1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
// Gmsh - Copyright (C) 1997-2020 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// issues on https://gitlab.onelab.info/gmsh/gmsh/issues.
#include "eigenSolver.h"
#include "OS.h"
#if defined(HAVE_SLEPC)
#include <slepceps.h>
#if SLEPC_VERSION_RELEASE != 0 && \
(SLEPC_VERSION_MAJOR < 3 || \
(SLEPC_VERSION_MAJOR == 3 && SLEPC_VERSION_MINOR < 2))
#define EPSDestroy(e) EPSDestroy(*(e))
#endif
void eigenSolver::_check(int ierr) const { CHKERRABORT(PETSC_COMM_WORLD, ierr); }
eigenSolver::eigenSolver(dofManager<double> *manager, std::string A,
std::string B, bool hermitian)
: _sysA(0), _sysB(0), _hermitian(hermitian)
{
if(A.size()) {
_sysA = dynamic_cast<linearSystemPETSc<double> *>(manager->getLinearSystem(A));
if(!_sysA) Msg::Error("Could not find PETSc system '%s'", A.c_str());
}
if(B.size()) {
_sysB = dynamic_cast<linearSystemPETSc<double> *>(manager->getLinearSystem(B));
if(!_sysB) Msg::Error("Could not find PETSc system '%s'", B.c_str());
}
}
eigenSolver::eigenSolver(linearSystemPETSc<double> *A,
linearSystemPETSc<double> *B, bool hermitian)
: _sysA(A), _sysB(B), _hermitian(hermitian)
{
}
bool eigenSolver::solve(int numEigenValues, std::string which,
std::string method, double tolVal, int iterMax)
{
if(!_sysA) return false;
Mat A = _sysA->getMatrix();
Mat B = _sysB ? _sysB->getMatrix() : PETSC_NULL;
PetscInt N, M;
_check(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY));
_check(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY));
_check(MatGetSize(A, &N, &M));
PetscInt N2, M2;
if(_sysB) {
_check(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
_check(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));
_check(MatGetSize(B, &N2, &M2));
}
// generalized eigenvalue problem A x - \lambda B x = 0
EPS eps;
_check(EPSCreate(PETSC_COMM_WORLD, &eps));
_check(EPSSetOperators(eps, A, B));
if(_hermitian)
_check(EPSSetProblemType(eps, _sysB ? EPS_GHEP : EPS_HEP));
else
_check(EPSSetProblemType(eps, _sysB ? EPS_GNHEP : EPS_NHEP));
// set some default options
_check(EPSSetDimensions(eps, numEigenValues, PETSC_DECIDE, PETSC_DECIDE));
_check(EPSSetTolerances(eps, tolVal, iterMax));
if(method == "krylovschur")
_check(EPSSetType(eps, EPSKRYLOVSCHUR));
else if(method == "arnoldi")
_check(EPSSetType(eps, EPSARNOLDI));
else if(method == "arpack")
_check(EPSSetType(eps, EPSARPACK));
else if(method == "power")
_check(EPSSetType(eps, EPSPOWER));
else{
Msg::Error("eigenSolver: method '%s' not available", method.c_str());
_check(EPSSetType(eps, EPSKRYLOVSCHUR));
}
// override these options at runtime, petsc-style
_check(EPSSetFromOptions(eps));
// force options specified directly as arguments
if(numEigenValues)
_check(EPSSetDimensions(eps, numEigenValues, PETSC_DECIDE, PETSC_DECIDE));
if(which == "smallest")
_check(EPSSetWhichEigenpairs(eps, EPS_SMALLEST_MAGNITUDE));
else if(which == "smallestReal")
_check(EPSSetWhichEigenpairs(eps, EPS_SMALLEST_REAL));
else if(which == "largest")
_check(EPSSetWhichEigenpairs(eps, EPS_LARGEST_MAGNITUDE));
// print info
#if(SLEPC_VERSION_RELEASE == 0 || \
(SLEPC_VERSION_MAJOR > 3 || \
(SLEPC_VERSION_MAJOR == 3 && SLEPC_VERSION_MINOR >= 4)))
EPSType type;
#else
const EPSType type;
#endif
_check(EPSGetType(eps, &type));
Msg::Debug("SLEPc solution method: %s", type);
PetscInt nev;
