1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
// -----------------------------------------------------------------------------
//
// Gmsh C++ tutorial 13
//
// Remeshing an STL file without an underlying CAD model
//
// -----------------------------------------------------------------------------
#include <set>
#include <cmath>
#include <gmsh.h>
int main(int argc, char **argv)
{
gmsh::initialize();
auto createGeometryAndMesh = []()
{
gmsh::model::add("t13");
// Let's merge an STL mesh that we would like to remesh (from the parent
// directory):
try {
gmsh::merge("../t13_data.stl");
} catch(...) {
gmsh::logger::write("Could not load STL mesh: bye!");
return;
}
// We first classify ("color") the surfaces by splitting the original
// surface along sharp geometrical features. This will create new discrete
// surfaces, curves and points.
// Angle between two triangles above which an edge is considered as sharp,
// retrieved from the ONELAB database (see below):
std::vector<double> n;
gmsh::onelab::getNumber("Parameters/Angle for surface detection", n);
double angle = n[0];
// For complex geometries, patches can be too complex, too elongated or too
// large to be parametrized; setting the following option will force the
// creation of patches that are amenable to reparametrization:
gmsh::onelab::getNumber
("Parameters/Create surfaces guaranteed to be parametrizable", n);
bool forceParametrizablePatches = n[0] ? true : false;
// For open surfaces include the boundary edges in the classification process:
bool includeBoundary = true;
// Force curves to be split on given angle:
double curveAngle = 180;
gmsh::model::mesh::classifySurfaces(angle * M_PI / 180., includeBoundary,
forceParametrizablePatches,
curveAngle * M_PI / 180.);
// Create a geometry for all the discrete curves and surfaces in the mesh,
// by computing a parametrization for each one
gmsh::model::mesh::createGeometry();
// Note that if a CAD model (e.g. as a STEP file, see `t20.cpp') is
// available instead of an STL mesh, it is usually better to use that CAD
// model instead of the geometry created by reparametrizing the
// mesh. Indeed, CAD geometries will in general be more accurate, with
// smoother parametrizations, and will lead to more efficient and higher
// quality meshing. Discrete surface remeshing in Gmsh is optimized to
// handle dense STL meshes coming from e.g. imaging systems, where no CAD is
// available; it is less well suited for the poor quality STL triangulations
// (optimized for size, with e.g. very elongated triangles) that are usually
// generated by CAD tools for e.g. 3D printing.
// Create a volume from all the surfaces
std::vector<std::pair<int, int> > s;
gmsh::model::getEntities(s, 2);
std::vector<int> sl;
for(auto surf : s) sl.push_back(surf.second);
int l = gmsh::model::geo::addSurfaceLoop(sl);
gmsh::model::geo::addVolume({l});
gmsh::model::geo::synchronize();
// We specify element sizes imposed by a size field, just because we can :-)
int f = gmsh::model::mesh::field::add("MathEval");
gmsh::onelab::getNumber("Parameters/Apply funny mesh size field?", n);
if(n[0])
gmsh::model::mesh::field::setString(f, "F", "2*Sin((x+y)/5) + 3");
else
gmsh::model::mesh::field::setString(f, "F", "4");
gmsh::model::mesh::field::setAsBackgroundMesh(f);
gmsh::model::mesh::generate(3);
};
// Create ONELAB parameters with remeshing options:
gmsh::onelab::set(R"( [
{
"type":"number",
"name":"Parameters/Angle for surface detection",
"values":[40],
"min":20,
"max":120,
"step":1
},
{
"type":"number",
"name":"Parameters/Create surfaces guaranteed to be parametrizable",
"values":[0],
"choices":[0, 1]
},
{
"type":"number",
"name":"Parameters/Apply funny mesh size field?",
"values":[0],
"choices":[0, 1]
}
] )");
// Create the geometry and mesh it:
createGeometryAndMesh();
// Launch the GUI and handle the "check" event to recreate the geometry and mesh
// with new parameters if necessary:
auto checkForEvent = [=]() -> bool {
std::vector<std::string> action;
gmsh::onelab::getString("ONELAB/Action", action);
if(action.size() && action[0] == "check") {
gmsh::onelab::setString("ONELAB/Action", {""});
createGeometryAndMesh();
gmsh::graphics::draw();
}
return true;
};
std::set<std::string> args(argv, argv + argc);
if(!args.count("-nopopup")) {
gmsh::fltk::initialize();
while(gmsh::fltk::isAvailable() && checkForEvent())
gmsh::fltk::wait();
}
gmsh::finalize();
return 0;
}
|