and an infinity or maximal finite value is returned. If the abstract value is
 * too small, the value is rounded to a subnormal and the underflow and inexact
 * exceptions are only raised if the value cannot be represented exactly with
 * a subnormal.
 *
 * The input significand `sig_z' has it's binary point between bits 30 and 29,
 * this is seven bits to the left of its usual location. The shifted significand
 * must be normalized or smaller than this. If it's not normalized then the exponent
 * `exp_z' must be zero; in that case, the result returned is a subnormal number
 * which must not require rounding. In the more usual case where the significand
 * is normalized, the exponent must be one less than the *true* exponent.
 *
 * The handling of underflow and overflow is otherwise in alignment with IEC/IEEE.
 */
static sfloat_t SFLOAT_PACK_round(sfloat_state_t *state, bool sign_z, int16_t exp_z, uint32_t sig_z) {
    sfloat_roundingmode_t mode      = state->roundingmode;
    bool                  even      = !!(mode == SFLOAT_ROUND_NEAREST_EVEN);
    unsigned char         increment = 0x40;
    unsigned char         bits      = sig_z & 0x7F;

    if (!even) {
        if (mode == SFLOAT_ROUND_TO_ZERO)
            increment = 0;
        else {
            increment = 0x7F;
            if (sign_z) {
                if (mode == SFLOAT_ROUND_UP)
                    increment = 0;
            } else {
                if (mode == SFLOAT_ROUND_DOWN)
                    increment = 0;
            }
        }
    }

    if (0xFD <= (uint16_t)exp_z) {
        if ((0xFD < exp_z) || ((exp_z == 0xFD) && ((int32_t)(sig_z + increment) < 0))) {
            SFLOAT_RAISE(state, SFLOAT_OVERFLOW | SFLOAT_INEXACT);
            return SFLOAT_PACK(sign_z, 0xFF, 0) - (increment == 0);
        }
        if (exp_z < 0) {
            /* Check for underflow */
            bool tiny = (state->tiny == SFLOAT_TBEFORE) || (exp_z < -1) || (sig_z + increment < 0x80000000);
            SFLOAT_SHIFT(32, sig_z, -exp_z, &sig_z);
            exp_z = 0;
            bits = sig_z & 0x7F;
            if (tiny && bits)
                SFLOAT_RAISE(state, SFLOAT_UNDERFLOW);
        }
    }
    if (bits)
        SFLOAT_RAISE(state, SFLOAT_INEXACT);
    sig_z = (sig_z + increment) >> 7;
    sig_z &= ~(((bits ^ 0x40) == 0) & even);
    if (sig_z == 0)
        exp_z = 0;
    return SFLOAT_PACK(sign_z, exp_z, sig_z);
}

/*
 * Takes an abstract value having sign `sign_z', exponent `exp_z' and significand
 * `sig_z' and returns the appropriate value corresponding to the abstract input.
 * This function is exactly like `PACK_round' except the significand does not have
 * to be normalized.
 *
 * Bit 31 of the significand must be zero and the exponent must be one less than
 * the *true* exponent.
 */
static sfloat_t SFLOAT_PACK_normal(sfloat_state_t *state, bool sign_z, int16_t exp_z, uint32_t sig_z) {
    unsigned char c = SFLOAT_CLZ(sig_z, 1);
    return SFLOAT_PACK_round(state, sign_z, exp_z - c, sig_z << c);
}

/*
 * Returns the result of adding the absolute values of `a' and `b'. The sign
 * `sign_z' is ignored if the result is a NaN.
 */
static sfloat_t sfloat_add_impl(sfloat_state_t *state, sfloat_t a, sfloat_t b, bool sign_z) {
    int16_t  exp_a = SFLOAT_EXTRACT_EXP(a);
    int16_t  exp_b = SFLOAT_EXTRACT_EXP(b);
    int16_t  exp_z = 0;
    int16_t  exp_d = exp_a - exp_b;
    uint32_t sig_a = SFLOAT_EXTRACT_FRAC(a) << 6;
    uint32_t sig_b = SFLOAT_EXTRACT_FRAC(b) << 6;
    uint32_t sig_z = 0;

    if (0 < exp_d) {
        if (exp_a == 0xFF)
            return sig_a ? sfloat_propagate_nan(state, a, b) : a;
        if (exp_b == 0)
            --exp_d;
        else
            sig_b |= 0x20000000;
        SFLOAT_SHIFT(32, sig_b, exp_d, &sig_b);
        exp_z = exp_a;
    } else if (exp_d < 0) {
        if (exp_b == 0xFF)
            return sig_b ? sfloat_propagate_nan(state, a, b) : SFLOAT_PACK(sign_z, 0xFF, 0);
        if (exp_a == 0)
            ++exp_d;
        else
            sig_a |= 0x20000000;
        SFLOAT_SHIFT(32, sig_a, -exp_d, &sig_a);
        exp_z = exp_b;
    } else {
        if (exp_a == 0xFF)
            return (sig_a | sig_b) ? sfloat_propagate_nan(state, a, b) : a;
        if (exp_a == 0)
            return SFLOAT_PACK(sign_z, 0, (sig_a + sig_b) >> 6);
        sig_z = 0x40000000 + sig_a + sig_b;
        exp_z = exp_a;
        goto end;
    }
    sig_a |= 0x20000000;
    sig_z = (sig_a + sig_b) << 1;
    --exp_z;
    if ((int32_t)sig_z < 0) {
        sig_z = sig_a + sig_b;
        ++exp_z;
    }
end:
    return SFLOAT_PACK_round(state, sign_z, exp_z, sig_z);
}

/*
 * Returns the result of subtracting the absolute values of `a' and `b'. If the
 * sign `sign_z' is one, the difference is negated before being returned. The
 * sign is ignored if the result is a NaN.
 */
static sfloat_t sfloat_sub_impl(sfloat_state_t *state, sfloat_t a, sfloat_t b, bool sign_z) {
    int16_t  exp_a = SFLOAT_EXTRACT_EXP(a);
    int16_t  exp_b = SFLOAT_EXTRACT_EXP(b);
    int16_t  exp_z = 0;
    int16_t  exp_d = exp_a - exp_b;
    uint32_t sig_a = SFLOAT_EXTRACT_FRAC(a) << 7;
    uint32_t sig_b = SFLOAT_EXTRACT_FRAC(b) << 7;
    uint32_t sig_z = 0;

    if (0 < exp_d) goto exp_greater_a;
    if (exp_d < 0) goto exp_greater_b;

    if (exp_a == 0xFF) {
        if (sig_a | sig_b)
            return sfloat_propagate_nan(state, a, b);
        SFLOAT_RAISE(state, SFLOAT_INVALID);
        return SFLOAT_NAN;
    }

    if (exp_a == 0)
        exp_a = exp_b = 1;

    if (sig_b < sig_a) goto greater_a;
    if (sig_a < sig_b) goto greater_b;

    return SFLOAT_PACK(state->roundingmode == SFLOAT_ROUND_DOWN, 0, 0);

exp_greater_b:
    if (exp_b == 0xFF)
        return (sig_b) ? sfloat_propagate_nan(state, a, b) : SFLOAT_PACK(sign_z ^ 1, 0xFF, 0);
    if (exp_a == 0)
        ++exp_d;
    else
        sig_a |= 0x40000000;
    SFLOAT_SHIFT(32, sig_a, -exp_d, &sig_a);
    sig_b |= 0x40000000;
greater_b:
    sig_z = sig_b - sig_a;
    exp_z = exp_b;
    sign_z ^= 1;
    goto end;

