File: fullMatrix.h

package info (click to toggle)
gmsh 4.7.1%2Bds1-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 95,484 kB
  • sloc: cpp: 566,747; ansic: 150,384; yacc: 7,198; python: 6,130; java: 3,486; lisp: 622; lex: 621; makefile: 613; perl: 571; sh: 439; xml: 415; javascript: 113; pascal: 35; modula3: 32
file content (791 lines) | stat: -rw-r--r-- 21,846 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
// Gmsh - Copyright (C) 1997-2020 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// issues on https://gitlab.onelab.info/gmsh/gmsh/issues.

#ifndef FULL_MATRIX_H
#define FULL_MATRIX_H

#include "GmshConfig.h"
#include "GmshMessage.h"
#include <cmath>
#include <cstdio>
#include <complex>
#include <iostream>

#if defined(HAVE_EIGEN)
#ifdef Success // in X11 header X.h
#undef Success
#endif
#include <Eigen/Dense>
#endif

template <class scalar> class fullMatrix;

// An interface for vectors of scalars (real or complex, with simple or double
// precision). The first index of a fullVector is 0. fullVectors can own their
// scalars, or just be an access point to an other fullVector; such a fullVector
// is called a proxy.

template <class scalar> class fullVector {
private:
  int _r; // size of the vector
  scalar *_data; // pointer on the first element
  bool _ownData;
  friend class fullMatrix<scalar>;

#if defined(HAVE_EIGEN)
  typedef Eigen::Map<Eigen::Matrix<scalar, Eigen::Dynamic, 1> > EigenVec;
#endif

