1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
// Gmsh - Copyright (C) 1997-2020 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// issues on https://gitlab.onelab.info/gmsh/gmsh/issues.
//
// Contributor(s):
// Eric Bechet
//
#include "terms.h"
void BilinearTermToScalarTerm::get(MElement *ele, int npts, IntPt *GP,
double &val) const
{
fullMatrix<double> localMatrix;
bilterm.get(ele, npts, GP, localMatrix);
val = localMatrix(0, 0);
}
void BilinearTermBase::get(MElement *ele, int npts, IntPt *GP,
fullMatrix<double> &m) const
{
std::vector<fullMatrix<double> > mv(npts);
get(ele, npts, GP, mv);
m.resize(mv[0].size1(), mv[0].size2());
m.setAll(0.);
double jac[3][3];
for(int k = 0; k < npts; k++) {
const double u = GP[k].pt[0];
const double v = GP[k].pt[1];
const double w = GP[k].pt[2];
const double weight = GP[k].weight;
const double detJ = ele->getJacobian(u, v, w, jac);
const double coeff = weight * detJ;
for(int i = 0; i < mv[k].size1(); ++i)
for(int j = 0; j < mv[k].size2(); ++j) m(i, j) += mv[k](i, j) * coeff;
}
}
IsotropicElasticTerm::IsotropicElasticTerm(FunctionSpace<SVector3> &space1_,
FunctionSpace<SVector3> &space2_,
double E_, double nu_)
: BilinearTerm<SVector3, SVector3>(space1_, space2_), E(E_), nu(nu_), H(6, 6)
{
double FACT = E / (1 + nu);
double C11 = FACT * (1 - nu) / (1 - 2 * nu);
double C12 = FACT * nu / (1 - 2 * nu);
double C44 = (C11 - C12) / 2;
H.scale(0.);
for(int i = 0; i < 3; ++i) {
H(i, i) = C11;
H(i + 3, i + 3) = C44;
}
H(1, 0) = H(0, 1) = H(2, 0) = H(0, 2) = H(1, 2) = H(2, 1) = C12;
sym = (&space1_ == &space2_);
}
IsotropicElasticTerm::IsotropicElasticTerm(FunctionSpace<SVector3> &space1_,
double E_, double nu_)
: BilinearTerm<SVector3, SVector3>(space1_, space1_), E(E_), nu(nu_), H(6, 6)
{
double FACT = E / (1 + nu);
double C11 = FACT * (1 - nu) / (1 - 2 * nu);
double C12 = FACT * nu / (1 - 2 * nu);
double C44 = (C11 - C12) / 2;
/* FACT = E / (1 - nu * nu); // plane stress (plates)
C11 = FACT;
C12 = nu * FACT;
C44 = (1. - nu) * .5 * FACT;*/
H.scale(0.);
for(int i = 0; i < 3; ++i) {
H(i, i) = C11;
H(i + 3, i + 3) = C44;
}
H(1, 0) = H(0, 1) = H(2, 0) = H(0, 2) = H(1, 2) = H(2, 1) = C12;
sym = true;
}
void IsotropicElasticTerm::get(MElement *ele, int npts, IntPt *GP,
fullMatrix<double> &m) const
{
if(ele->getParent()) ele = ele->getParent();
if(sym) {
int nbFF = BilinearTerm<SVector3, SVector3>::space1.getNumKeys(ele);
double jac[3][3];
fullMatrix<double> B(6, nbFF);
fullMatrix<double> BTH(nbFF, 6);
fullMatrix<double> BT(nbFF, 6);
m.resize(nbFF, nbFF);
m.setAll(0.);
// std::cout << m.size1() << " " << m.size2() << std::endl;
for(int i = 0; i < npts; i++) {
const double u = GP[i].pt[0];
const double v = GP[i].pt[1];
const double w = GP[i].pt[2];
const double weight = GP[i].weight;
const double detJ = ele->getJacobian(u, v, w, jac);
std::vector<TensorialTraits<SVector3>::GradType> Grads;
BilinearTerm<SVector3, SVector3>::space1.gradf(ele, u, v, w,
Grads); // a optimiser ??
