1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
|
# ------------------------------------------------------------------------------
#
# Gmsh Julia tutorial 18
#
# Periodic meshes
#
# ------------------------------------------------------------------------------
# Periodic meshing constraints can be imposed on surfaces and curves.
import gmsh
gmsh.initialize()
gmsh.model.add("t18")
# Let's use the OpenCASCADE geometry kernel to build two geometries.
# The first geometry is very simple: a unit cube with a non-uniform mesh size
# constraint (set on purpose to be able to verify visually that the periodicity
# constraint works!):
gmsh.model.occ.addBox(0, 0, 0, 1, 1, 1, 1)
gmsh.model.occ.synchronize()
gmsh.model.mesh.setSize(gmsh.model.getEntities(0), 0.1)
gmsh.model.mesh.setSize([(0, 1)], 0.02)
# To impose that the mesh on surface 2 (the right side of the cube) should
# match the mesh from surface 1 (the left side), the following periodicity
# constraint is set:
translation = [1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1]
gmsh.model.mesh.setPeriodic(2, [2], [1], translation)
# The periodicity transform is provided as a 4x4 affine transformation matrix,
# given by row.
# During mesh generation, the mesh on surface 2 will be created by copying
# the mesh from surface 1.
# Multiple periodicities can be imposed in the same way:
gmsh.model.mesh.setPeriodic(2, [6], [5],
[1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1])
gmsh.model.mesh.setPeriodic(2, [4], [3],
[1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1])
# For more complicated cases, finding the corresponding surfaces by hand can
# be tedious, especially when geometries are created through solid
# modelling. Let's construct a slightly more complicated geometry.
# We start with a cube and some spheres:
gmsh.model.occ.addBox(2, 0, 0, 1, 1, 1, 10)
x = 2 - 0.3
y = 0
z = 0
gmsh.model.occ.addSphere(x, y, z, 0.35, 11)
gmsh.model.occ.addSphere(x + 1, y, z, 0.35, 12)
gmsh.model.occ.addSphere(x, y + 1, z, 0.35, 13)
gmsh.model.occ.addSphere(x, y, z + 1, 0.35, 14)
gmsh.model.occ.addSphere(x + 1, y + 1, z, 0.35, 15)
gmsh.model.occ.addSphere(x, y + 1, z + 1, 0.35, 16)
gmsh.model.occ.addSphere(x + 1, y, z + 1, 0.35, 17)
gmsh.model.occ.addSphere(x + 1, y + 1, z + 1, 0.35, 18)
# We first fragment all the volumes, which will leave parts of spheres
# protruding outside the cube:
out, _ = gmsh.model.occ.fragment([(3, 10)], [(3, i) for i in 11:18])
gmsh.model.occ.synchronize()
# Ask OpenCASCADE to compute more accurate bounding boxes of entities using
# the STL mesh:
gmsh.option.setNumber("Geometry.OCCBoundsUseStl", 1)
# We then retrieve all the volumes in the bounding box of the original cube,
# and delete all the parts outside it:
eps = 1e-3
vin = gmsh.model.getEntitiesInBoundingBox(2 - eps, -eps, -eps, 2 + 1 + eps,
1 + eps, 1 + eps, 3)
for v in vin
deleteat!(out, findall(x -> x == v, out))
end
gmsh.model.removeEntities(out, true) # Delete outside parts recursively
# We now set a non-uniform mesh size constraint (again to check results
# visually):
p = gmsh.model.getBoundary(vin, false, false, true) # Get all points
gmsh.model.mesh.setSize(p, 0.1)
p = gmsh.model.getEntitiesInBoundingBox(2 - eps, -eps, -eps, 2 + eps, eps, eps,
0)
gmsh.model.mesh.setSize(p, 0.001)
# We now identify corresponding surfaces on the left and right sides of the
# geometry automatically.
# First we get all surfaces on the left:
sxmin = gmsh.model.getEntitiesInBoundingBox(2 - eps, -eps, -eps, 2 + eps,
1 + eps, 1 + eps, 2)
for i in sxmin
# Then we get the bounding box of each left surface
xmin, ymin, zmin, xmax, ymax, zmax = gmsh.model.getBoundingBox(i[1], i[2])
# We translate the bounding box to the right and look for surfaces inside
# it:
sxmax = gmsh.model.getEntitiesInBoundingBox(xmin - eps + 1, ymin - eps,
zmin - eps, xmax + eps + 1,
ymax + eps, zmax + eps, 2)
# For all the matches, we compare the corresponding bounding boxes...
for j in sxmax
xmin2, ymin2, zmin2, xmax2, ymax2, zmax2 = gmsh.model.getBoundingBox(
j[1], j[2])
xmin2 -= 1
xmax2 -= 1
# ...and if they match, we apply the periodicity constraint
if (abs(xmin2 - xmin) < eps && abs(xmax2 - xmax) < eps &&
abs(ymin2 - ymin) < eps && abs(ymax2 - ymax) < eps &&
abs(zmin2 - zmin) < eps && abs(zmax2 - zmax) < eps)
gmsh.model.mesh.setPeriodic(2, [j[2]], [i[2]], translation)
end
end
end
gmsh.model.mesh.generate(3)
gmsh.write("t18.msh")
# Launch the GUI to see the results:
if !("-nopopup" in ARGS)
gmsh.fltk.run()
end
gmsh.finalize()
|