File: x3.jl

package info (click to toggle)
gmsh 4.14.0%2Bds1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 96,556 kB
  • sloc: cpp: 438,695; ansic: 114,912; f90: 15,477; python: 14,025; yacc: 7,333; java: 3,491; lisp: 3,194; lex: 631; perl: 571; makefile: 497; sh: 439; xml: 414; javascript: 113; pascal: 35; modula3: 32
file content (153 lines) | stat: -rw-r--r-- 6,871 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# -----------------------------------------------------------------------------
#
#  Gmsh Julia extended tutorial 3
#
#  Post-processing data import: list-based
#
# -----------------------------------------------------------------------------

import gmsh

gmsh.initialize(append!(["gmsh"], ARGS))

# Gmsh supports two types of post-processing data: "list-based" and
# "model-based". Both types of data are handled through the `view' interface.

# List-based views are completely independent from any model and any mesh: they
# are self-contained and simply contain lists of coordinates and values, element
# by element, for 3 types of fields (scalar "S", vector "V" and tensor "T") and
# several types of element shapes (point "P", line "L", triangle "T", quadrangle
# "Q", tetrahedron "S", hexahedron "H", prism "I" and pyramid "Y"). (See `x4.jl'
# for a tutorial on model-based views.)

# To create a list-based view one should first create a view:
t1 = gmsh.view.add("A list-based view")

# List-based data is then added by specifying the type as a 2 character string
# that combines a field type and an element shape (e.g. "ST" for a scalar field
# on triangles), the number of elements to be added, and the concatenated list
# of coordinates (e.g. 3 "x" coordinates, 3 "y" coordinates, 3 "z" coordinates
# for first order triangles) and values for each element (e.g. 3 values for
# first order scalar triangles, repeated for each step if there are several time
# steps).

# Let's create two triangles...
triangle1 = [0., 1., 1., # x coordinates of the 3 triangle nodes
             0., 0., 1., # y coordinates of the 3 triangle nodes
             0., 0., 0.] # z coordinates of the 3 triangle nodes
triangle2 = [0., 1., 0., 0., 1., 1., 0., 0., 0.]

# ... and append values for 10 time steps
for step in 0:9
    push!(triangle1, 10., 11. - step, 12.)  # 3 node values for each step
    push!(triangle2, 11., 12., 13. + step)
end

# List-based data is just added by concatenating the data for all the triangles:
gmsh.view.addListData(t1, "ST", 2, [triangle1; triangle2])

# Internally, post-processing views parsed by the .geo file parser create such
# list-based data (see e.g. `t7.jl', `t8.jl' and `t9.jl'), independently of any
# mesh.

# Vector or tensor fields can be imported in the same way, the only difference
# beeing the type (starting with "V" for vector fields and "T" for tensor
# fields) and the number of components. For example a vector field on a line
# element can be added as follows:
line = [
    0., 1.,   # x coordinate of the 2 line nodes
    1.2, 1.2, # y coordinate of the 2 line nodes
    0., 0.    # z coordinate of the 2 line nodes
]
for step in 0:9
    # 3 vector components for each node (2 nodes here), for each step
    push!(line, 10. + step, 0., 0.,
                10. + step, 0., 0.)
end
gmsh.view.addListData(t1, "VL", 1, line)

# List-based data can also hold 2D (in window coordinates) and 3D (in model
# coordinates) strings (see `t4.jl'). Here we add a 2D string located on the
# bottom-left of the window (with a 20 pixels offset), as well as a 3D string
# located at model coordinates (0.5, 0.5. 0):
gmsh.view.addListDataString(t1, [20., -20.], ["Created with Gmsh"])
gmsh.view.addListDataString(t1, [0.5, 1.5, 0.],
                            ["A multi-step list-based view"],
                            ["Align", "Center", "Font", "Helvetica"])

# The various attributes of the view can be queried and changed using the option
# interface:
gmsh.view.option.setNumber(t1, "TimeStep", 5)
gmsh.view.option.setNumber(t1, "IntervalsType", 3)
ns = gmsh.view.option.getNumber(t1, "NbTimeStep")
println("View ", t1, " has ", ns, " time steps")

# Views can be queried and modified in various ways using plugins (see `t9.jl'),
# or probed directly using `gmsh.view.probe()' - here at point (0.9, 0.1, 0):
println("Value at (0.9, 0.1, 0) = ", gmsh.view.probe(t1, 0.9, 0.1, 0))

# Views can be saved to disk using `gmsh.view.write()':
gmsh.view.write(t1, "x3.pos")

# High-order datasets can be provided by setting the interpolation matrices
# explicitly. Let's create a second view with second order interpolation on
# a 4-node quadrangle.

# Add a new view:
t2 = gmsh.view.add("Second order quad")

# Set the node coordinates:
quad = [0., 1., 1., 0., # x coordinates of the 4 quadrangle nodes
        -1.2, -1.2, -0.2, -0.2, # y coordinates of the 4 quadrangle nodes
        0., 0., 0., 0.] # z coordinates of the 4 quadrangle nodes

# Add nine values that will be interpolated by second order basis functions
push!(quad, 1., 1., 1., 1., 3., 3., 3., 3., -3.)

# Set the two interpolation matrices c[i][j] and e[i][j] defining the d = 9
# basis functions: f[i](u, v, w) = sum_(j = 0, ..., d - 1) c[i][j] u^e[j][0]
# v^e[j][1] w^e[j][2], i = 0, ..., d-1, with u, v, w the coordinates in the
# reference element:
gmsh.view.setInterpolationMatrices(t2, "Quadrangle", 9,
                                   [0, 0, 0.25, 0, 0, -0.25, -0.25, 0, 0.25,
                                    0, 0, 0.25, 0, 0, -0.25, 0.25, 0, -0.25,
                                    0, 0, 0.25, 0, 0, 0.25, 0.25, 0, 0.25,
                                    0, 0, 0.25, 0, 0, 0.25, -0.25, 0, -0.25,
                                    0, 0, -0.5, 0.5, 0, 0.5, 0, -0.5, 0,
                                    0, 0.5, -0.5, 0, 0.5, 0, -0.5, 0, 0,
                                    0, 0, -0.5, 0.5, 0, -0.5, 0, 0.5, 0,
                                    0, 0.5, -0.5, 0, -0.5, 0, 0.5, 0, 0,
                                    1, -1, 1, -1, 0, 0, 0, 0, 0],
                                   [0, 0, 0,
                                    2, 0, 0,
                                    2, 2, 0,
                                    0, 2, 0,
                                    1, 0, 0,
                                    2, 1, 0,
                                    1, 2, 0,
                                    0, 1, 0,
                                    1, 1, 0])

# Note that two additional interpolation matrices could also be provided to
# interpolate the geometry, i.e. to interpolate curved elements.

# Add the data to the view:
gmsh.view.addListData(t2, "SQ", 1, quad)

# In order to visualize the high-order field, one must activate adaptive
# visualization, set a visualization error threshold and a maximum subdivision
# level (Gmsh does automatic mesh refinement to visualize the high-order field
# with the requested accuracy):
gmsh.view.option.setNumber(t2, "AdaptVisualizationGrid", 1)
gmsh.view.option.setNumber(t2, "TargetError", 1e-2)
gmsh.view.option.setNumber(t2, "MaxRecursionLevel", 5)

# Note that the adapted visualization data can be retrived by setting the
# `returnAdaptive' argument to the `gmsh.view.getListData()' function.

# Launch the GUI to see the results:
if !("-nopopup" in ARGS)
    gmsh.fltk.run()
end

gmsh.finalize()