1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
|
// Gmsh - Copyright (C) 1997-2020 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// issues on https://gitlab.onelab.info/gmsh/gmsh/issues.
#include <stdio.h>
#include <math.h>
#include "linearSystemMUMPS.h"
#if defined(HAVE_MUMPS)
#define USE_COMM_WORLD -987654
void mumpserror(int id, int subid)
{
if(id < 0) {
Msg::Error("MUMPS INFO(1) = %d, INFO(2) = %d", id, subid);
switch(id) {
case -6:
Msg::Error("Matrix is singular in structure, structural rank: %d", subid);
break;
case -10: Msg::Error("Matrix is numerically singular"); break;
case -13: Msg::Error("Not enough memory"); break;
case -40: Msg::Error("Matrix is not symmetric positive definite"); break;
default: Msg::Error("Check MUMPS user's guide"); break;
}
}
}
linearSystemMUMPS<double>::linearSystemMUMPS()
{
_n = 0;
_nz = 0;
}
bool linearSystemMUMPS<double>::isAllocated() const
{
if(_n > 0)
return true;
else
return false;
}
void linearSystemMUMPS<double>::allocate(int nbRows)
{
_n = nbRows;
_b.resize(_n);
_x.resize(_n);
_a.reserve(10 * _n);
_irn.reserve(10 * _n);
_jcn.reserve(10 * _n);
_ij.reserve(_n);
}
void linearSystemMUMPS<double>::clear()
{
_x.clear();
_a.clear();
_b.clear();
_n = 0;
_nz = 0;
_irn.clear();
_jcn.clear();
_ij.clear();
}
void linearSystemMUMPS<double>::zeroMatrix()
{
_nz = 0;
_a.clear();
_ij.clear();
_irn.clear();
_jcn.clear();
}
void linearSystemMUMPS<double>::zeroRightHandSide()
{
for(std::size_t i = 0; i < _b.size(); i++) _b[i] = 0.;
}
void linearSystemMUMPS<double>::zeroSolution()
{
for(std::size_t i = 0; i < _x.size(); i++) _x[i] = 0.;
}
int linearSystemMUMPS<double>::systemSolve()
{
// MUMPS will overwrite _b with the solution
std::vector<DMUMPS_REAL> b = _b;
DMUMPS_STRUC_C id;
id.par = 1;
const std::string sym = getParameter("symmetry");
if(sym == "spd")
id.sym = 1;
else if(sym == "symmetric")
id.sym = 2;
else
id.sym = 0;
id.comm_fortran = USE_COMM_WORLD;
Msg::Debug("MUMPS initialization");
id.job = -1;
dmumps_c(&id);
mumpserror(id.info[0], id.info[1]);
id.n = _n;
id.nz = _nz;
// Fortran indices start from 1
for(std::size_t i = 0; i < _irn.size(); i++) _irn[i]++;
for(std::size_t i = 0; i < _jcn.size(); i++) _jcn[i]++;
id.irn = &*_irn.begin();
id.jcn = &*_jcn.begin();
id.a = &*_a.begin();
id.rhs = &*_b.begin();
// Fortran indices start from 1
id.icntl[1 - 1] = -1;
id.icntl[2 - 1] = -1;
id.icntl[3 - 1] = -1;
id.icntl[4 - 1] = 0;
id.icntl[5 - 1] = 0;
id.icntl[18 - 1] = 0;
Msg::Debug("MUMPS analysis, LU factorization, and back substitution");
id.job = 6;
dmumps_c(&id);
mumpserror(id.info[0], id.info[1]);
Msg::Debug("MUMPS destroy");
id.job = -2;
dmumps_c(&id);
Msg::Debug("MUMPS end");
mumpserror(id.info[0], id.info[1]);
_x.clear();
_x = _b;
_b = b;
for(std::size_t i = 0; i < _irn.size(); i++) _irn[i]--;
for(std::size_t i = 0; i < _jcn.size(); i++) _jcn[i]--;
return 1;
}
void linearSystemMUMPS<double>::insertInSparsityPattern(int row, int col) {}
double linearSystemMUMPS<double>::normInfRightHandSide() const
{
DMUMPS_REAL norm = 0.;
for(std::size_t i = 0; i < _b.size(); i++) {
DMUMPS_REAL temp = fabs(_b[i]);
if(temp > norm) norm = temp;
}
return norm;
}
double linearSystemMUMPS<double>::normInfSolution() const
{
DMUMPS_REAL norm = 0.;
for(std::size_t i = 0; i < _x.size(); i++) {
DMUMPS_REAL temp = fabs(_x[i]);
if(temp > norm) norm = temp;
}
return norm;
}
void linearSystemMUMPS<double>::addToMatrix(int row, int col, const double &val)
{
// MUMPS will sum entries with duplicate (row, col)
/*_a.push_back(val);
_irn.push_back(row);
_jcn.push_back(col);
_nz++;*/
if((int)_ij.size() <= row) {
_a.push_back(val);
_irn.push_back(row);
_jcn.push_back(col);
_ij.resize(row + 1);
_ij[row][col] = _a.size() - 1;
_nz++;
return;
}
std::map<int, int>::iterator it = _ij[row].find(col);
if(it == _ij[row].end()) {
_a.push_back(val);
_irn.push_back(row);
_jcn.push_back(col);
_ij[row][col] = _a.size() - 1;
_nz++;
}
else {
_a[it->second] += val;
}
}
void linearSystemMUMPS<double>::getFromMatrix(int row, int col,
double &val) const
{
// Msg::Error("getFromMatrix not implemented for linearSystemMUMPS");
if((int)_ij.size() <= row) {
val = 0.;
return;
}
std::map<int, int>::const_iterator it = _ij[row].find(col);
if(it == _ij[row].end())
val = 0.;
else
val = _a[it->second];
}
void linearSystemMUMPS<double>::addToRightHandSide(int row, const double &val,
int ith)
{
// printf("adding %g to %d\n",val,row);
if((int)_b.size() <= row) {
_b.resize(row + 1);
_b[row] = val;
}
else {
_b[row] += val;
}
}
void linearSystemMUMPS<double>::getFromRightHandSide(int row, double &val) const
{
if((int)_b.size() <= row) val = 0.;
val = _b[row];
}
void linearSystemMUMPS<double>::getFromSolution(int row, double &val) const
{
// printf("x[%d] = %g\n",row,_x[row]);
if((int)_x.size() <= row)
val = 0.;
else
val = _x[row];
}
void linearSystemMUMPS<double>::addToSolution(int row, const double &val)
{
if((int)_x.size() <= row) {
_x.resize(row + 1);
_x[row] = val;
}
else {
_x[row] += val;
}
}
#endif
|