exp_greater_a:
    if (exp_a == 0xFF)
        return (sig_a) ? sfloat_propagate_nan(state, a, b) : a;
    if (exp_b == 0)
        --exp_d;
    else
        sig_b |= 0x40000000;
    SFLOAT_SHIFT(32, sig_b, exp_d, &sig_b);
    sig_a |= 0x40000000;
greater_a:
    sig_z = sig_a - sig_b;
    exp_z = exp_a;

end:
    --exp_z;
    return SFLOAT_PACK_normal(state, sign_z, exp_z, sig_z);
}

static GMQCC_INLINE sfloat_t sfloat_add(sfloat_state_t *state, sfloat_t a, sfloat_t b) {
    bool sign_a = SFLOAT_EXTRACT_SIGN(a);
    bool sign_b = SFLOAT_EXTRACT_SIGN(b);
    return (sign_a == sign_b) ? sfloat_add_impl(state, a, b, sign_a)
                              : sfloat_sub_impl(state, a, b, sign_a);
}

static GMQCC_INLINE sfloat_t sfloat_sub(sfloat_state_t *state, sfloat_t a, sfloat_t b) {
    bool sign_a = SFLOAT_EXTRACT_SIGN(a);
    bool sign_b = SFLOAT_EXTRACT_SIGN(b);
    return (sign_a == sign_b) ? sfloat_sub_impl(state, a, b, sign_a)
                              : sfloat_add_impl(state, a, b, sign_a);
}

static sfloat_t sfloat_mul(sfloat_state_t *state, sfloat_t a, sfloat_t b) {
    int16_t  exp_a   = SFLOAT_EXTRACT_EXP(a);
    int16_t  exp_b   = SFLOAT_EXTRACT_EXP(b);
    int16_t  exp_z   = 0;
    uint32_t sig_a   = SFLOAT_EXTRACT_FRAC(a);
    uint32_t sig_b   = SFLOAT_EXTRACT_FRAC(b);
    uint32_t sig_z   = 0;
    uint64_t sig_z64 = 0;
    bool     sign_a  = SFLOAT_EXTRACT_SIGN(a);
    bool     sign_b  = SFLOAT_EXTRACT_SIGN(b);
    bool     sign_z  = sign_a ^ sign_b;

    if (exp_a == 0xFF) {
        if (sig_a || ((exp_b == 0xFF) && sig_b))
            return sfloat_propagate_nan(state, a, b);
        if ((exp_b | sig_b) == 0) {
            SFLOAT_RAISE(state, SFLOAT_INVALID);
            return SFLOAT_NAN;
        }
        return SFLOAT_PACK(sign_z, 0xFF, 0);
    }
    if (exp_b == 0xFF) {
        if (sig_b)
            return sfloat_propagate_nan(state, a, b);
        if ((exp_a | sig_a) == 0) {
            SFLOAT_RAISE(state, SFLOAT_INVALID);
            return SFLOAT_NAN;
        }
        return SFLOAT_PACK(sign_z, 0xFF, 0);
    }
    if (exp_a == 0) {
        if (sig_a == 0)
            return SFLOAT_PACK(sign_z, 0, 0);
        SFLOAT_SUBNORMALIZE(sig_a, &exp_a, &sig_a);
    }
    if (exp_b == 0) {
        if (sig_b == 0)
            return SFLOAT_PACK(sign_z, 0, 0);
        SFLOAT_SUBNORMALIZE(sig_b, &exp_b, &sig_b);
    }
    exp_z = exp_a + exp_b - 0x7F;
    sig_a = (sig_a | 0x00800000) << 7;
    sig_b = (sig_b | 0x00800000) << 8;
    SFLOAT_SHIFT(64, ((uint64_t)sig_a) * sig_b, 32, &sig_z64);
    sig_z = sig_z64;
    if (0 <= (int32_t)(sig_z << 1)) {
        sig_z <<= 1;
        --exp_z;
    }
    return SFLOAT_PACK_round(state, sign_z, exp_z, sig_z);
}

static sfloat_t sfloat_div(sfloat_state_t *state, sfloat_t a, sfloat_t b) {
    int16_t  exp_a   = SFLOAT_EXTRACT_EXP(a);
    int16_t  exp_b   = SFLOAT_EXTRACT_EXP(b);
    int16_t  exp_z   = 0;
    uint32_t sig_a   = SFLOAT_EXTRACT_FRAC(a);
    uint32_t sig_b   = SFLOAT_EXTRACT_FRAC(b);
    uint32_t sig_z   = 0;
    bool     sign_a  = SFLOAT_EXTRACT_SIGN(a);
    bool     sign_b  = SFLOAT_EXTRACT_SIGN(b);
    bool     sign_z  = sign_a ^ sign_b;

    if (exp_a == 0xFF) {
        if (sig_a)
            return sfloat_propagate_nan(state, a, b);
        if (exp_b == 0xFF) {
            if (sig_b)
                return sfloat_propagate_nan(state, a, b);
            SFLOAT_RAISE(state, SFLOAT_INVALID);
            return SFLOAT_NAN;
        }
        return SFLOAT_PACK(sign_z, 0xFF, 0);
    }
    if (exp_b == 0xFF)
        return (sig_b) ? sfloat_propagate_nan(state, a, b) : SFLOAT_PACK(sign_z, 0, 0);
    if (exp_b == 0) {
        if (sig_b == 0) {
            if ((exp_a | sig_a) == 0) {
                SFLOAT_RAISE(state, SFLOAT_INVALID);
                return SFLOAT_NAN;
            }
            SFLOAT_RAISE(state, SFLOAT_DIVBYZERO);
            return SFLOAT_PACK(sign_z, 0xFF, 0);
        }
        SFLOAT_SUBNORMALIZE(sig_b, &exp_b, &sig_b);
    }
    if (exp_a == 0) {
        if (sig_a == 0)
            return SFLOAT_PACK(sign_z, 0, 0);
        SFLOAT_SUBNORMALIZE(sig_a, &exp_a, &sig_a);
    }
    exp_z = exp_a - exp_b + 0x7D;
    sig_a = (sig_a | 0x00800000) << 7;
    sig_b = (sig_b | 0x00800000) << 8;
    if (sig_b <= (sig_a + sig_a)) {
        sig_a >>= 1;
        ++exp_z;
    }
    sig_z = (((uint64_t)sig_a) << 32) / sig_b;
    if ((sig_z & 0x3F) == 0)
        sig_z |= ((uint64_t)sig_b * sig_z != ((uint64_t)sig_a) << 32);
    return SFLOAT_PACK_round(state, sign_z, exp_z, sig_z);
}

static sfloat_t sfloat_neg(sfloat_state_t *state, sfloat_t a) {
    sfloat_cast_t neg;
    neg.f = -1;
    return sfloat_mul(state, a, neg.s);
}

static GMQCC_INLINE void sfloat_check(lex_ctx_t ctx, sfloat_state_t *state, const char *vec) {
    /* Exception comes from vector component */
    if (vec) {
        if (state->exceptionflags & SFLOAT_DIVBYZERO)
            compile_error(ctx, "division by zero in `%s' component", vec);
        if (state->exceptionflags & SFLOAT_INVALID)
            compile_error(ctx, "undefined (inf) in `%s' component", vec);
        if (state->exceptionflags & SFLOAT_OVERFLOW)
            compile_error(ctx, "arithmetic overflow in `%s' component", vec);
        if (state->exceptionflags & SFLOAT_UNDERFLOW)
            compile_error(ctx, "arithmetic underflow in `%s' component", vec);
        return;
    }
    if (state->exceptionflags & SFLOAT_DIVBYZERO)
        compile_error(ctx, "division by zero");
    if (state->exceptionflags & SFLOAT_INVALID)
        compile_error(ctx, "undefined (inf)");
    if (state->exceptionflags & SFLOAT_OVERFLOW)
        compile_error(ctx, "arithmetic overflow");
    if (state->exceptionflags & SFLOAT_UNDERFLOW)
        compile_error(ctx, "arithmetic underflow");
}

static GMQCC_INLINE void sfloat_init(sfloat_state_t *state) {
    state->exceptionflags = SFLOAT_NOEXCEPT;
    state->roundingmode   = FOLD_ROUNDING;
    state->tiny           = FOLD_TINYNESS;
}

