1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
# ------------------------------------------------------------------------------
#
# Gmsh Julia tutorial 5
#
# Mesh sizes, holes in volumes
#
# ------------------------------------------------------------------------------
import gmsh
gmsh.initialize()
gmsh.model.add("t5")
lcar1 = .1
lcar2 = .0005
lcar3 = .055
# If we wanted to change these mesh sizes globally (without changing the above
# definitions), we could give a global scaling factor for all mesh sizes with
# e.g.
#
# gmsh.option.setNumber("Mesh.MeshSizeFactor", 0.1);
#
# Since we pass `argc' and `argv' to `gmsh.initialize()', we can also give the
# option on the command line with the `-clscale' switch. For example, with:
#
# > ./t5.exe -clscale 1
#
# this tutorial produces a mesh of approximately 3000 nodes and 14,000
# tetrahedra. With
#
# > ./t5.exe -clscale 0.2
#
# the mesh counts approximately 231,000 nodes and 1,360,000 tetrahedra. You can
# check mesh statistics in the graphical user interface (gmsh.fltk.run()) with
# the `Tools->Statistics' menu.
#
# See `t10.jl' for more information about mesh sizes.
# We proceed by defining some elementary entities describing a truncated cube:
gmsh.model.geo.addPoint(0.5, 0.5, 0.5, lcar2, 1)
gmsh.model.geo.addPoint(0.5, 0.5, 0, lcar1, 2)
gmsh.model.geo.addPoint(0, 0.5, 0.5, lcar1, 3)
gmsh.model.geo.addPoint(0, 0, 0.5, lcar1, 4)
gmsh.model.geo.addPoint(0.5, 0, 0.5, lcar1, 5)
gmsh.model.geo.addPoint(0.5, 0, 0, lcar1, 6)
gmsh.model.geo.addPoint(0, 0.5, 0, lcar1, 7)
gmsh.model.geo.addPoint(0, 1, 0, lcar1, 8)
gmsh.model.geo.addPoint(1, 1, 0, lcar1, 9)
gmsh.model.geo.addPoint(0, 0, 1, lcar1, 10)
gmsh.model.geo.addPoint(0, 1, 1, lcar1, 11)
gmsh.model.geo.addPoint(1, 1, 1, lcar1, 12)
gmsh.model.geo.addPoint(1, 0, 1, lcar1, 13)
gmsh.model.geo.addPoint(1, 0, 0, lcar1, 14)
gmsh.model.geo.addLine(8, 9, 1)
gmsh.model.geo.addLine(9, 12, 2)
gmsh.model.geo.addLine(12, 11, 3)
gmsh.model.geo.addLine(11, 8, 4)
gmsh.model.geo.addLine(9, 14, 5)
gmsh.model.geo.addLine(14, 13, 6)
gmsh.model.geo.addLine(13, 12, 7)
gmsh.model.geo.addLine(11, 10, 8)
gmsh.model.geo.addLine(10, 13, 9)
gmsh.model.geo.addLine(10, 4, 10)
gmsh.model.geo.addLine(4, 5, 11)
gmsh.model.geo.addLine(5, 6, 12)
gmsh.model.geo.addLine(6, 2, 13)
gmsh.model.geo.addLine(2, 1, 14)
gmsh.model.geo.addLine(1, 3, 15)
gmsh.model.geo.addLine(3, 7, 16)
gmsh.model.geo.addLine(7, 2, 17)
gmsh.model.geo.addLine(3, 4, 18)
gmsh.model.geo.addLine(5, 1, 19)
gmsh.model.geo.addLine(7, 8, 20)
gmsh.model.geo.addLine(6, 14, 21)
gmsh.model.geo.addCurveLoop([-11, -19, -15, -18], 22)
gmsh.model.geo.addPlaneSurface([22], 23)
gmsh.model.geo.addCurveLoop([16, 17, 14, 15], 24)
gmsh.model.geo.addPlaneSurface([24], 25)
gmsh.model.geo.addCurveLoop([-17, 20, 1, 5, -21, 13], 26)
gmsh.model.geo.addPlaneSurface([26], 27)
gmsh.model.geo.addCurveLoop([-4, -1, -2, -3], 28)
gmsh.model.geo.addPlaneSurface([28], 29)
gmsh.model.geo.addCurveLoop([-7, 2, -5, -6], 30)
gmsh.model.geo.addPlaneSurface([30], 31)
gmsh.model.geo.addCurveLoop([6, -9, 10, 11, 12, 21], 32)
gmsh.model.geo.addPlaneSurface([32], 33)
gmsh.model.geo.addCurveLoop([7, 3, 8, 9], 34)
gmsh.model.geo.addPlaneSurface([34], 35)
gmsh.model.geo.addCurveLoop([-10, 18, -16, -20, 4, -8], 36)
gmsh.model.geo.addPlaneSurface([36], 37)
gmsh.model.geo.addCurveLoop([-14, -13, -12, 19], 38)
gmsh.model.geo.addPlaneSurface([38], 39)
shells = []
sl = gmsh.model.geo.addSurfaceLoop([35,31,29,37,33,23,39,25,27])
push!(shells, sl)
function cheeseHole(x, y, z, r, lc, shells)
# This function will create a spherical hole in a volume. We don't specify
# tags manually, and let the functions return them automatically:
p1 = gmsh.model.geo.addPoint(x, y, z, lc)
p2 = gmsh.model.geo.addPoint(x + r, y, z, lc)
p3 = gmsh.model.geo.addPoint(x, y + r, z, lc)
p4 = gmsh.model.geo.addPoint(x, y, z + r, lc)
p5 = gmsh.model.geo.addPoint(x - r, y, z, lc)
p6 = gmsh.model.geo.addPoint(x, y - r, z, lc)
p7 = gmsh.model.geo.addPoint(x, y, z - r, lc)
