File: gen.py

package info (click to toggle)
gmsh 4.7.1%2Bds1-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 95,484 kB
  • sloc: cpp: 566,747; ansic: 150,384; yacc: 7,198; python: 6,130; java: 3,486; lisp: 622; lex: 621; makefile: 613; perl: 571; sh: 439; xml: 415; javascript: 113; pascal: 35; modula3: 32
file content (992 lines) | stat: -rw-r--r-- 114,825 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
# Gmsh - Copyright (C) 1997-2020 C. Geuzaine, J.-F. Remacle
#
# See the LICENSE.txt file for license information. Please report all
# issues on https://gitlab.onelab.info/gmsh/gmsh/issues.

# This is the master definition file for the Gmsh API.
#
# Running `python gen.py' will generate
#
#  - gmsh.h: the Gmsh C++ API header
#  - gmshc.h: the Gmsh C API header
#  - gmshc.cpp: the C to C++ wrapper code used by the Gmsh C API
#  - gmsh.h_cwrap: the Gmsh C++ API redefined in terms of the C API
#  - gmsh.py: the Gmsh Python API module
#  - gmsh.jl: the Gmsh Julia API module
#  - api.texi: the texinfo API documentation
#
# By design, the Gmsh API is purely functional, and only uses elementary types
# from the target language.
#
# See `tutorial/{c++,c,python,julia}' and `demos/api' for examples on how to
# use the Gmsh API.

import os
from GenApi import *

dirname = os.path.dirname(os.path.realpath(__file__))

with open(os.path.join(dirname, '..', 'CMakeLists.txt'), 'rt') as f:
    contents = f.read()
    start = contents.find('GMSH_MAJOR_VERSION') + 18
    end = contents.find(')', start)
    version_major = int(contents[start:end])
    start = contents.find('GMSH_MINOR_VERSION') + 18
    end = contents.find(')', start)
    version_minor = int(contents[start:end])
    start = contents.find('GMSH_PATCH_VERSION') + 18
    end = contents.find(')', start)
    version_patch = int(contents[start:end])

api = API(version_major, version_minor, version_patch)

################################################################################

gmsh = api.add_module('gmsh', 'top-level functions')

doc = '''Initialize Gmsh API. This must be called before any call to the other functions in the API. If `argc' and `argv' (or just `argv' in Python or Julia) are provided, they will be handled in the same way as the command line arguments in the Gmsh app. If `readConfigFiles' is set, read system Gmsh configuration files (gmshrc and gmsh-options). Initializing the API sets the options "General.Terminal" to 1 and "General.AbortOnError" to 2.'''
gmsh.add('initialize', doc, None, iargcargv(), ibool('readConfigFiles', 'true', 'True', 'true'))

doc = '''Finalize the Gmsh API. This must be called when you are done using the Gmsh API.'''
gmsh.add('finalize', doc, None)

doc = '''Open a file. Equivalent to the `File->Open' menu in the Gmsh app. Handling of the file depends on its extension and/or its contents: opening a file with model data will create a new model.'''
gmsh.add('open', doc, None, istring('fileName'))

doc = '''Merge a file. Equivalent to the `File->Merge' menu in the Gmsh app. Handling of the file depends on its extension and/or its contents. Merging a file with model data will add the data to the current model.'''
gmsh.add('merge', doc, None, istring('fileName'))

doc = '''Write a file. The export format is determined by the file extension.'''
gmsh.add('write', doc, None, istring('fileName'))

doc = '''Clear all loaded models and post-processing data, and add a new empty model.'''
gmsh.add('clear', doc, None)

################################################################################

option = gmsh.add_module('option', 'option handling functions')

doc = '''Set a numerical option to `value'. `name' is of the form "category.option" or "category[num].option". Available categories and options are listed in the Gmsh reference manual.'''
option.add('setNumber', doc, None, istring('name'), idouble('value'))

doc = '''Get the `value' of a numerical option. `name' is of the form "category.option" or "category[num].option". Available categories and options are listed in the Gmsh reference manual.'''
option.add('getNumber', doc, None, istring('name'), odouble('value'))

doc = '''Set a string option to `value'. `name' is of the form "category.option" or "category[num].option". Available categories and options are listed in the Gmsh reference manual.'''
option.add('setString', doc, None, istring('name'), istring('value'))

doc = '''Get the `value' of a string option. `name' is of the form "category.option" or "category[num].option". Available categories and options are listed in the Gmsh reference manual.'''
option.add('getString', doc, None, istring('name'), ostring('value'))