public:
  // Instantiate a zero size fullVector
  fullVector(void) : _r(0), _data(0), _ownData(1) {}
  // Instantiate a fullVector of size r filled with zeros
  fullVector(int r) : _r(r), _ownData(1)
  {
    _data = new scalar[_r];
    setAll(scalar(0.));
  }
  // Instantiate a proxy fullVector given by [original[0], original[1], ...,
  // original[r - 1]]
  fullVector(scalar *original, int r)
  {
    _r = r;
    _ownData = false;
    _data = original;
  }
  // Instantiate a fullVector, which is a copy (and not a proxy) of other
  fullVector(const fullVector<scalar> &other) : _r(other._r), _ownData(1)
  {
    _data = new scalar[_r];
    for(int i = 0; i < _r; ++i) _data[i] = other._data[i];
  }
  ~fullVector()
  {
    if(_ownData && _data) delete[] _data;
  }
  inline int size() const { return _r; }
  inline const scalar *getDataPtr() const { return _data; }
  inline scalar *getDataPtr() { return _data; }
  inline scalar operator()(int i) const { return _data[i]; }
  inline scalar &operator()(int i) { return _data[i]; }
  fullVector<scalar> &operator=(const fullVector<scalar> &other)
  {
    if(this != &other) {
      if((!resize(other._r, false) && _r > 2 * other._r)) {
        if(_data) delete[] _data;
        _r = other._r;
        _data = new scalar[_r];
      }
      setAll(other);
    }
    return *this;
  }
  void copy(const fullVector<scalar> &v, int i0, int ni, int desti0)
  {
    for(int i = i0, desti = desti0; i < i0 + ni; i++, desti++)
      (*this)(desti) = v(i);
  }
  inline void set(int r, scalar v)
  {
#ifdef _DEBUG
    if(r >= _r || r < 0) {
      Msg::Error("Invalid index in vector: %i (size = %i)", r, _r);
      return;
    }
#endif
    (*this)(r) = v;
  }
  // Return the L^2 norm
  scalar norm() const;
  bool resize(int r, bool resetValue = true)
  {
    if(_r < r || !_ownData) {
      if(_ownData && _data) delete[] _data;
      _r = r;
      _data = new scalar[_r];
      _ownData = true;
      if(resetValue) setAll(scalar(0.));
      return true;
    }
    _r = r;
    if(resetValue) setAll(scalar(0.));
    return false;
  }
  // this fullVector becomes a proxy of original, that is: [original(r_start),
  // ..., original(r_start + r - 1)]. Previous data are lost
  void setAsProxy(const fullVector<scalar> &original, int r_start, int r)
  {
    if(_ownData && _data) delete[] _data;
    _ownData = false;
    _r = r;
    _data = original._data + r_start;
  }
  // This fullVector becomes a proxy of original matrix cth row, that is:
  // [original(0, c), ..., original(original.size1() - 1, c)]. Previous data are
  // lost
  void setAsProxy(const fullMatrix<scalar> &original, int c)
  {
    if(_ownData && _data) delete[] _data;
    _ownData = false;
    _r = original._r;
    _data = original._data + c * _r;
  }
  // This fullVector becomes a proxy of the array. Previous data are lost
  void setAsProxy(scalar *data, int r)
  {
    if(_ownData && _data) delete[] _data;
    _ownData = false;
    _r = r;
    _data = data;
  }
  inline void scale(const scalar s)
  {
#if defined(HAVE_EIGEN)
    EigenVec vv(_data, _r);
    vv *= s;
#else
    if(s == scalar(0.))
      for(int i = 0; i < _r; ++i) _data[i] = scalar(0.);
    else if(s == -1.)
      for(int i = 0; i < _r; ++i) _data[i] = -_data[i];
    else
      for(int i = 0; i < _r; ++i) _data[i] *= s;
#endif
  }
  inline void setAll(const scalar &m)
  {
#if defined(HAVE_EIGEN)
    EigenVec vv(_data, _r);
    vv.setConstant(m);
#else
    for(int i = 0; i < _r; i++) set(i, m);
#endif
  }
  void setAll(const fullVector<scalar> &m)
#if defined(HAVE_EIGEN)
  {
    EigenVec vv(_data, _r);
    EigenVec vm(m._data, m._r);
    vv = vm;
  }
#elif !defined(HAVE_BLAS)
  {
    for(int i = 0; i < _r; i++) _data[i] = m._data[i];
  }
#endif
  ;
  // Scalar product
  inline scalar operator*(const fullVector<scalar> &other)
  {
#if defined(HAVE_EIGEN)
    EigenVec vv(_data, _r), vother(other._data, other._r);
    scalar s = vv.dot(vother);
#else
    scalar s = 0.;
    for(int i = 0; i < _r; ++i) s += _data[i] * other._data[i];
    return s;
#endif
  }
  // v(i) = v(i) + alpha * x(i)
  void axpy(const fullVector<scalar> &x, scalar alpha = 1.)
#if defined(HAVE_EIGEN)
  {
    EigenVec vv(_data, _r), vx(x._data, x._r);
    vv.noalias() += alpha * vx;
  }
#elif !defined(HAVE_BLAS)
  {
    for(int i = 0; i < _r; i++) _data[i] += alpha * x._data[i];
  }
#endif
  ;
  // v(i) = v(i) * x(i)
  void multTByT(const fullVector<scalar> &x)
  {
    for(int i = 0; i < _r; i++) _data[i] *= x._data[i];
  }
  void print(const std::string name = "", const std::string format = "") const;
  void binarySave(FILE *f) const { fwrite(_data, sizeof(scalar), _r, f); }
  void binaryLoad(FILE *f)
  {
    if(fread(_data, sizeof(scalar), _r, f) != (size_t)_r) return;
  }
  bool getOwnData() const { return _ownData; };
  void setOwnData(bool ownData) { _ownData = ownData; };
};

// An interface for dense matrix of scalars (real or complex, with simple or
// double precision)

template <class scalar> class fullMatrix {
private:
  bool _ownData; // should data be freed on delete?
  int _r, _c; // size of the matrix
  scalar *_data; // pointer on the first element
  friend class fullVector<scalar>;