/*
 * There is two stages to constant folding in GMQCC: there is the parse
 * stage constant folding, where, with the help of the AST, operator
 * usages can be constant folded. Then there is the constant folding
 * in the IR for things like eliding if statements, can occur.
 *
 * This file is thus, split into two parts.
 */

#define isfloat(X)      (((X))->m_vtype == TYPE_FLOAT)
#define isvector(X)     (((X))->m_vtype == TYPE_VECTOR)
#define isstring(X)     (((X))->m_vtype == TYPE_STRING)
#define isarray(X)      (((X))->m_vtype == TYPE_ARRAY)
#define isfloats(X,Y)   (isfloat  (X) && isfloat (Y))

/*
 * Implementation of basic vector math for vec3_t, for trivial constant
 * folding.
 *
 * TODO: gcc/clang hinting for autovectorization
 */
enum vec3_comp_t {
    VEC_COMP_X = 1 << 0,
    VEC_COMP_Y = 1 << 1,
    VEC_COMP_Z = 1 << 2
};

struct vec3_soft_t {
    sfloat_cast_t x;
    sfloat_cast_t y;
    sfloat_cast_t z;
};

struct vec3_soft_state_t {
    vec3_comp_t faults;
    sfloat_state_t state[3];
};

static GMQCC_INLINE vec3_soft_t vec3_soft_convert(vec3_t vec) {
    vec3_soft_t soft;
    soft.x.f = vec.x;
    soft.y.f = vec.y;
    soft.z.f = vec.z;
    return soft;
}

static GMQCC_INLINE bool vec3_soft_exception(vec3_soft_state_t *vstate, size_t index) {
    sfloat_exceptionflags_t flags = vstate->state[index].exceptionflags;
    if (flags & SFLOAT_DIVBYZERO) return true;
    if (flags & SFLOAT_INVALID)   return true;
    if (flags & SFLOAT_OVERFLOW)  return true;
    if (flags & SFLOAT_UNDERFLOW) return true;
    return false;
}

static GMQCC_INLINE void vec3_soft_eval(vec3_soft_state_t *state,
                                        sfloat_t         (*callback)(sfloat_state_t *, sfloat_t, sfloat_t),
                                        vec3_t             a,
                                        vec3_t             b)
{
    vec3_soft_t sa = vec3_soft_convert(a);
    vec3_soft_t sb = vec3_soft_convert(b);
    callback(&state->state[0], sa.x.s, sb.x.s);
    if (vec3_soft_exception(state, 0)) state->faults = (vec3_comp_t)(state->faults | VEC_COMP_X);
    callback(&state->state[1], sa.y.s, sb.y.s);
    if (vec3_soft_exception(state, 1)) state->faults = (vec3_comp_t)(state->faults | VEC_COMP_Y);
    callback(&state->state[2], sa.z.s, sb.z.s);
    if (vec3_soft_exception(state, 2)) state->faults = (vec3_comp_t)(state->faults | VEC_COMP_Z);
}

static GMQCC_INLINE void vec3_check_except(vec3_t     a,
                                           vec3_t     b,
                                           lex_ctx_t  ctx,
                                           sfloat_t (*callback)(sfloat_state_t *, sfloat_t, sfloat_t))
{
    vec3_soft_state_t state = {};

    if (!OPTS_FLAG(ARITHMETIC_EXCEPTIONS))
        return;

    sfloat_init(&state.state[0]);
    sfloat_init(&state.state[1]);
    sfloat_init(&state.state[2]);

    vec3_soft_eval(&state, callback, a, b);
    if (state.faults & VEC_COMP_X) sfloat_check(ctx, &state.state[0], "x");
    if (state.faults & VEC_COMP_Y) sfloat_check(ctx, &state.state[1], "y");
    if (state.faults & VEC_COMP_Z) sfloat_check(ctx, &state.state[2], "z");
}

static GMQCC_INLINE vec3_t vec3_add(lex_ctx_t ctx, vec3_t a, vec3_t b) {
    vec3_t out;
    vec3_check_except(a, b, ctx, &sfloat_add);
    out.x = a.x + b.x;
    out.y = a.y + b.y;
    out.z = a.z + b.z;
    return out;
}

static GMQCC_INLINE vec3_t vec3_sub(lex_ctx_t ctx, vec3_t a, vec3_t b) {
    vec3_t out;
    vec3_check_except(a, b, ctx, &sfloat_sub);
    out.x = a.x - b.x;
    out.y = a.y - b.y;
    out.z = a.z - b.z;
    return out;
}

static GMQCC_INLINE vec3_t vec3_neg(lex_ctx_t ctx, vec3_t a) {
    vec3_t         out;
    sfloat_cast_t  v[3];
    sfloat_state_t s[3];

    if (!OPTS_FLAG(ARITHMETIC_EXCEPTIONS))
        goto end;

    v[0].f = a.x;
    v[1].f = a.y;
    v[2].f = a.z;

    sfloat_init(&s[0]);
    sfloat_init(&s[1]);
    sfloat_init(&s[2]);

    sfloat_neg(&s[0], v[0].s);
    sfloat_neg(&s[1], v[1].s);
    sfloat_neg(&s[2], v[2].s);

    sfloat_check(ctx, &s[0], nullptr);
    sfloat_check(ctx, &s[1], nullptr);
    sfloat_check(ctx, &s[2], nullptr);

end:
    out.x = -a.x;
    out.y = -a.y;
    out.z = -a.z;
    return out;
}

static GMQCC_INLINE vec3_t vec3_or(vec3_t a, vec3_t b) {
    vec3_t out;
    out.x = (qcfloat_t)(((qcint_t)a.x) | ((qcint_t)b.x));
    out.y = (qcfloat_t)(((qcint_t)a.y) | ((qcint_t)b.y));
    out.z = (qcfloat_t)(((qcint_t)a.z) | ((qcint_t)b.z));
    return out;
}

static GMQCC_INLINE vec3_t vec3_orvf(vec3_t a, qcfloat_t b) {
    vec3_t out;
    out.x = (qcfloat_t)(((qcint_t)a.x) | ((qcint_t)b));
    out.y = (qcfloat_t)(((qcint_t)a.y) | ((qcint_t)b));
    out.z = (qcfloat_t)(((qcint_t)a.z) | ((qcint_t)b));
    return out;
}

static GMQCC_INLINE vec3_t vec3_and(vec3_t a, vec3_t b) {
    vec3_t out;
    out.x = (qcfloat_t)(((qcint_t)a.x) & ((qcint_t)b.x));
    out.y = (qcfloat_t)(((qcint_t)a.y) & ((qcint_t)b.y));
    out.z = (qcfloat_t)(((qcint_t)a.z) & ((qcint_t)b.z));
    return out;
}