doc = '''Set a color option to the RGBA value (`r', `g', `b', `a'), where where `r', `g', `b' and `a' should be integers between 0 and 255. `name' is of the form "category.option" or "category[num].option". Available categories and options are listed in the Gmsh reference manual, with the "Color." middle string removed.'''
option.add('setColor', doc, None, istring('name'), iint('r'), iint('g'), iint('b'), iint('a', '255'))

doc = '''Get the `r', `g', `b', `a' value of a color option. `name' is of the form "category.option" or "category[num].option". Available categories and options are listed in the Gmsh reference manual, with the "Color." middle string removed.'''
option.add('getColor', doc, None, istring('name'), oint('r'), oint('g'), oint('b'), oint('a'))

################################################################################

model = gmsh.add_module('model', 'model functions')

doc = '''Add a new model, with name `name', and set it as the current model.'''
model.add('add', doc, None, istring('name'))

doc = '''Remove the current model.'''
model.add('remove', doc, None)

doc = '''List the names of all models.'''
model.add('list', doc, None, ovectorstring('names'))

doc = '''Get the name of the current model.'''
model.add('getCurrent', doc, None, ostring('name'))

doc = '''Set the current model to the model with name `name'. If several models have the same name, select the one that was added first.'''
model.add('setCurrent', doc, None, istring('name'))

doc = '''Get all the entities in the current model. If `dim' is >= 0, return only the entities of the specified dimension (e.g. points if `dim' == 0). The entities are returned as a vector of (dim, tag) integer pairs.'''
model.add('getEntities', doc, None, ovectorpair('dimTags'), iint('dim', '-1'))

doc = '''Set the name of the entity of dimension `dim' and tag `tag'.'''
model.add('setEntityName', doc, None, iint('dim'), iint('tag'), istring('name'))

doc = '''Get the name of the entity of dimension `dim' and tag `tag'.'''
model.add('getEntityName', doc, None, iint('dim'), iint('tag'), ostring('name'))

doc = '''Get all the physical groups in the current model. If `dim' is >= 0, return only the entities of the specified dimension (e.g. physical points if `dim' == 0). The entities are returned as a vector of (dim, tag) integer pairs.'''
model.add('getPhysicalGroups', doc, None, ovectorpair('dimTags'), iint('dim', '-1'))

doc = '''Get the tags of the model entities making up the physical group of dimension `dim' and tag `tag'.'''
model.add('getEntitiesForPhysicalGroup', doc, None, iint('dim'), iint('tag'), ovectorint('tags'))

doc = '''Get the tags of the physical groups (if any) to which the model entity of dimension `dim' and tag `tag' belongs.'''
model.add('getPhysicalGroupsForEntity', doc, None, iint('dim'), iint('tag'), ovectorint('physicalTags'))

doc = '''Add a physical group of dimension `dim', grouping the model entities with tags `tags'. Return the tag of the physical group, equal to `tag' if `tag' is positive, or a new tag if `tag' < 0.'''
model.add('addPhysicalGroup', doc, oint, iint('dim'), ivectorint('tags'), iint('tag', '-1'))

doc = '''Remove the physical groups `dimTags' from the current model. If `dimTags' is empty, remove all groups.'''
model.add('removePhysicalGroups', doc, None, ivectorpair('dimTags', 'gmsh::vectorpair()', "[]", "[]"))

doc = '''Set the name of the physical group of dimension `dim' and tag `tag'.'''
model.add('setPhysicalName', doc, None, iint('dim'), iint('tag'), istring('name'))

doc = '''Remove the physical name `name' from the current model.'''
model.add('removePhysicalName', doc, None, istring('name'))

doc = '''Get the name of the physical group of dimension `dim' and tag `tag'.'''
model.add('getPhysicalName', doc, None, iint('dim'), iint('tag'), ostring('name'))

doc = '''Get the boundary of the model entities `dimTags'. Return in `outDimTags' the boundary of the individual entities (if `combined' is false) or the boundary of the combined geometrical shape formed by all input entities (if `combined' is true). Return tags multiplied by the sign of the boundary entity if `oriented' is true. Apply the boundary operator recursively down to dimension 0 (i.e. to points) if `recursive' is true.'''
model.add('getBoundary', doc, None, ivectorpair('dimTags'), ovectorpair('outDimTags'), ibool('combined', 'true', 'True'), ibool('oriented', 'true', 'True'), ibool('recursive', 'false', 'False'))