for(int j = 0; j < nbFF; j++) {
BT(j, 0) = B(0, j) = Grads[j](0, 0);
BT(j, 1) = B(1, j) = Grads[j](1, 1);
BT(j, 2) = B(2, j) = Grads[j](2, 2);
BT(j, 3) = B(3, j) = Grads[j](0, 1) + Grads[j](1, 0);
BT(j, 4) = B(4, j) = Grads[j](1, 2) + Grads[j](2, 1);
BT(j, 5) = B(5, j) = Grads[j](0, 2) + Grads[j](2, 0);
}
BTH.setAll(0.);
BTH.gemm(BT, H);
m.gemm(BTH, B, weight * detJ, 1.); // m = m + w*detJ*BT*H*B
}
}
else {
int nbFF1 = BilinearTerm<SVector3, SVector3>::space1.getNumKeys(ele);
int nbFF2 = BilinearTerm<SVector3, SVector3>::space2.getNumKeys(ele);
double jac[3][3];
fullMatrix<double> B(6, nbFF2);
fullMatrix<double> BTH(nbFF2, 6);
fullMatrix<double> BT(nbFF1, 6);
m.resize(nbFF1, nbFF2);
m.setAll(0.);
// Sum on Gauss Points i
for(int i = 0; i < npts; i++) {
const double u = GP[i].pt[0];
const double v = GP[i].pt[1];
const double w = GP[i].pt[2];
const double weight = GP[i].weight;
const double detJ = ele->getJacobian(u, v, w, jac);
std::vector<TensorialTraits<SVector3>::GradType>
Grads; // tableau de matrices...
std::vector<TensorialTraits<SVector3>::GradType>
GradsT; // tableau de matrices...
BilinearTerm<SVector3, SVector3>::space1.gradf(ele, u, v, w, Grads);
BilinearTerm<SVector3, SVector3>::space2.gradf(ele, u, v, w, GradsT);
for(int j = 0; j < nbFF1; j++) {
BT(j, 0) = Grads[j](0, 0);
BT(j, 1) = Grads[j](1, 1);
BT(j, 2) = Grads[j](2, 2);
BT(j, 3) = Grads[j](0, 1) + Grads[j](1, 0);
BT(j, 4) = Grads[j](1, 2) + Grads[j](2, 1);
BT(j, 5) = Grads[j](0, 2) + Grads[j](2, 0);
}
for(int j = 0; j < nbFF2; j++) {
B(0, j) = GradsT[j](0, 0);
B(1, j) = GradsT[j](1, 1);
B(2, j) = GradsT[j](2, 2);
B(3, j) = GradsT[j](0, 1) + GradsT[j](1, 0);
B(4, j) = GradsT[j](1, 2) + GradsT[j](2, 1);
B(5, j) = GradsT[j](0, 2) + GradsT[j](2, 0);
}
BTH.setAll(0.);
BTH.gemm(BT, H);
// gemm add the product to m so there is a sum on gauss' points here
m.gemm(BTH, B, weight * detJ, 1.);
}
}
}
void LagMultTerm::get(MElement *ele, int npts, IntPt *GP,
fullMatrix<double> &m) const
{
int nbFF1 = BilinearTerm<SVector3, SVector3>::space1.getNumKeys(
ele); // nbVertices*nbcomp of parent
int nbFF2 = BilinearTerm<SVector3, SVector3>::space2.getNumKeys(
ele); // nbVertices of boundary
double jac[3][3];
m.resize(nbFF1, nbFF2);
m.setAll(0.);
for(int i = 0; i < npts; i++) {
double u = GP[i].pt[0];
double v = GP[i].pt[1];
double w = GP[i].pt[2];
const double weight = GP[i].weight;
const double detJ = ele->getJacobian(u, v, w, jac);
std::vector<TensorialTraits<SVector3>::ValType> Vals;
std::vector<TensorialTraits<SVector3>::ValType> ValsT;
BilinearTerm<SVector3, SVector3>::space1.f(ele, u, v, w, Vals);
BilinearTerm<SVector3, SVector3>::space2.f(ele, u, v, w, ValsT);
for(int j = 0; j < nbFF1; j++) {
for(int k = 0; k < nbFF2; k++) {
m(j, k) += _eqfac * dot(Vals[j], ValsT[k]) * weight * detJ;
}
}
}
}
|