#if defined(HAVE_EIGEN)
  typedef Eigen::Map<Eigen::Matrix<scalar, Eigen::Dynamic, Eigen::Dynamic> > EigenMat;
  typedef Eigen::Map<Eigen::Matrix<scalar, Eigen::Dynamic, 1> > EigenVec;
#endif

public:
  fullMatrix(scalar *original, int r, int c)
  {
    _r = r;
    _c = c;
    _ownData = false;
    _data = original;
  }
  fullMatrix(fullMatrix<scalar> &original, int c_start, int c)
  {
    _c = c;
    _r = original._r;
    _ownData = false;
    _data = original._data + c_start * _r;
  }
  fullMatrix(int r, int c, bool init0 = true) : _r(r), _c(c)
  {
    _data = new scalar[_r * _c];
    _ownData = true;
    if(init0) setAll(scalar(0.));
  }
  fullMatrix(int r, int c, scalar *data)
    : _r(r), _c(c), _data(data), _ownData(false)
  {
    setAll(scalar(0.));
  }
  fullMatrix(const fullMatrix<scalar> &other) : _r(other._r), _c(other._c)
  {
    _data = new scalar[_r * _c];
    _ownData = true;
    for(int i = 0; i < _r * _c; ++i) _data[i] = other._data[i];
  }
  fullMatrix() : _ownData(false), _r(0), _c(0), _data(0) {}
  ~fullMatrix()
  {
    if(_data && _ownData) delete[] _data;
  }
  // get information (size, value)
  inline int size1() const { return _r; }
  inline int size2() const { return _c; }
  inline scalar get(int r, int c) const
  {
#ifdef _DEBUG
    if(r >= _r || r < 0 || c >= _c || c < 0) {
      Msg::Error("Invalid index in dense matrix: %i %i (size = %i %i)", r, c,
                 _r, _c);
      return 0;
    }
#endif
    return (*this)(r, c);
  }
  inline const scalar *getDataPtr() const { return _data; }
  inline scalar *getDataPtr() { return _data; }
  inline void set(int r, int c, scalar v)
  {
#ifdef _DEBUG
    if(r >= _r || r < 0 || c >= _c || c < 0) {
      Msg::Error("Invalid index in dense matrix: %i %i (size = %i %i)", r, c,
                 _r, _c);
      return;
    }
#endif
    (*this)(r, c) = v;
  }
  inline scalar norm() const
  {
    scalar n = 0.;
    for(int i = 0; i < _r; ++i)
      for(int j = 0; j < _c; ++j) n += (*this)(i, j) * (*this)(i, j);
    return sqrt(n);
  }
  bool resize(int r, int c, bool resetValue = true)
  {
    // data will be owned (same as constructor)
    if((r * c > _r * _c) || !_ownData) {
      if(_ownData && _data) delete[] _data;
      _r = r;
      _c = c;
      _data = new scalar[_r * _c];
      _ownData = true;
      if(resetValue) setAll(scalar(0.));
      return true;
    }
    _r = r;
    _c = c;
    if(resetValue) setAll(scalar(0.));
    return false; // no reallocation
  }
  void reshape(int nbRows, int nbColumns)
  {
    if(nbRows == -1 && nbColumns != -1) nbRows = _r * _c / nbColumns;
    if(nbRows != -1 && nbColumns == -1) nbColumns = _r * _c / nbRows;
    if(nbRows * nbColumns != _r * _c)
      Msg::Error("Invalid dense matrix reshape: total number of entries must "
                 "be equal (new %i x %i != old %i x %i)",
                 nbRows, nbColumns, _r, _c);
    _r = nbRows;
    _c = nbColumns;
  }
  void setAsProxy(const fullMatrix<scalar> &original)
  {
    if(_data && _ownData) delete[] _data;
    _c = original._c;
    _r = original._r;
    _ownData = false;
    _data = original._data;
