File: t4.jl

package info (click to toggle)
gmsh 4.14.0%2Bds1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 96,556 kB
  • sloc: cpp: 438,695; ansic: 114,912; f90: 15,477; python: 14,025; yacc: 7,333; java: 3,491; lisp: 3,194; lex: 631; perl: 571; makefile: 497; sh: 439; xml: 414; javascript: 113; pascal: 35; modula3: 32
file content (169 lines) | stat: -rw-r--r-- 6,292 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# ------------------------------------------------------------------------------
#
#  Gmsh Julia tutorial 4
#
#  Holes in surfaces, annotations, entity colors
#
# ------------------------------------------------------------------------------

import gmsh

gmsh.initialize()

gmsh.model.add("t4")

cm = 1e-02
e1 = 4.5 * cm; e2 = 6 * cm / 2; e3 =  5 * cm / 2
h1 = 5 * cm; h2 = 10 * cm; h3 = 5 * cm; h4 = 2 * cm; h5 = 4.5 * cm
R1 = 1 * cm; R2 = 1.5 * cm; r = 1 * cm
Lc1 = 0.01
Lc2 = 0.003

function hypot(a, b)
    return sqrt(a * a + b * b)
end

ccos = (-h5 * R1 + e2 * hypot(h5, hypot(e2, R1))) / (h5 * h5 + e2 * e2)
ssin = sqrt(1 - ccos*ccos)

# We start by defining some points and some lines. To make the code shorter we
# can redefine a namespace:
factory = gmsh.model.geo
factory.addPoint(-e1 - e2, 0, 0, Lc1, 1)
factory.addPoint(-e1 - e2, h1, 0, Lc1, 2)
factory.addPoint(-e3 - r, h1, 0, Lc2, 3)
factory.addPoint(-e3 - r, h1 + r, 0, Lc2, 4)
factory.addPoint(-e3, h1 + r, 0, Lc2, 5)
factory.addPoint(-e3, h1 + h2, 0, Lc1, 6)
factory.addPoint(e3, h1 + h2, 0, Lc1, 7)
factory.addPoint(e3, h1 + r, 0, Lc2, 8)
factory.addPoint(e3 + r, h1 + r, 0, Lc2, 9)
factory.addPoint(e3 + r, h1, 0, Lc2, 10)
factory.addPoint(e1 + e2, h1, 0, Lc1, 11)
factory.addPoint(e1 + e2, 0, 0, Lc1, 12)
factory.addPoint(e2, 0, 0, Lc1, 13)

factory.addPoint(R1 / ssin, h5 + R1 * ccos, 0, Lc2, 14)
factory.addPoint(0, h5, 0, Lc2, 15)
factory.addPoint(-R1 / ssin, h5 + R1 * ccos, 0, Lc2, 16)
factory.addPoint(-e2, 0.0, 0, Lc1, 17)

factory.addPoint(-R2, h1 + h3, 0, Lc2, 18)
factory.addPoint(-R2, h1 + h3 + h4, 0, Lc2, 19)
factory.addPoint(0, h1 + h3 + h4, 0, Lc2, 20)
factory.addPoint(R2, h1 + h3 + h4, 0, Lc2, 21)
factory.addPoint(R2, h1 + h3, 0, Lc2, 22)
factory.addPoint(0, h1 + h3, 0, Lc2, 23)

factory.addPoint(0, h1 + h3 + h4 + R2, 0, Lc2, 24)
factory.addPoint(0, h1 + h3 - R2, 0, Lc2, 25)

factory.addLine(1, 17, 1)
factory.addLine(17, 16, 2)

# Gmsh provides other curve primitives than straight lines: splines, B-splines,
# circle arcs, ellipse arcs, etc. Here we define a new circle arc, starting at
# point 14 and ending at point 16, with the circle's center being the point 15:
factory.addCircleArc(14, 15, 16, 3)

# Note that, in Gmsh, circle arcs should always be smaller than Pi. The
# OpenCASCADE geometry kernel does not have this limitation.