static GMQCC_INLINE vec3_t vec3_andvf(vec3_t a, qcfloat_t b) {
    vec3_t out;
    out.x = (qcfloat_t)(((qcint_t)a.x) & ((qcint_t)b));
    out.y = (qcfloat_t)(((qcint_t)a.y) & ((qcint_t)b));
    out.z = (qcfloat_t)(((qcint_t)a.z) & ((qcint_t)b));
    return out;
}

static GMQCC_INLINE vec3_t vec3_xor(vec3_t a, vec3_t b) {
    vec3_t out;
    out.x = (qcfloat_t)(((qcint_t)a.x) ^ ((qcint_t)b.x));
    out.y = (qcfloat_t)(((qcint_t)a.y) ^ ((qcint_t)b.y));
    out.z = (qcfloat_t)(((qcint_t)a.z) ^ ((qcint_t)b.z));
    return out;
}

static GMQCC_INLINE vec3_t vec3_xorvf(vec3_t a, qcfloat_t b) {
    vec3_t out;
    out.x = (qcfloat_t)(((qcint_t)a.x) ^ ((qcint_t)b));
    out.y = (qcfloat_t)(((qcint_t)a.y) ^ ((qcint_t)b));
    out.z = (qcfloat_t)(((qcint_t)a.z) ^ ((qcint_t)b));
    return out;
}

static GMQCC_INLINE vec3_t vec3_not(vec3_t a) {
    vec3_t out;
    out.x = -1-a.x;
    out.y = -1-a.y;
    out.z = -1-a.z;
    return out;
}

static GMQCC_INLINE qcfloat_t vec3_mulvv(lex_ctx_t ctx, vec3_t a, vec3_t b) {
    vec3_soft_t    sa;
    vec3_soft_t    sb;
    sfloat_state_t s[5];
    sfloat_t       r[5];

    if (!OPTS_FLAG(ARITHMETIC_EXCEPTIONS))
        goto end;

    sa = vec3_soft_convert(a);
    sb = vec3_soft_convert(b);

    sfloat_init(&s[0]);
    sfloat_init(&s[1]);
    sfloat_init(&s[2]);
    sfloat_init(&s[3]);
    sfloat_init(&s[4]);

    r[0] = sfloat_mul(&s[0], sa.x.s, sb.x.s);
    r[1] = sfloat_mul(&s[1], sa.y.s, sb.y.s);
    r[2] = sfloat_mul(&s[2], sa.z.s, sb.z.s);
    r[3] = sfloat_add(&s[3], r[0],   r[1]);
    r[4] = sfloat_add(&s[4], r[3],   r[2]);

    sfloat_check(ctx, &s[0], nullptr);
    sfloat_check(ctx, &s[1], nullptr);
    sfloat_check(ctx, &s[2], nullptr);
    sfloat_check(ctx, &s[3], nullptr);
    sfloat_check(ctx, &s[4], nullptr);

end:
    return (a.x * b.x + a.y * b.y + a.z * b.z);
}

static GMQCC_INLINE vec3_t vec3_mulvf(lex_ctx_t ctx, vec3_t a, qcfloat_t b) {
    vec3_t         out;
    vec3_soft_t    sa;
    sfloat_cast_t  sb;
    sfloat_state_t s[3];

    if (!OPTS_FLAG(ARITHMETIC_EXCEPTIONS))
        goto end;

    sa   = vec3_soft_convert(a);
    sb.f = b;
    sfloat_init(&s[0]);
    sfloat_init(&s[1]);
    sfloat_init(&s[2]);

    sfloat_mul(&s[0], sa.x.s, sb.s);
    sfloat_mul(&s[1], sa.y.s, sb.s);
    sfloat_mul(&s[2], sa.z.s, sb.s);

    sfloat_check(ctx, &s[0], "x");
    sfloat_check(ctx, &s[1], "y");
    sfloat_check(ctx, &s[2], "z");

end:
    out.x = a.x * b;
    out.y = a.y * b;
    out.z = a.z * b;
    return out;
}

static GMQCC_INLINE bool vec3_cmp(vec3_t a, vec3_t b) {
    return a.x == b.x &&
           a.y == b.y &&
           a.z == b.z;
}

static GMQCC_INLINE vec3_t vec3_create(float x, float y, float z) {
    vec3_t out;
    out.x = x;
    out.y = y;
    out.z = z;
    return out;
}

static GMQCC_INLINE qcfloat_t vec3_notf(vec3_t a) {
    return (!a.x && !a.y && !a.z);
}

static GMQCC_INLINE bool vec3_pbool(vec3_t a) {
    return (a.x || a.y || a.z);
}

static GMQCC_INLINE vec3_t vec3_cross(lex_ctx_t ctx, vec3_t a, vec3_t b) {
    vec3_t         out;
    vec3_soft_t    sa;
    vec3_soft_t    sb;
    sfloat_t       r[9];
    sfloat_state_t s[9];

    if (!OPTS_FLAG(ARITHMETIC_EXCEPTIONS))
        goto end;

    sa = vec3_soft_convert(a);
    sb = vec3_soft_convert(b);

    sfloat_init(&s[0]);
    sfloat_init(&s[1]);
    sfloat_init(&s[2]);
    sfloat_init(&s[3]);
    sfloat_init(&s[4]);
    sfloat_init(&s[5]);
    sfloat_init(&s[6]);
    sfloat_init(&s[7]);
    sfloat_init(&s[8]);

    r[0] = sfloat_mul(&s[0], sa.y.s, sb.z.s);
    r[1] = sfloat_mul(&s[1], sa.z.s, sb.y.s);
    r[2] = sfloat_mul(&s[2], sa.z.s, sb.x.s);
    r[3] = sfloat_mul(&s[3], sa.x.s, sb.z.s);
    r[4] = sfloat_mul(&s[4], sa.x.s, sb.y.s);
    r[5] = sfloat_mul(&s[5], sa.y.s, sb.x.s);
    r[6] = sfloat_sub(&s[6], r[0],   r[1]);
    r[7] = sfloat_sub(&s[7], r[2],   r[3]);
    r[8] = sfloat_sub(&s[8], r[4],   r[5]);

    sfloat_check(ctx, &s[0], nullptr);
    sfloat_check(ctx, &s[1], nullptr);
    sfloat_check(ctx, &s[2], nullptr);
    sfloat_check(ctx, &s[3], nullptr);
    sfloat_check(ctx, &s[4], nullptr);
    sfloat_check(ctx, &s[5], nullptr);
    sfloat_check(ctx, &s[6], "x");
    sfloat_check(ctx, &s[7], "y");
    sfloat_check(ctx, &s[8], "z");

end:
    out.x = a.y * b.z - a.z * b.y;
    out.y = a.z * b.x - a.x * b.z;
    out.z = a.x * b.y - a.y * b.x;
    return out;
}

qcfloat_t fold::immvalue_float(ast_value *value) {
    return value->m_constval.vfloat;
}

vec3_t fold::immvalue_vector(ast_value *value) {
    return value->m_constval.vvec;
}

const char *fold::immvalue_string(ast_value *value) {
    return value->m_constval.vstring;
}

lex_ctx_t fold::ctx() {
    lex_ctx_t ctx;
    if (m_parser->lex)
        return parser_ctx(m_parser);
    memset(&ctx, 0, sizeof(ctx));
    return ctx;
}

bool fold::immediate_true(ast_value *v) {
    switch (v->m_vtype) {
        case TYPE_FLOAT:
            return !!v->m_constval.vfloat;
        case TYPE_INTEGER:
            return !!v->m_constval.vint;
        case TYPE_VECTOR:
            if (OPTS_FLAG(CORRECT_LOGIC))
                return vec3_pbool(v->m_constval.vvec);
            return !!(v->m_constval.vvec.x);
        case TYPE_STRING:
            if (!v->m_constval.vstring)
                return false;
            if (OPTS_FLAG(TRUE_EMPTY_STRINGS))
                return true;
            return !!v->m_constval.vstring[0];
        default:
            compile_error(ctx(), "internal error: fold_immediate_true on invalid type");
            break;
    }
    return !!v->m_constval.vfunc;
}