  }
  void setAsProxy(const fullMatrix<scalar> &original, int c_start, int c)
  {
    if(_data && _ownData) delete[] _data;
    _c = c;
    _r = original._r;
    _ownData = false;
    _data = original._data + c_start * _r;
  }
  void setAsProxy(scalar *data, int r, int c)
  {
    if(_data && _ownData) delete[] _data;
    _c = c;
    _r = r;
    _ownData = false;
    _data = data;
  }
  fullMatrix<scalar> &operator=(const fullMatrix<scalar> &other)
  {
    copy(other);
    return *this;
  }
  void operator+=(const fullMatrix<scalar> &other)
  {
    if(_r != other._r || _c != other._c) {
      Msg::Error("Cannot sum dense matrices of different sizes");
      return;
    }
    for(int i = 0; i < _r * _c; ++i) _data[i] += other._data[i];
  }
  inline scalar operator()(int i, int j) const
  {
#ifdef _DEBUG
    if(i >= _r || i < 0 || j >= _c || j < 0) {
      Msg::Error("Invalid index to access dense matrix: %i %i (size = %i %i)",
                 i, j, _r, _c);
      return 0;
    }
#endif
    return _data[i + _r * j];
  }
  inline scalar &operator()(int i, int j)
  {
#ifdef _DEBUG
    if(i >= _r || i < 0 || j >= _c || j < 0) {
      Msg::Error("Invalid index to access dense matrix: %i %i (size = %i %i)",
                 i, j, _r, _c);
      return _data[0];
    }
#endif
    return _data[i + _r * j];
  }
  void copy(const fullMatrix<scalar> &a, int i0, int ni, int j0, int nj,
            int desti0, int destj0)
  {
    for(int i = i0, desti = desti0; i < i0 + ni; i++, desti++)
      for(int j = j0, destj = destj0; j < j0 + nj; j++, destj++)
        (*this)(desti, destj) = a(i, j);
  }
  void copy(const fullMatrix<scalar> &a)
  {
    if(_data && !_ownData) {
      Msg::Error("Dense matrix copy prohibited for proxies, use setAll "
                 "instead");
      return;
    }
    if(_r != a._r || _c != a._c) {
      if(_data && _ownData) delete[] _data;
      _r = a._r;
      _c = a._c;
      _data = new scalar[_r * _c];
      _ownData = true;
    }
    setAll(a);
  }
  void copyOneColumn(const fullVector<scalar> &x, const int ind) const
  {
    int cind = _c * ind;
    for(int i = 0; i < _r; i++) _data[cind + i] = x(i);
  }
  inline void setAll(const scalar &m)
  {
#if defined(HAVE_EIGEN)
    EigenMat ma(_data, _r, _c);
    ma.setConstant(m);
#else
    for(int i = 0; i < _r * _c; i++) _data[i] = m;
#endif
  }
  void setAll(const fullMatrix<scalar> &m)
#if defined(HAVE_EIGEN)
  {
    EigenMat ma(_data, _r, _c), mm(m._data, m._r, m._c);
    ma = mm;
  }
#elif !defined(HAVE_BLAS)
  {
    if(_r != m._r || _c != m._c) {
      Msg::Error("Dense matrix sizes do not match in setAll");
      return;
    }
    for(int i = 0; i < _r * _c; i++) _data[i] = m._data[i];
  }
#endif
  ;
  void scale(const double s)
#if defined(HAVE_EIGEN)
  {
    EigenMat ma(_data, _r, _c);
    ma *= s;
  }
#elif !defined(HAVE_BLAS)
  {
    if(s == 0.) // this is not really correct nan*0 (or inf*0) is expected to
                // give nan
      for(int i = 0; i < _r * _c; ++i) _data[i] = scalar(0.);
    else
      for(int i = 0; i < _r * _c; ++i) _data[i] *= s;
  }
#endif
  ;