doc = '''Get the model entities in the bounding box defined by the two points (`xmin', `ymin', `zmin') and (`xmax', `ymax', `zmax'). If `dim' is >= 0, return only the entities of the specified dimension (e.g. points if `dim' == 0).'''
model.add('getEntitiesInBoundingBox', doc, None, idouble('xmin'), idouble('ymin'), idouble('zmin'), idouble('xmax'), idouble('ymax'), idouble('zmax'), ovectorpair('tags'), iint('dim', '-1'))

doc = '''Get the bounding box (`xmin', `ymin', `zmin'), (`xmax', `ymax', `zmax') of the model entity of dimension `dim' and tag `tag'. If `dim' and `tag' are negative, get the bounding box of the whole model.'''
model.add('getBoundingBox', doc, None, iint('dim'), iint('tag'), odouble('xmin'), odouble('ymin'), odouble('zmin'), odouble('xmax'), odouble('ymax'), odouble('zmax'))

doc = '''Get the geometrical dimension of the current model.'''
model.add('getDimension', doc, oint)

doc = '''Add a discrete model entity (defined by a mesh) of dimension `dim' in the current model. Return the tag of the new discrete entity, equal to `tag' if `tag' is positive, or a new tag if `tag' < 0. `boundary' specifies the tags of the entities on the boundary of the discrete entity, if any. Specifying `boundary' allows Gmsh to construct the topology of the overall model.'''
model.add('addDiscreteEntity', doc, oint, iint('dim'), iint('tag', '-1'), ivectorint('boundary', 'std::vector<int>()', "[]", "[]"))

doc = '''Remove the entities `dimTags' of the current model. If `recursive' is true, remove all the entities on their boundaries, down to dimension 0.'''
model.add('removeEntities', doc, None, ivectorpair('dimTags'), ibool('recursive', 'false', 'False'))

doc = '''Remove the entity name `name' from the current model.'''
model.add('removeEntityName', doc, None, istring('name'))

doc = '''Get the type of the entity of dimension `dim' and tag `tag'.'''
model.add('getType', doc, None, iint('dim'), iint('tag'), ostring('entityType'))

doc = '''In a partitioned model, get the parent of the entity of dimension `dim' and tag `tag', i.e. from which the entity is a part of, if any. `parentDim' and `parentTag' are set to -1 if the entity has no parent.'''
model.add('getParent', doc, None, iint('dim'), iint('tag'), oint('parentDim'), oint('parentTag'))

doc = '''In a partitioned model, return the tags of the partition(s) to which the entity belongs.'''
model.add('getPartitions', doc, None, iint('dim'), iint('tag'), ovectorint('partitions'))

doc = '''Evaluate the parametrization of the entity of dimension `dim' and tag `tag' at the parametric coordinates `parametricCoord'. Only valid for `dim' equal to 0 (with empty `parametricCoord'), 1 (with `parametricCoord' containing parametric coordinates on the curve) or 2 (with `parametricCoord' containing pairs of u, v parametric coordinates on the surface, concatenated: [p1u, p1v, p2u, ...]). Return triplets of x, y, z coordinates in `coord', concatenated: [p1x, p1y, p1z, p2x, ...].'''
model.add('getValue', doc, None, iint('dim'), iint('tag'), ivectordouble('parametricCoord'), ovectordouble('coord'))

doc = '''Evaluate the derivative of the parametrization of the entity of dimension `dim' and tag `tag' at the parametric coordinates `parametricCoord'. Only valid for `dim' equal to 1 (with `parametricCoord' containing parametric coordinates on the curve) or 2 (with `parametricCoord' containing pairs of u, v parametric coordinates on the surface, concatenated: [p1u, p1v, p2u, ...]). For `dim' equal to 1 return the x, y, z components of the derivative with respect to u [d1ux, d1uy, d1uz, d2ux, ...]; for `dim' equal to 2 return the x, y, z components of the derivate with respect to u and v: [d1ux, d1uy, d1uz, d1vx, d1vy, d1vz, d2ux, ...].'''
model.add('getDerivative', doc, None, iint('dim'), iint('tag'), ivectordouble('parametricCoord'), ovectordouble('derivatives'))

doc = '''Evaluate the (maximum) curvature of the entity of dimension `dim' and tag `tag' at the parametric coordinates `parametricCoord'. Only valid for `dim' equal to 1 (with `parametricCoord' containing parametric coordinates on the curve) or 2 (with `parametricCoord' containing pairs of u, v parametric coordinates on the surface, concatenated: [p1u, p1v, p2u, ...]).'''
model.add('getCurvature', doc, None, iint('dim'), iint('tag'), ivectordouble('parametricCoord'), ovectordouble('curvatures'))