/* Handy macros to determine if an ast_value can be constant folded. */
#define fold_can_1(X)  \
    (ast_istype(((X)), ast_value) && (X)->m_hasvalue && ((X)->m_cvq == CV_CONST) && \
                ((X))->m_vtype != TYPE_FUNCTION)

#define fold_can_2(X, Y) (fold_can_1(X) && fold_can_1(Y))

fold::fold()
    : m_parser(nullptr)
{
}

fold::fold(parser_t *parser)
    : m_parser(parser)
{
    m_imm_string_untranslate = util_htnew(FOLD_STRING_UNTRANSLATE_HTSIZE);
    m_imm_string_dotranslate = util_htnew(FOLD_STRING_DOTRANSLATE_HTSIZE);

    constgen_float(0.0f, false);
    constgen_float(1.0f, false);
    constgen_float(-1.0f, false);
    constgen_float(2.0f, false);

    constgen_vector(vec3_create(0.0f, 0.0f, 0.0f));
    constgen_vector(vec3_create(-1.0f, -1.0f, -1.0f));
}

bool fold::generate(ir_builder *ir) {
    // generate globals for immediate folded values
    ast_value *cur;
    for (auto &it : m_imm_float)
        if (!(cur = it)->generateGlobal(ir, false)) goto err;
    for (auto &it : m_imm_vector)
        if (!(cur = it)->generateGlobal(ir, false)) goto err;
    for (auto &it : m_imm_string)
        if (!(cur = it)->generateGlobal(ir, false)) goto err;
    return true;
err:
    con_out("failed to generate global %s\n", cur->m_name.c_str());
    delete ir;
    return false;
}

fold::~fold() {
// TODO: parser lifetime so this is called when it should be
#if 0
    for (auto &it : m_imm_float) ast_delete(it);
    for (auto &it : m_imm_vector) ast_delete(it);
    for (auto &it : m_imm_string) ast_delete(it);

    util_htdel(m_imm_string_untranslate);
    util_htdel(m_imm_string_dotranslate);
#endif
}

ast_expression *fold::constgen_float(qcfloat_t value, bool inexact) {
    for (auto &it : m_imm_float)
        if (!memcmp(&it->m_constval.vfloat, &value, sizeof(qcfloat_t)))
            return it;

    ast_value *out  = new ast_value(ctx(), "#IMMEDIATE", TYPE_FLOAT);
    out->m_cvq = CV_CONST;
    out->m_hasvalue = true;
    out->m_inexact = inexact;
    out->m_constval.vfloat = value;

    m_imm_float.push_back(out);

    return out;
}

ast_expression *fold::constgen_vector(vec3_t value) {
    for (auto &it : m_imm_vector)
        if (vec3_cmp(it->m_constval.vvec, value))
            return it;

    ast_value *out = new ast_value(ctx(), "#IMMEDIATE", TYPE_VECTOR);
    out->m_cvq = CV_CONST;
    out->m_hasvalue = true;
    out->m_constval.vvec = value;

    m_imm_vector.push_back(out);

    return out;
}

ast_expression *fold::constgen_string(const char *str, bool translate) {
    hash_table_t *table = translate ? m_imm_string_untranslate : m_imm_string_dotranslate;
    ast_value *out = nullptr;
    size_t hash = util_hthash(table, str);

    if ((out = (ast_value*)util_htgeth(table, str, hash)))
        return out;

    if (translate) {
        char name[32];
        util_snprintf(name, sizeof(name), "dotranslate_%zu", m_parser->translated++);
        out = new ast_value(ctx(), name, TYPE_STRING);
        out->m_flags |= AST_FLAG_INCLUDE_DEF; /* def needs to be included for translatables */
    } else {
        out = new ast_value(ctx(), "#IMMEDIATE", TYPE_STRING);
    }

    out->m_cvq = CV_CONST;
    out->m_hasvalue = true;
    out->m_isimm = true;
    out->m_constval.vstring = parser_strdup(str);

    m_imm_string.push_back(out);
    util_htseth(table, str, hash, out);

    return out;
}

ast_expression *fold::constgen_string(const std::string &str, bool translate) {
  return constgen_string(str.c_str(), translate);
}

typedef union {
    void (*callback)(void);
    sfloat_t (*binary)(sfloat_state_t *, sfloat_t, sfloat_t);
    sfloat_t (*unary)(sfloat_state_t *, sfloat_t);
} float_check_callback_t;

bool fold::check_except_float_impl(void (*callback)(void), ast_value *a, ast_value *b) {
    float_check_callback_t call;
    sfloat_state_t s;
    sfloat_cast_t ca;

    if (!OPTS_FLAG(ARITHMETIC_EXCEPTIONS) && !OPTS_WARN(WARN_INEXACT_COMPARES))
        return false;

    call.callback = callback;
    sfloat_init(&s);
    ca.f = immvalue_float(a);
    if (b) {
        sfloat_cast_t cb;
        cb.f = immvalue_float(b);
        call.binary(&s, ca.s, cb.s);
    } else {
        call.unary(&s, ca.s);
    }

    if (s.exceptionflags == 0)
        return false;

    if (!OPTS_FLAG(ARITHMETIC_EXCEPTIONS))
        goto inexact_possible;

    sfloat_check(ctx(), &s, nullptr);

inexact_possible:
    return s.exceptionflags & SFLOAT_INEXACT;
}

#define check_except_float(CALLBACK, A, B) \
    check_except_float_impl(((void (*)(void))(CALLBACK)), (A), (B))

bool fold::check_inexact_float(ast_value *a, ast_value *b) {
    if (!OPTS_WARN(WARN_INEXACT_COMPARES))
        return false;
    if (!a->m_inexact && !b->m_inexact)
        return false;
    return compile_warning(ctx(), WARN_INEXACT_COMPARES, "inexact value in comparison");
}

uint32_t fold::cond(ast_value* condval, ast_ifthen *branch) {
    // Optimization is disabled.
    if (!OPTS_OPTIMIZATION(OPTIM_CONST_FOLD_DCE)) {
        // Generate code for both.
        return ON_TRUE | ON_FALSE;
    }

    // Only float literals can be DCE in conditions.
    if (!isfloat(condval) || !fold_can_1(condval)) {
        // Generate code for both.
        return ON_TRUE | ON_FALSE;
    }

    qcfloat_t value = immvalue_float(condval);

    bool is_true = value != 0.0f && branch->m_on_true;
    bool is_false = value == 0.0f && branch->m_on_false;

    ++opts_optimizationcount[OPTIM_CONST_FOLD_DCE];

    // Determine which path we want to take based on constant fold.
    if (is_true) {
        // Generate code only for true path.
        return ON_TRUE;
    } else if (is_false) {
        // Generate code only for false path.
        return ON_FALSE;
    }