  inline void add(const double &a)
  {
    for(int i = 0; i < _r * _c; ++i) _data[i] += a;
  }
  inline void add(const fullMatrix<scalar> &m)
  {
#if defined(HAVE_EIGEN)
    EigenMat ma(_data, _r, _c), mm(m._data, m._r, m._c);
    ma.noalias() += mm;
#else
    for(int i = 0; i < _r; i++)
      for(int j = 0; j < _c; j++) (*this)(i, j) += m(i, j);
#endif
  }
  inline void add(const fullMatrix<scalar> &m, const double &a)
  {
#if defined(HAVE_EIGEN)
    EigenMat ma(_data, _r, _c), mm(m._data, m._r, m._c);
    ma.noalias() += a * mm;
#else
    for(int i = 0; i < _r; i++)
      for(int j = 0; j < _c; j++) (*this)(i, j) += a * m(i, j);
#endif
  }
  void mult(const fullVector<scalar> &x, fullVector<scalar> &y) const
#if defined(HAVE_EIGEN)
  {
    EigenMat ma(_data, _r, _c);
    EigenVec vx(x._data, x._r), vy(y._data, y._r);
    vy = ma * vx;
  }
#elif !defined(HAVE_BLAS)
  {
    y.scale(scalar(0.));
    for(int i = 0; i < _r; i++)
      for(int j = 0; j < _c; j++) y._data[i] += (*this)(i, j) * x(j);
  }
#endif
  ;
  void multAddy(const fullVector<scalar> &x, fullVector<scalar> &y) const
#if defined(HAVE_EIGEN)
  {
    EigenMat ma(_data, _r, _c);
    EigenVec vx(x._data, x._r), vy(y._data, y._r);
    vy += ma * vx;
  }
#elif !defined(HAVE_BLAS)
  {
    for(int i = 0; i < _r; i++)
      for(int j = 0; j < _c; j++) y._data[i] += (*this)(i, j) * x(j);
  }
#endif
  ;
  void mult(const fullMatrix<scalar> &b, fullMatrix<scalar> &c) const
#if defined(HAVE_EIGEN)
  {
    EigenMat ma(_data, _r, _c), mb(b._data, b._r, b._c), mc(c._data, c._r, c._c);
    mc.noalias() = ma * mb;
  }
#elif !defined(HAVE_BLAS)
  {
    c.scale(scalar(0.));
    for(int i = 0; i < _r; i++)
      for(int j = 0; j < b._c; j++)
        for(int k = 0; k < _c; k++)
          c._data[i + _r * j] += (*this)(i, k) * b(k, j);
  }
#endif
  ;
  void multTByT(const fullMatrix<scalar> &a)
  {
    for(int i = 0; i < _r * _c; i++) _data[i] *= a._data[i];
  }
  void multOnBlock(const fullMatrix<scalar> &b, const int ncol, const int fcol,
                   const int alpha, const int beta, fullVector<scalar> &c) const
#if defined(HAVE_EIGEN) || !defined(HAVE_BLAS)
  {
    int row = 0;
    if(beta != 1) c.scale(beta);
    for(int j = fcol; j < fcol + ncol; j++)
      for(int k = 0; k < _c; k++)
        c._data[j] += alpha * (*this)(row, k) * b(k, j);
  }
#endif
  ;
  void multWithATranspose(const fullVector<scalar> &x, scalar alpha,
                          scalar beta, fullVector<scalar> &y) const
#if defined(HAVE_EIGEN) || !defined(HAVE_BLAS)
  {
    y.scale(beta);
    for(int j = 0; j < _c; j++)
      for(int i = 0; i < _r; i++) y._data[j] += alpha * (*this)(i, j) * x(i);
  }
#endif
  ;
  inline fullMatrix<scalar> transpose() const
  {
    fullMatrix<scalar> T(_c, _r);
    for(int i = 0; i < _r; i++)
      for(int j = 0; j < _c; j++) T(j, i) = (*this)(i, j);
    return T;
  }
  inline void transposeInPlace()
  {
    if(_r != _c) {
      Msg::Error("In-place transposition requires a square matrix "
                 "(size = %d %d)", _r, _c);
      return;
    }
    scalar t;
    for(int i = 0; i < _r; i++)