_check(EPSGetDimensions(eps, &nev, PETSC_NULL, PETSC_NULL));
Msg::Debug("SLEPc number of requested eigenvalues: %d", nev);
PetscReal tol;
PetscInt maxit;
_check(EPSGetTolerances(eps, &tol, &maxit));
Msg::Debug("SLEPc stopping condition: tol=%g, maxit=%d", tol, maxit);
// solve
Msg::Info("SLEPc solving...");
double t1 = Cpu(), w1 = TimeOfDay();
_check(EPSSolve(eps));
// check convergence
int its;
_check(EPSGetIterationNumber(eps, &its));
EPSConvergedReason reason;
_check(EPSGetConvergedReason(eps, &reason));
if(reason == EPS_CONVERGED_TOL) {
double t2 = Cpu(), w2 = TimeOfDay();
Msg::Debug("SLEPc converged in %d iterations (Wall %gs, CPU %gs)", its,
w2 - w1, t2 - t1);
}
else if(reason == EPS_DIVERGED_ITS)
Msg::Error("SLEPc diverged after %d iterations", its);
else if(reason == EPS_DIVERGED_BREAKDOWN)
Msg::Error("SLEPc generic breakdown in method");
#if(SLEPC_VERSION_MAJOR < 3 || \
(SLEPC_VERSION_MAJOR == 3 && SLEPC_VERSION_MINOR < 2))
else if(reason == EPS_DIVERGED_NONSYMMETRIC)
Msg::Error("The operator is nonsymmetric");
#endif
// get number of converged approximate eigenpairs
PetscInt nconv;
_check(EPSGetConverged(eps, &nconv));
Msg::Debug("SLEPc number of converged eigenpairs: %d", nconv);
// ignore additional eigenvalues if we get more than what we asked
if(nconv > nev) nconv = nev;
if(nconv > 0) {
Vec xr, xi;
#if(PETSC_VERSION_MAJOR == 3) && (PETSC_VERSION_MINOR < 6)
_check(MatGetVecs(A, PETSC_NULL, &xr));
_check(MatGetVecs(A, PETSC_NULL, &xi));
#else
_check(MatCreateVecs(A, PETSC_NULL, &xr));
_check(MatCreateVecs(A, PETSC_NULL, &xi));
#endif
Msg::Debug(" Re[EigenValue] Im[EigenValue]"
" Relative error");
for(int i = 0; i < nconv; i++) {
PetscScalar kr, ki;
_check(EPSGetEigenpair(eps, i, &kr, &ki, xr, xi));
PetscReal error;
#if(PETSC_VERSION_MAJOR == 3) && (PETSC_VERSION_MINOR < 6)
_check(EPSComputeRelativeError(eps, i, &error));
#else
_check(EPSComputeError(eps, i, EPS_ERROR_RELATIVE, &error));
#endif
#if defined(PETSC_USE_COMPLEX)
PetscReal re = PetscRealPart(kr);
PetscReal im = PetscImaginaryPart(kr);
#else
PetscReal re = kr;
PetscReal im = ki;
#endif
Msg::Debug("EIG %03d %s%.16e %s%.16e %3.6e", i, (re < 0) ? "" : " ", re,
(im < 0) ? "" : " ", im, error);
// store eigenvalues and eigenvectors
_eigenValues.push_back(std::complex<double>(re, im));
PetscScalar *tmpr, *tmpi;
_check(VecGetArray(xr, &tmpr));
_check(VecGetArray(xi, &tmpi));
std::vector<std::complex<double> > ev(N);
for(int i = 0; i < N; i++) {
#if defined(PETSC_USE_COMPLEX)
ev[i] = tmpr[i];
#else
ev[i] = std::complex<double>(tmpr[i], tmpi[i]);
#endif
}
_eigenVectors.push_back(ev);
}
_check(VecDestroy(&xr));
_check(VecDestroy(&xi));
}
_check(EPSDestroy(&eps));
if(reason == EPS_CONVERGED_TOL) {
Msg::Debug("SLEPc done");
return true;
}
else {
Msg::Warning("SLEPc failed");
return false;
}
}
void eigenSolver::normalize_mode(std::vector<int> modeView, double scale)
{
Msg::Info("Normalize all eigenvectors");
for(std::size_t imode = 0; imode < modeView.size(); imode++) {
int i = modeView[imode];
double norm = 0.;
for(std::size_t j = 0; j < _eigenVectors[i].size(); j++) {
std::complex<double> val = _eigenVectors[i][j];
double normval = std::abs(val);
if(normval > norm) norm = normval;
}
if(norm == 0) {
Msg::Error("zero eigenvector");
return;
}
for(std::size_t j = 0; j < _eigenVectors[i].size(); j++) {
_eigenVectors[i][j] *= (scale / norm);
}
}
}
#endif
|