    // Generate code for no paths.
    return 0;
}

uint32_t fold::cond_ternary(ast_value *condval, ast_ternary *branch) {
    return cond(condval, (ast_ifthen*)branch);
}

uint32_t fold::cond_ifthen(ast_value *condval, ast_ifthen *branch) {
    return cond(condval, branch);
}

ast_expression *fold::op_mul_vec(vec3_t vec, ast_value *sel, const char *set) {
    qcfloat_t x = (&vec.x)[set[0]-'x'];
    qcfloat_t y = (&vec.x)[set[1]-'x'];
    qcfloat_t z = (&vec.x)[set[2]-'x'];
    if (!y && !z) {
        ast_expression *out;
        ++opts_optimizationcount[OPTIM_VECTOR_COMPONENTS];
        out = ast_member::make(ctx(), sel, set[0]-'x', "");
        out->m_keep_node = false;
        ((ast_member*)out)->m_rvalue = true;
        if (x != -1.0f)
            return new ast_binary(ctx(), INSTR_MUL_F, constgen_float(x, false), out);
    }
    return nullptr;
}

ast_expression *fold::op_neg(ast_value *a) {
    if (isfloat(a)) {
        if (fold_can_1(a)) {
            /* Negation can produce inexact as well */
            bool inexact = check_except_float(&sfloat_neg, a, nullptr);
            return constgen_float(-immvalue_float(a), inexact);
        }
    } else if (isvector(a)) {
        if (fold_can_1(a))
            return constgen_vector(vec3_neg(ctx(), immvalue_vector(a)));
    }
    return nullptr;
}

ast_expression *fold::op_not(ast_value *a) {
    if (isfloat(a)) {
        if (fold_can_1(a))
            return constgen_float(!immvalue_float(a), false);
    } else if (isvector(a)) {
        if (fold_can_1(a))
            return constgen_float(vec3_notf(immvalue_vector(a)), false);
    } else if (isstring(a)) {
        if (fold_can_1(a)) {
            if (OPTS_FLAG(TRUE_EMPTY_STRINGS))
                return constgen_float(!immvalue_string(a), false);
            else
                return constgen_float(!immvalue_string(a) || !*immvalue_string(a), false);
        }
    }
    return nullptr;
}

ast_expression *fold::op_add(ast_value *a, ast_value *b) {
    if (isfloat(a)) {
        if (fold_can_2(a, b)) {
            bool inexact = check_except_float(&sfloat_add, a, b);
            return constgen_float(immvalue_float(a) + immvalue_float(b), inexact);
        }
    } else if (isvector(a)) {
        if (fold_can_2(a, b))
            return constgen_vector(vec3_add(ctx(),
                                                       immvalue_vector(a),
                                                       immvalue_vector(b)));
    }
    return nullptr;
}

ast_expression *fold::op_sub(ast_value *a, ast_value *b) {
    if (isfloat(a)) {
        if (fold_can_2(a, b)) {
            bool inexact = check_except_float(&sfloat_sub, a, b);
            return constgen_float(immvalue_float(a) - immvalue_float(b), inexact);
        }
    } else if (isvector(a)) {
        if (fold_can_2(a, b))
            return constgen_vector(vec3_sub(ctx(),
                                                       immvalue_vector(a),
                                                       immvalue_vector(b)));
    }
    return nullptr;
}

ast_expression *fold::op_mul(ast_value *a, ast_value *b) {
    if (isfloat(a)) {
        if (isvector(b)) {
            if (fold_can_2(a, b))
                return constgen_vector(vec3_mulvf(ctx(), immvalue_vector(b), immvalue_float(a)));
        } else {
            if (fold_can_2(a, b)) {
                bool inexact = check_except_float(&sfloat_mul, a, b);
                return constgen_float(immvalue_float(a) * immvalue_float(b), inexact);
            }
        }
    } else if (isvector(a)) {
        if (isfloat(b)) {
            if (fold_can_2(a, b))
                return constgen_vector(vec3_mulvf(ctx(), immvalue_vector(a), immvalue_float(b)));
        } else {
            if (fold_can_2(a, b)) {
                return constgen_float(vec3_mulvv(ctx(), immvalue_vector(a), immvalue_vector(b)), false);
            } else if (OPTS_OPTIMIZATION(OPTIM_VECTOR_COMPONENTS) && fold_can_1(a)) {
                ast_expression *out;
                if ((out = op_mul_vec(immvalue_vector(a), b, "xyz"))) return out;
                if ((out = op_mul_vec(immvalue_vector(a), b, "yxz"))) return out;
                if ((out = op_mul_vec(immvalue_vector(a), b, "zxy"))) return out;
            } else if (OPTS_OPTIMIZATION(OPTIM_VECTOR_COMPONENTS) && fold_can_1(b)) {
                ast_expression *out;
                if ((out = op_mul_vec(immvalue_vector(b), a, "xyz"))) return out;
                if ((out = op_mul_vec(immvalue_vector(b), a, "yxz"))) return out;
                if ((out = op_mul_vec(immvalue_vector(b), a, "zxy"))) return out;
            }
        }
    }
    return nullptr;
}

ast_expression *fold::op_div(ast_value *a, ast_value *b) {
    if (isfloat(a)) {
        if (fold_can_2(a, b)) {
            bool inexact = check_except_float(&sfloat_div, a, b);
            return constgen_float(immvalue_float(a) / immvalue_float(b), inexact);
        } else if (fold_can_1(b)) {
            return new ast_binary(
                ctx(),
                INSTR_MUL_F,
                a,
                constgen_float(1.0f / immvalue_float(b), false)
            );
        }
    } else if (isvector(a)) {
        if (fold_can_2(a, b)) {
            return constgen_vector(vec3_mulvf(ctx(), immvalue_vector(a), 1.0f / immvalue_float(b)));
        } else {
            return new ast_binary(
                ctx(),
                INSTR_MUL_VF,
                a,
                (fold_can_1(b))
                    ? constgen_float(1.0f / immvalue_float(b), false)
                    : new ast_binary(ctx(),
                                     INSTR_DIV_F,
                                     m_imm_float[1],
                                     b
                    )
            );
        }
    }
    return nullptr;
}

ast_expression *fold::op_mod(ast_value *a, ast_value *b) {
    return (fold_can_2(a, b))
                ? constgen_float(fmod(immvalue_float(a), immvalue_float(b)), false)
                : nullptr;
}

ast_expression *fold::op_bor(ast_value *a, ast_value *b) {
    if (isfloat(a)) {
        if (fold_can_2(a, b))
            return constgen_float((qcfloat_t)(((qcint_t)immvalue_float(a)) | ((qcint_t)immvalue_float(b))), false);
    } else {
        if (isvector(b)) {
            if (fold_can_2(a, b))
                return constgen_vector(vec3_or(immvalue_vector(a), immvalue_vector(b)));
        } else {
            if (fold_can_2(a, b))
                return constgen_vector(vec3_orvf(immvalue_vector(a), immvalue_float(b)));
        }
    }
    return nullptr;
}

ast_expression *fold::op_band(ast_value *a, ast_value *b) {
    if (isfloat(a)) {
        if (fold_can_2(a, b))
            return constgen_float((qcfloat_t)(((qcint_t)immvalue_float(a)) & ((qcint_t)immvalue_float(b))), false);
    } else {
        if (isvector(b)) {
            if (fold_can_2(a, b))
                return constgen_vector(vec3_and(immvalue_vector(a), immvalue_vector(b)));
        } else {
            if (fold_can_2(a, b))
                return constgen_vector(vec3_andvf(immvalue_vector(a), immvalue_float(b)));
        }
    }
    return nullptr;
}

ast_expression *fold::op_xor(ast_value *a, ast_value *b) {
    if (isfloat(a)) {
        if (fold_can_2(a, b))
            return constgen_float((qcfloat_t)(((qcint_t)immvalue_float(a)) ^ ((qcint_t)immvalue_float(b))), false);
    } else {
        if (fold_can_2(a, b)) {
            if (isvector(b))
                return constgen_vector(vec3_xor(immvalue_vector(a), immvalue_vector(b)));
            else
                return constgen_vector(vec3_xorvf(immvalue_vector(a), immvalue_float(b)));
        }
    }
    return nullptr;
}