      for(int j = 0; j < i; j++) {
        t = _data[i + _r * j];
        _data[i + _r * j] = _data[j + _r * i];
        _data[j + _r * i] = t;
      }
  }
  void gemm(const fullMatrix<scalar> &a, const fullMatrix<scalar> &b,
            scalar alpha = 1., scalar beta = 1., bool transposeA = false,
            bool transposeB = false)
#if defined(HAVE_EIGEN) || !defined(HAVE_BLAS)
  {
    const fullMatrix<scalar> &A = transposeA ? a.transpose() : a;
    const fullMatrix<scalar> &B = transposeA ? b.transpose() : b;
    fullMatrix<scalar> temp(A._r, B._c);
    A.mult(B, temp);
    temp.scale(alpha);
    scale(beta);
    add(temp);
  }
#endif
  ;
  void axpy(const fullMatrix<scalar> &x, scalar alpha = 1.)
#if defined(HAVE_EIGEN) || !defined(HAVE_BLAS)
  {
    int n = _r * _c;
    for(int i = 0; i < n; i++) _data[i] += alpha * x._data[i];
  }
#endif
  ;
  bool luSolve(const fullVector<scalar> &rhs, fullVector<scalar> &result)
#if defined(HAVE_EIGEN)
  {
    if(_r != _c || _r != rhs._r || _r != result._r) {
      Msg::Error("Wrong sizes for dense linear system solve (size = %d %d, "
                 "%d, %d)", _r, _c, result._r, rhs._r);
      return false;
    }
    EigenMat ma(_data, _r, _c);
    EigenVec vb(rhs._data, rhs._r);
    EigenVec vx(result._data, result._r);
    vx = ma.colPivHouseholderQr().solve(vb);
    return true;
  }
#elif !defined(HAVE_LAPACK)
  {
    Msg::Error("LU factorization and substitution requires Eigen or LAPACK");
    return false;
  }
#endif
  ;
  bool luFactor(fullVector<int> &ipiv)
#if defined(HAVE_EIGEN) || !defined(HAVE_LAPACK)
  {
    Msg::Error("LU factorization requires LAPACK");
    return false;
  }
#endif
  ;
  bool luSubstitute(const fullVector<scalar> &rhs, fullVector<int> &ipiv,
                    fullVector<scalar> &result)
#if defined(HAVE_EIGEN) || !defined(HAVE_LAPACK)
  {
    Msg::Error("LU substitution requires LAPACK");
    return false;
  }
#endif
  ;
  bool invert(fullMatrix<scalar> &result) const
#if defined(HAVE_EIGEN)
  {
    if(_r != _c) {
      Msg::Error("Dense matrix inverse requires square matrix (size = %d %d)",
                 _r, _c);
      return false;
    }
    result.resize(_r, _c);
    EigenMat ma(_data, _r, _c);
    EigenMat mi(result._data, _r, _c);
    mi = ma.inverse();
    return true;
  }
#elif !defined(HAVE_LAPACK)
  {
    Msg::Error("Matrix inversion requires Eigen or LAPACK");
    return false;
  }
#endif
  ;
  bool invertInPlace()
#if defined(HAVE_EIGEN)
  {
    if(_r != _c) {
      Msg::Error("Dense matrix inversion requires square matrix (size = %d %d)",
                 _r, _c);
      return false;
    }
    EigenMat ma(_data, _r, _c);
    ma = ma.inverse();
    return true;
  }
#elif !defined(HAVE_LAPACK)
  {
    Msg::Error("Dense matrix inversion requires LAPACK");
    return false;
  }
#endif
  ;
  scalar determinant() const
#if defined(HAVE_EIGEN)
  {
    EigenMat ma(_data, _r, _c);
    return ma.determinant();
  }
#elif !defined(HAVE_LAPACK)
  {
    Msg::Error("Dense matrix inversion requires Eigen or LAPACK");
    return false;
  }
#endif
  ;
  void swap(scalar *a, int inca, scalar *b, int incb, int n)