c1 = gmsh.model.geo.addCircleArc(p2, p1, p7)
c2 = gmsh.model.geo.addCircleArc(p7, p1, p5)
c3 = gmsh.model.geo.addCircleArc(p5, p1, p4)
c4 = gmsh.model.geo.addCircleArc(p4, p1, p2)
c5 = gmsh.model.geo.addCircleArc(p2, p1, p3)
c6 = gmsh.model.geo.addCircleArc(p3, p1, p5)
c7 = gmsh.model.geo.addCircleArc(p5, p1, p6)
c8 = gmsh.model.geo.addCircleArc(p6, p1, p2)
c9 = gmsh.model.geo.addCircleArc(p7, p1, p3)
c10 = gmsh.model.geo.addCircleArc(p3, p1, p4)
c11 = gmsh.model.geo.addCircleArc(p4, p1, p6)
c12 = gmsh.model.geo.addCircleArc(p6, p1, p7)
l1 = gmsh.model.geo.addCurveLoop([c5, c10, c4])
l2 = gmsh.model.geo.addCurveLoop([c9, -c5, c1])
l3 = gmsh.model.geo.addCurveLoop([c12, -c8, -c1])
l4 = gmsh.model.geo.addCurveLoop([c8, -c4, c11])
l5 = gmsh.model.geo.addCurveLoop([-c10, c6, c3])
l6 = gmsh.model.geo.addCurveLoop([-c11, -c3, c7])
l7 = gmsh.model.geo.addCurveLoop([-c2, -c7, -c12])
l8 = gmsh.model.geo.addCurveLoop([-c6, -c9, c2])
# We need non-plane surfaces to define the spherical holes. Here we use the
# `gmsh.model.geo.addSurfaceFilling()' function, which can be used for
# surfaces with 3 or 4 curves on their boundary. If the curves are circle
# arcs with the same center, a spherical patch is created; otherwise
# transfinite interpolation is used. With the OpenCASCADE kernel,
# `gmsh.model.occ.addSurfaceFilling()' can be used with an arbitrary number
# of boundary curves, and will fit a BSpline patch through them.
s1 = gmsh.model.geo.addSurfaceFilling([l1])
s2 = gmsh.model.geo.addSurfaceFilling([l2])
s3 = gmsh.model.geo.addSurfaceFilling([l3])
s4 = gmsh.model.geo.addSurfaceFilling([l4])
s5 = gmsh.model.geo.addSurfaceFilling([l5])
s6 = gmsh.model.geo.addSurfaceFilling([l6])
s7 = gmsh.model.geo.addSurfaceFilling([l7])
s8 = gmsh.model.geo.addSurfaceFilling([l8])
sl = gmsh.model.geo.addSurfaceLoop([s1, s2, s3, s4, s5, s6, s7, s8])
v = gmsh.model.geo.addVolume([sl])
push!(shells, sl)
return v
end
# We create five holes in the cube:
x = 0
y = 0.75; z = 0; r = 0.09
for t in 1:5
global x, z
x += 0.166
z += 0.166
v = cheeseHole(x, y, z, r, lcar3, shells)
gmsh.model.geo.addPhysicalGroup(3, [v], t)
end
# The volume of the cube, without the 5 holes, is defined by 6 surface loops:
# the first surface loop defines the exterior surface; the surface loops other
# than the first one define holes:
gmsh.model.geo.addVolume(shells, 186);
gmsh.model.geo.synchronize()
# Note that using solid modelling with the OpenCASCADE CAD kernel, the same
# geometry could be built quite differently: see `t16.jl'.
# We finally define a physical volume for the elements discretizing the cube,
# without the holes (for which physical groups were already defined in the
# `cheeseHole()' function):
gmsh.model.addPhysicalGroup(3, [186], 10);
# We could make only part of the model visible to only mesh this subset:
# ent = gmsh.model.getEntities()
# gmsh.model.setVisibility(ent, False)
# gmsh.model.setVisibility([(3, 5)], True, True)
# gmsh.option.setNumber("Mesh.MeshOnlyVisible", 1)
# Meshing algorithms can changed globally using options:
gmsh.option.setNumber("Mesh.Algorithm", 6) # Frontal-Delaunay for 2D meshes
# They can also be set for individual surfaces, e.g. for using `MeshAdapt' on
# surface 1:
gmsh.model.mesh.setAlgorithm(2, 33, 1)
# To generate a curvilinear mesh and optimize it to produce provably valid
# curved elements (see A. Johnen, J.-F. Remacle and C. Geuzaine. Geometric
# validity of curvilinear finite elements. Journal of Computational Physics
# 233, pp. 359-372, 2013; and T. Toulorge, C. Geuzaine, J.-F. Remacle,
# J. Lambrechts. Robust untangling of curvilinear meshes. Journal of
# Computational Physics 254, pp. 8-26, 2013), you can uncomment the following
# lines:
#
# gmsh.option.setNumber("Mesh.ElementOrder", 2)
# gmsh.option.setNumber("Mesh.HighOrderOptimize", 2)
gmsh.model.mesh.generate(3)
gmsh.write("t5.msh")
# Launch the GUI to see the results:
if !("-nopopup" in ARGS)
gmsh.fltk.run()
end
gmsh.finalize()
|