ast_expression *fold::op_lshift(ast_value *a, ast_value *b) {
    if (fold_can_2(a, b) && isfloats(a, b))
        return constgen_float((qcfloat_t)floorf(immvalue_float(a) * powf(2.0f, immvalue_float(b))), false);
    return nullptr;
}

ast_expression *fold::op_rshift(ast_value *a, ast_value *b) {
    if (fold_can_2(a, b) && isfloats(a, b))
        return constgen_float((qcfloat_t)floorf(immvalue_float(a) / powf(2.0f, immvalue_float(b))), false);
    return nullptr;
}

ast_expression *fold::op_andor(ast_value *a, ast_value *b, float expr) {
    if (fold_can_2(a, b)) {
        if (OPTS_FLAG(PERL_LOGIC)) {
            if (expr)
                return immediate_true(a) ? a : b;
            else
                return immediate_true(a) ? b : a;
        } else {
            return constgen_float(
                ((expr) ? (immediate_true(a) || immediate_true(b))
                        : (immediate_true(a) && immediate_true(b)))
                            ? 1
                            : 0,
                false
            );
        }
    }
    return nullptr;
}

ast_expression *fold::op_tern(ast_value *a, ast_value *b, ast_value *c) {
    if (fold_can_1(a)) {
        return immediate_true(a)
                    ? b
                    : c;
    }
    return nullptr;
}

ast_expression *fold::op_exp(ast_value *a, ast_value *b) {
    if (fold_can_2(a, b))
        return constgen_float((qcfloat_t)powf(immvalue_float(a), immvalue_float(b)), false);
    return nullptr;
}

ast_expression *fold::op_lteqgt(ast_value *a, ast_value *b) {
    if (fold_can_2(a,b)) {
        check_inexact_float(a, b);
        if (immvalue_float(a) <  immvalue_float(b)) return m_imm_float[2];
        if (immvalue_float(a) == immvalue_float(b)) return m_imm_float[0];
        if (immvalue_float(a) >  immvalue_float(b)) return m_imm_float[1];
    }
    return nullptr;
}

ast_expression *fold::op_ltgt(ast_value *a, ast_value *b, bool lt) {
    if (fold_can_2(a, b)) {
        check_inexact_float(a, b);
        return (lt) ? m_imm_float[!!(immvalue_float(a) < immvalue_float(b))]
                    : m_imm_float[!!(immvalue_float(a) > immvalue_float(b))];
    }
    return nullptr;
}

ast_expression *fold::op_cmp(ast_value *a, ast_value *b, bool ne) {
    if (fold_can_2(a, b)) {
        if (isfloat(a) && isfloat(b)) {
            float la = immvalue_float(a);
            float lb = immvalue_float(b);
            check_inexact_float(a, b);
            return m_imm_float[ne ? la != lb : la == lb];
        } else if (isvector(a) && isvector(b)) {
            vec3_t la = immvalue_vector(a);
            vec3_t lb = immvalue_vector(b);
            bool compare = vec3_cmp(la, lb);
            return m_imm_float[ne ? !compare : compare];
        } else if (isstring(a) && isstring(b)) {
            bool compare = !strcmp(immvalue_string(a), immvalue_string(b));
            return m_imm_float[ne ? !compare : compare];
        }
    }
    return nullptr;
}

ast_expression *fold::op_bnot(ast_value *a) {
    if (isfloat(a)) {
        if (fold_can_1(a))
            return constgen_float(-1-immvalue_float(a), false);
    } else {
        if (isvector(a)) {
            if (fold_can_1(a))
                return constgen_vector(vec3_not(immvalue_vector(a)));
        }
    }
    return nullptr;
}

ast_expression *fold::op_cross(ast_value *a, ast_value *b) {
    if (fold_can_2(a, b))
        return constgen_vector(vec3_cross(ctx(),
                                          immvalue_vector(a),
                                          immvalue_vector(b)));
    return nullptr;
}

ast_expression *fold::op_length(ast_value *a) {
    if (fold_can_1(a) && isstring(a))
        return constgen_float(strlen(immvalue_string(a)), false);
    if (isarray(a))
        return constgen_float(a->m_initlist.size(), false);
    return nullptr;
}

ast_expression *fold::op(const oper_info *info, ast_expression **opexprs) {
    ast_value *a = (ast_value*)opexprs[0];
    ast_value *b = (ast_value*)opexprs[1];
    ast_value *c = (ast_value*)opexprs[2];
    ast_expression *e = nullptr;

    /* can a fold operation be applied to this operator usage? */
    if (!info->folds)
        return nullptr;

    switch(info->operands) {
        case 3: if(!c) return nullptr; [[fallthrough]];
        case 2: if(!b) return nullptr; [[fallthrough]];
        case 1:
        if(!a) {
            compile_error(ctx(), "internal error: fold_op no operands to fold\n");
            return nullptr;
        }
    }

    #define fold_op_case(ARGS, ARGS_OPID, OP, ARGS_FOLD)    \
        case opid##ARGS ARGS_OPID:                          \
            if ((e = op_##OP ARGS_FOLD)) {                  \
                ++opts_optimizationcount[OPTIM_CONST_FOLD]; \
            }                                               \
            return e

    switch(info->id) {
        fold_op_case(2, ('-', 'P'),      neg,    (a));
        fold_op_case(2, ('!', 'P'),      not,    (a));
        fold_op_case(1, ('+'),           add,    (a, b));
        fold_op_case(1, ('-'),           sub,    (a, b));
        fold_op_case(1, ('*'),           mul,    (a, b));
        fold_op_case(1, ('/'),           div,    (a, b));
        fold_op_case(1, ('%'),           mod,    (a, b));
        fold_op_case(1, ('|'),           bor,    (a, b));
        fold_op_case(1, ('&'),           band,   (a, b));
        fold_op_case(1, ('^'),           xor,    (a, b));
        fold_op_case(1, ('<'),           ltgt,   (a, b, true));
        fold_op_case(1, ('>'),           ltgt,   (a, b, false));
        fold_op_case(2, ('<', '<'),      lshift, (a, b));
        fold_op_case(2, ('>', '>'),      rshift, (a, b));
        fold_op_case(2, ('|', '|'),      andor,  (a, b, true));
        fold_op_case(2, ('&', '&'),      andor,  (a, b, false));
        fold_op_case(2, ('?', ':'),      tern,   (a, b, c));
        fold_op_case(2, ('*', '*'),      exp,    (a, b));
        fold_op_case(3, ('<','=','>'),   lteqgt, (a, b));
        fold_op_case(2, ('!', '='),      cmp,    (a, b, true));
        fold_op_case(2, ('=', '='),      cmp,    (a, b, false));
        fold_op_case(2, ('~', 'P'),      bnot,   (a));
        fold_op_case(2, ('>', '<'),      cross,  (a, b));
        fold_op_case(3, ('l', 'e', 'n'), length, (a));
    }
    #undef fold_op_case
    compile_error(ctx(), "internal error: attempted to constant-fold for unsupported operator");
    return nullptr;
}