  {
    scalar tmp;
    for(int i = 0; i < n; i++, a += inca, b += incb) {
      tmp = (*a);
      (*a) = (*b);
      (*b) = tmp;
    }
  }
  void eigSort(int n, scalar *wr, scalar *wi, scalar *VL, scalar *VR)
  {
    // Sort the eigenvalues/vectors in ascending order according to
    // their real part. Warning: this will screw up the ordering if we
    // have complex eigenvalues.
    for(int i = 0; i < n - 1; i++) {
      int k = i;
      scalar ek = wr[i];
      // search for something to swap
      for(int j = i + 1; j < n; j++) {
        const scalar ej = wr[j];
        if(ej < ek) {
          k = j;
          ek = ej;
        }
      }
      if(k != i) {
        swap(&wr[i], 1, &wr[k], 1, 1);
        swap(&wi[i], 1, &wi[k], 1, 1);
        swap(&VL[n * i], 1, &VL[n * k], 1, n);
        swap(&VR[n * i], 1, &VR[n * k], 1, n);
      }
    }
  }
  bool eig(fullVector<double> &eigenValReal, fullVector<double> &eigenValImag,
           fullMatrix<scalar> &leftEigenVect, fullMatrix<scalar> &rightEigenVect,
           bool sortRealPart = false)
#if defined(HAVE_EIGEN)
  {
    EigenMat ma(_data, _r, _c);
    Eigen::EigenSolver<Eigen::Matrix<scalar, Eigen::Dynamic, Eigen::Dynamic> > es(ma);
    if(es.info() != Eigen::Success) {
      Msg::Warning("Eigen could not compute eigenvalues/eigenvectors");
      return false;
    }
    EigenVec vr(eigenValReal._data, eigenValReal._r);
    vr = es.eigenvalues().real();
    EigenVec vi(eigenValImag._data, eigenValImag._r);
    vi = es.eigenvalues().imag();
    EigenMat mr(rightEigenVect._data, rightEigenVect._r, rightEigenVect._c);
    mr = es.eigenvectors().real();
    EigenMat ml(leftEigenVect._data, leftEigenVect._r, leftEigenVect._c);
    // FIXME: compute the true left eigenvectors!
    ml = mr.transpose();
    if(sortRealPart)
      eigSort(_r, eigenValReal._data, eigenValImag._data,
              leftEigenVect._data, rightEigenVect._data);
    return true;
  }
#elif !defined(HAVE_LAPACK)
  {
    Msg::Error("Eigenvalue computation of dense matrices requires Eigen or "
               "LAPACK");
    return false;
  }
#endif
  ;
  bool svd(fullMatrix<scalar> &V, fullVector<scalar> &S)
#if defined(HAVE_EIGEN)
  {
    EigenMat ma(_data, _r, _c);
    EigenMat mv(V._data, V._r, V._c);
    EigenVec vs(S._data, S._r);
    Eigen::BDCSVD
      <Eigen::Matrix<scalar, Eigen::Dynamic, Eigen::Dynamic> >
      svd(ma, Eigen::ComputeThinU | Eigen::ComputeThinV);
    ma = svd.matrixU();
    mv = svd.matrixV();
    vs = svd.singularValues();
    return true;
  }
#elif !defined(HAVE_LAPACK)
  {
    Msg::Error("Singular value decomposition of dense matrices requires "
               "Eigen or LAPACK");
    return false;
  }
#endif
  ;
  void print(const std::string &name = "",
             const std::string &format = "") const;
  void binarySave(FILE *f) const { fwrite(_data, sizeof(scalar), _r * _c, f); }
  void binaryLoad(FILE *f)
  {
    if(fread(_data, sizeof(scalar), _r * _c, f) != (size_t)_r) return;
  }
  bool getOwnData() const { return _ownData; };
  void setOwnData(bool ownData) { _ownData = ownData; };
};

#endif