1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
# ------------------------------------------------------------------------------
#
# Gmsh Julia tutorial 2
#
# Transformations, extruded geometries, volumes
#
# ------------------------------------------------------------------------------
import gmsh
# If ARGS is passed to gmsh.initialize(), Gmsh will parse the command line in
# the same way as the standalone Gmsh app:
gmsh.initialize(append!(["gmsh"], ARGS))
gmsh.model.add("t2")
# Copied from `t1.jl'...
lc = 1e-2
gmsh.model.geo.addPoint(0, 0, 0, lc, 1)
gmsh.model.geo.addPoint(.1, 0, 0, lc, 2)
gmsh.model.geo.addPoint(.1, .3, 0, lc, 3)
gmsh.model.geo.addPoint(0, .3, 0, lc, 4)
gmsh.model.geo.addLine(1, 2, 1)
gmsh.model.geo.addLine(3, 2, 2)
gmsh.model.geo.addLine(3, 4, 3)
gmsh.model.geo.addLine(4, 1, 4)
gmsh.model.geo.addCurveLoop([4, 1, -2, 3], 1)
gmsh.model.geo.addPlaneSurface([1], 1)
gmsh.model.geo.synchronize()
gmsh.model.addPhysicalGroup(1, [1, 2, 4], 5)
gmsh.model.addPhysicalGroup(2, [1], -1, "My surface")
# We can then add new points and curves in the same way as we did in `t1.jl':
gmsh.model.geo.addPoint(0, .4, 0, lc, 5)
gmsh.model.geo.addLine(4, 5, 5)
# But Gmsh also provides tools to transform (translate, rotate, etc.)
# elementary entities or copies of elementary entities. Geometrical
# transformations take a vector of pairs of integers as first argument, which
# contains the list of entities, represented by (dimension, tag) pairs. For
# example, the point 5 (dimension=0, tag=5) can be moved by 0.02 to the left
# (dx=-0.02, dy=0, dz=0) with
gmsh.model.geo.translate([(0, 5)], -0.02, 0, 0)
# And it can be further rotated by -Pi/4 around (0, 0.3, 0) (with the rotation
# along the z axis) with:
gmsh.model.geo.rotate([(0, 5)], 0, 0.3, 0, 0, 0, 1, -pi / 4)
# Note that there are no units in Gmsh: coordinates are just numbers - it's
# up to the user to associate a meaning to them.
# Point 3 can be duplicated and translated by 0.05 along the y axis by using the
# copy() function, which takes a vector of (dim, tag) pairs as input, and
# returns another vector of (dim, tag) pairs:
ov = gmsh.model.geo.copy([(0, 3)])
gmsh.model.geo.translate(ov, 0, 0.05, 0)
# The new point tag is available in ov[1][2], and can be used to create new
# lines:
gmsh.model.geo.addLine(3, ov[1][2], 7)
gmsh.model.geo.addLine(ov[1][2], 5, 8)
gmsh.model.geo.addCurveLoop([5, -8, -7, 3], 10)
gmsh.model.geo.addPlaneSurface([10], 11)
# In the same way, we can translate copies of the two surfaces 1 and 11 to the
# right with the following command:
ov = gmsh.model.geo.copy([(2, 1), (2, 11)])
gmsh.model.geo.translate(ov, 0.12, 0, 0)
println("New surfaces ", ov[1][2], " and ", ov[2][2])
# Volumes are the fourth type of elementary entities in Gmsh. In the same way
# one defines curve loops to build surfaces, one has to define surface loops
# (i.e. `shells') to build volumes. The following volume does not have holes and
# thus consists of a single surface loop:
gmsh.model.geo.addPoint(0., 0.3, 0.12, lc, 100)
gmsh.model.geo.addPoint(0.1, 0.3, 0.12, lc, 101)
gmsh.model.geo.addPoint(0.1, 0.35, 0.12, lc, 102)
# We would like to retrieve the coordinates of point 5 to create point 103, so
# we synchronize the model, and use `getValue()'
gmsh.model.geo.synchronize()
xyz = gmsh.model.getValue(0, 5, [])
gmsh.model.geo.addPoint(xyz[1], xyz[2], 0.12, lc, 103)
gmsh.model.geo.addLine(4, 100, 110)
gmsh.model.geo.addLine(3, 101, 111)
gmsh.model.geo.addLine(6, 102, 112)
gmsh.model.geo.addLine(5, 103, 113)
gmsh.model.geo.addLine(103, 100, 114)
gmsh.model.geo.addLine(100, 101, 115)
gmsh.model.geo.addLine(101, 102, 116)
gmsh.model.geo.addLine(102, 103, 117)
gmsh.model.geo.addCurveLoop([115, -111, 3, 110], 118)
gmsh.model.geo.addPlaneSurface([118], 119)
gmsh.model.geo.addCurveLoop([111, 116, -112, -7], 120)
gmsh.model.geo.addPlaneSurface([120], 121)
gmsh.model.geo.addCurveLoop([112, 117, -113, -8], 122)
gmsh.model.geo.addPlaneSurface([122], 123)
gmsh.model.geo.addCurveLoop([114, -110, 5, 113], 124)
gmsh.model.geo.addPlaneSurface([124], 125)
gmsh.model.geo.addCurveLoop([115, 116, 117, 114], 126)
gmsh.model.geo.addPlaneSurface([126], 127)
gmsh.model.geo.addSurfaceLoop([127, 119, 121, 123, 125, 11], 128)
gmsh.model.geo.addVolume([128], 129)
# When a volume can be extruded from a surface, it is usually easier to use the
# `extrude()' function directly instead of creating all the points, curves and
# surfaces by hand. For example, the following command extrudes the surface 11
# along the z axis and automatically creates a new volume (as well as all the
# needed points, curves and surfaces). As expected, the function takes a vector
# of (dim, tag) pairs as input as well as the translation vector, and returns a
# vector of (dim, tag) pairs as output:
ov2 = gmsh.model.geo.extrude([ov[2]], 0, 0, 0.12)
# Mesh sizes associated to geometrical points can be set by passing a vector of
# (dim, tag) pairs for the corresponding points:
gmsh.model.geo.mesh.setSize([(0, 103), (0, 105), (0, 109), (0, 102), (0, 28),
(0, 24), (0, 6), (0, 5)], lc * 3)
# We finish by synchronizing the data from the built-in CAD kernel with the Gmsh
# model:
gmsh.model.geo.synchronize()
# We group volumes 129 and 130 in a single physical group with tag `1' and name
# "The volume":
gmsh.model.addPhysicalGroup(3, [129, 130], 1, "The volume")
# We finally generate and save the mesh:
gmsh.model.mesh.generate(3)
gmsh.write("t2.msh")
# Note that, if the transformation tools are handy to create complex geometries,
# it is also sometimes useful to generate the `flat' geometry, with an explicit
# representation of all the elementary entities.
#
# This can be achieved by saving the model in the `Gmsh Unrolled GEO' format:
#
# gmsh.write("t2.geo_unrolled");
# Launch the GUI to see the results:
if !("-nopopup" in ARGS)
gmsh.fltk.run()
end
gmsh.finalize()
|