/*
 * Constant folding for compiler intrinsics, similar approach to operator
 * folding, primarily: individual functions for each intrinsics to fold,
 * and a generic selection function.
 */
ast_expression *fold::intrinsic_isfinite(ast_value *a) {
    return constgen_float(isfinite(immvalue_float(a)), false);
}
ast_expression *fold::intrinsic_isinf(ast_value *a) {
    return constgen_float(isinf(immvalue_float(a)), false);
}
ast_expression *fold::intrinsic_isnan(ast_value *a) {
    return constgen_float(isnan(immvalue_float(a)), false);
}
ast_expression *fold::intrinsic_isnormal(ast_value *a) {
    return constgen_float(isnormal(immvalue_float(a)), false);
}
ast_expression *fold::intrinsic_signbit(ast_value *a) {
    return constgen_float(signbit(immvalue_float(a)), false);
}
ast_expression *fold::intrinsic_acosh(ast_value *a) {
    return constgen_float(acoshf(immvalue_float(a)), false);
}
ast_expression *fold::intrinsic_asinh(ast_value *a) {
    return constgen_float(asinhf(immvalue_float(a)), false);
}
ast_expression *fold::intrinsic_atanh(ast_value *a) {
    return constgen_float((float)atanh(immvalue_float(a)), false);
}
ast_expression *fold::intrinsic_exp(ast_value *a) {
    return constgen_float(expf(immvalue_float(a)), false);
}
ast_expression *fold::intrinsic_exp2(ast_value *a) {
    return constgen_float(exp2f(immvalue_float(a)), false);
}
ast_expression *fold::intrinsic_expm1(ast_value *a) {
    return constgen_float(expm1f(immvalue_float(a)), false);
}
ast_expression *fold::intrinsic_mod(ast_value *lhs, ast_value *rhs) {
    return constgen_float(fmodf(immvalue_float(lhs), immvalue_float(rhs)), false);
}
ast_expression *fold::intrinsic_pow(ast_value *lhs, ast_value *rhs) {
    return constgen_float(powf(immvalue_float(lhs), immvalue_float(rhs)), false);
}
ast_expression *fold::intrinsic_fabs(ast_value *a) {
    return constgen_float(fabsf(immvalue_float(a)), false);
}
ast_expression* fold::intrinsic_nan(void) {
    return constgen_float(0.0f / 0.0f, false);
}
ast_expression* fold::intrinsic_epsilon(void) {
  static bool calculated = false;
  static float eps = 1.0f;
  if (!calculated) {
    do {
      eps /= 2.0f;
    } while ((1.0f + (eps / 2.0f)) != 1.0f);
    calculated = true;
  }
  return constgen_float(eps, false);
}

ast_expression* fold::intrinsic_inf(void) {
  return constgen_float(1.0f / 0.0f, false);
}

ast_expression *fold::intrinsic(const char *intrinsic, size_t n_args, ast_expression **args) {
    ast_expression *ret = nullptr;

    if (n_args) {
      ast_value *a = (ast_value*)args[0];
      ast_value *b = (ast_value*)args[1];
      if (!strcmp(intrinsic, "isfinite")) ret = intrinsic_isfinite(a);
      if (!strcmp(intrinsic, "isinf"))    ret = intrinsic_isinf(a);
      if (!strcmp(intrinsic, "isnan"))    ret = intrinsic_isnan(a);
      if (!strcmp(intrinsic, "isnormal")) ret = intrinsic_isnormal(a);
      if (!strcmp(intrinsic, "signbit"))  ret = intrinsic_signbit(a);
      if (!strcmp(intrinsic, "acosh"))    ret = intrinsic_acosh(a);
      if (!strcmp(intrinsic, "asinh"))    ret = intrinsic_asinh(a);
      if (!strcmp(intrinsic, "atanh"))    ret = intrinsic_atanh(a);
      if (!strcmp(intrinsic, "exp"))      ret = intrinsic_exp(a);
      if (!strcmp(intrinsic, "exp2"))     ret = intrinsic_exp2(a);
      if (!strcmp(intrinsic, "expm1"))    ret = intrinsic_expm1(a);
      if (!strcmp(intrinsic, "mod"))      ret = intrinsic_mod(a, b);
      if (!strcmp(intrinsic, "pow"))      ret = intrinsic_pow(a, b);
      if (!strcmp(intrinsic, "fabs"))     ret = intrinsic_fabs(a);
    } else {
      if (!strcmp(intrinsic, "nan"))      ret = intrinsic_nan();
      if (!strcmp(intrinsic, "epsilon"))  ret = intrinsic_epsilon();
      if (!strcmp(intrinsic, "inf"))      ret = intrinsic_inf();
    }

    if (ret) {
        ++opts_optimizationcount[OPTIM_CONST_FOLD];
    }

    return ret;
}

/*
 * These are all the actual constant folding methods that happen in between
 * the AST/IR stage of the compiler , i.e eliminating branches for const
 * expressions, which is the only supported thing so far. We undefine the
 * testing macros here because an ir_value is differant than an ast_value.
 */
#undef expect
#undef isfloat
#undef isstring
#undef isvector
#undef fold__immvalue_float
#undef fold__immvalue_string
#undef fold__immvalue_vector
#undef fold_can_1
#undef fold_can_2

#define isfloat(X)              ((X)->m_vtype == TYPE_FLOAT)
/*#define isstring(X)             ((X)->m_vtype == TYPE_STRING)*/
/*#define isvector(X)             ((X)->m_vtype == TYPE_VECTOR)*/
#define fold_can_1(X)           ((X)->m_hasvalue && (X)->m_cvq == CV_CONST)
/*#define fold_can_2(X,Y)         (fold_can_1(X) && fold_can_1(Y))*/

qcfloat_t fold::immvalue_float(ir_value *value) {
    return value->m_constval.vfloat;
}

vec3_t fold::immvalue_vector(ir_value *value) {
    return value->m_constval.vvec;
}

ast_expression *fold::superfluous(ast_expression *left, ast_expression *right, int op) {
    ast_expression *swapped = nullptr; /* using this as bool */
    ast_value *load;

    if (!ast_istype(right, ast_value) || !fold_can_1((load = (ast_value*)right))) {
        swapped = left;
        left    = right;
        right   = swapped;
    }

    if (!ast_istype(right, ast_value) || !fold_can_1((load = (ast_value*)right)))
        return nullptr;

    switch (op) {
        case INSTR_DIV_F:
            if (swapped)
                return nullptr;
            [[fallthrough]];
        case INSTR_MUL_F:
            if (immvalue_float(load) == 1.0f) {
                ++opts_optimizationcount[OPTIM_PEEPHOLE];
                ast_unref(right);
                return left;
            }
            break;


        case INSTR_SUB_F:
            if (swapped)
                return nullptr;
            [[fallthrough]];
        case INSTR_ADD_F:
            if (immvalue_float(load) == 0.0f) {
                ++opts_optimizationcount[OPTIM_PEEPHOLE];
                ast_unref(right);
                return left;
            }
            break;

        case INSTR_MUL_V:
            if (vec3_cmp(immvalue_vector(load), vec3_create(1, 1, 1))) {
                ++opts_optimizationcount[OPTIM_PEEPHOLE];
                ast_unref(right);
                return left;
            }
            break;

        case INSTR_SUB_V:
            if (swapped)
                return nullptr;
            [[fallthrough]];
        case INSTR_ADD_V:
            if (vec3_cmp(immvalue_vector(load), vec3_create(0, 0, 0))) {
                ++opts_optimizationcount[OPTIM_PEEPHOLE];
                ast_unref(right);
                return left;
            }
            break;
    }

    return nullptr;
}

ast_expression *fold::binary(lex_ctx_t ctx, int op, ast_expression *left, ast_expression *right) {
    ast_expression *ret = superfluous(left, right, op);
    if (ret)
        return ret;
    return new ast_binary(ctx, op, left, right);
}