# We can then define additional lines and circles, as well as a new surface:
factory.addLine(14, 13, 4)
factory.addLine(13, 12, 5)
factory.addLine(12, 11, 6)
factory.addLine(11, 10, 7)
factory.addCircleArc(8, 9, 10, 8)
factory.addLine(8, 7, 9)
factory.addLine(7, 6, 10)
factory.addLine(6, 5, 11)
factory.addCircleArc(3, 4, 5, 12)
factory.addLine(3, 2, 13)
factory.addLine(2, 1, 14)
factory.addLine(18, 19, 15)
factory.addCircleArc(21, 20, 24, 16)
factory.addCircleArc(24, 20, 19, 17)
factory.addCircleArc(18, 23, 25, 18)
factory.addCircleArc(25, 23, 22, 19)
factory.addLine(21, 22, 20)

factory.addCurveLoop([17, -15, 18, 19, -20, 16], 21)
factory.addPlaneSurface([21], 22)

# But we still need to define the exterior surface. Since this surface has a
# hole, its definition now requires two curves loops:
factory.addCurveLoop([11, -12, 13, 14, 1, 2, -3, 4, 5, 6, 7, -8, 9, 10], 23)
factory.addPlaneSurface([23, 21], 24)

# As a general rule, if a surface has N holes, it is defined by N+1 curve loops:
# the first loop defines the exterior boundary; the other loops define the
# boundaries of the holes.

factory.synchronize()

# Finally, we can add some comments by creating a post-processing view
# containing some strings:
v = gmsh.view.add("comments")

# Add a text string in window coordinates, 10 pixels from the left and 10 pixels
# from the bottom:
gmsh.view.addListDataString(v, [10, -10], ["Created with Gmsh"])

# Add a text string in model coordinates centered at (X,Y,Z) = (0, 0.11, 0),
# with some style attributes:
gmsh.view.addListDataString(v, [0, 0.11, 0], ["Hole"],
                            ["Align", "Center", "Font", "Helvetica"])

# If a string starts with `file://', the rest is interpreted as an image
# file. For 3D annotations, the size in model coordinates can be specified after
# a `@' symbol in the form `widthxheight' (if one of `width' or `height' is
# zero, natural scaling is used; if both are zero, original image dimensions in
# pixels are used):
png = abspath(joinpath(@__DIR__, "..", "t4_image.png"))
gmsh.view.addListDataString(v, [0, 0.09, 0], ["file://" * png * "@0.01x0"],
                            ["Align", "Center"])

# The 3D orientation of the image can be specified by proving the direction
# of the bottom and left edge of the image in model space:
gmsh.view.addListDataString(v, [-0.01, 0.09, 0],
                            ["file://" * png * "@0.01x0,0,0,1,0,1,0"])

# The image can also be drawn in "billboard" mode, i.e. always parallel to
# the camera, by using the `#' symbol:
gmsh.view.addListDataString(v, [0, 0.12, 0], ["file://" * png * "@0.01x0#"],
                            ["Align", "Center"])

# The size of 2D annotations is given directly in pixels:
gmsh.view.addListDataString(v, [150, -7], ["file://" * png * "@20x0"])

# These annotations are handled by a list-based post-processing view. For
# large post-processing datasets, that contain actual field values defined on
# a mesh, you should use model-based post-processing views instead, which
# allow to efficiently store continuous or discontinuous scalar, vector and
# tensor fields, or arbitrary polynomial order.

# Views and geometrical entities can be made to respond to double-click
# events, here to print some messages to the console:
gmsh.view.option.setString(v, "DoubleClickedCommand",
                           "Printf('View[0] has been double-clicked!');")
gmsh.option.setString(
    "Geometry.DoubleClickedLineCommand",
    "Printf('Curve %g has been double-clicked!', Geometry.DoubleClickedEntityTag);")

# We can also change the color of some entities:
gmsh.model.setColor([(2, 22)], 127, 127, 127)
gmsh.model.setColor([(2, 24)], 160, 32, 240)
gmsh.model.setColor([(1, i) for i in 1:14], 255, 0, 0)
gmsh.model.setColor([(1, i) for i in 15:20], 255, 255, 0)

gmsh.model.mesh.generate(2)

gmsh.write("t4.msh")

# Launch the GUI to see the results:
if !("-nopopup" in ARGS)
    gmsh.fltk.run()
end

gmsh.finalize()