doc = '''Evaluate the principal curvatures of the surface with tag `tag' at the parametric coordinates `parametricCoord', as well as their respective directions. `parametricCoord' are given by pair of u and v coordinates, concatenated: [p1u, p1v, p2u, ...].'''
model.add('getPrincipalCurvatures', doc, None, iint('tag'), ivectordouble('parametricCoord'), ovectordouble('curvatureMax'), ovectordouble('curvatureMin'), ovectordouble('directionMax'), ovectordouble('directionMin'))

doc = '''Get the normal to the surface with tag `tag' at the parametric coordinates `parametricCoord'. `parametricCoord' are given by pairs of u and v coordinates, concatenated: [p1u, p1v, p2u, ...]. `normals' are returned as triplets of x, y, z components, concatenated: [n1x, n1y, n1z, n2x, ...].'''
model.add('getNormal', doc, None, iint('tag'), ivectordouble('parametricCoord'), ovectordouble('normals'))

doc = '''Get the parametric coordinates `parametricCoord' for the points `coord' on the entity of dimension `dim' and tag `tag'. `coord' are given as triplets of x, y, z coordinates, concatenated: [p1x, p1y, p1z, p2x, ...]. `parametricCoord' returns the parametric coordinates t on the curve (if `dim' = 1) or pairs of u and v coordinates concatenated on the surface (if `dim' = 2), i.e. [p1t, p2t, ...] or [p1u, p1v, p2u, ...].'''
model.add('getParametrization', doc, None, iint('dim'), iint('tag'), ivectordouble('coord'), ovectordouble('parametricCoord'))

doc = '''Get the `min' and `max' bounds of the parametric coordinates for the entity of dimension `dim' and tag `tag'.'''
model.add('getParametrizationBounds', doc, None, iint('dim'), iint('tag'), ovectordouble('min'), ovectordouble('max'))

doc = '''Check if the parametric coordinates provided in `parametricCoord' correspond to points inside the entitiy of dimension `dim' and tag `tag', and return the number of points inside. This feature is only available for a subset of curves and surfaces, depending on the underyling geometrical representation.'''
model.add('isInside', doc, oint, iint('dim'), iint('tag'), ivectordouble('parametricCoord'))

doc = '''Get the points `closestCoord' on the entity of dimension `dim' and tag `tag' to the points `coord', by orthogonal projection. `coord' and `closestCoord' are given as triplets of x, y, z coordinates, concatenated: [p1x, p1y, p1z, p2x, ...]. `parametricCoord' returns the parametric coordinates t on the curve (if `dim' = 1) or pairs of u and v coordinates concatenated on the surface (if `dim' = 2), i.e. [p1t, p2t, ...] or [p1u, p1v, p2u, ...].'''
model.add('getClosestPoint', doc, None, iint('dim'), iint('tag'), ivectordouble('coord'), ovectordouble('closestCoord'), ovectordouble('parametricCoord'))

doc = '''Reparametrize the boundary entity (point or curve, i.e. with `dim' == 0 or `dim' == 1) of tag `tag' on the surface `surfaceTag'. If `dim' == 1, reparametrize all the points corresponding to the parametric coordinates `parametricCoord'. Multiple matches in case of periodic surfaces can be selected with `which'. This feature is only available for a subset of entities, depending on the underyling geometrical representation.'''
model.add('reparametrizeOnSurface', doc, None, iint('dim'), iint('tag'), ivectordouble('parametricCoord'), iint('surfaceTag'), ovectordouble('surfaceParametricCoord'), iint('which', '0'))

doc = '''Set the visibility of the model entities `dimTags' to `value'. Apply the visibility setting recursively if `recursive' is true.'''
model.add('setVisibility', doc, None, ivectorpair('dimTags'), iint('value'), ibool('recursive', 'false', 'False'))

doc = '''Get the visibility of the model entity of dimension `dim' and tag `tag'.'''
model.add('getVisibility', doc, None, iint('dim'), iint('tag'), oint('value'))

doc = '''Set the global visibility of the model per window to `value', where `windowIndex' identifies the window in the window list.'''
model.add('setVisibilityPerWindow', doc, None, iint('value'), iint('windowIndex', '0'))

doc = '''Set the color of the model entities `dimTags' to the RGBA value (`r', `g', `b', `a'), where `r', `g', `b' and `a' should be integers between 0 and 255. Apply the color setting recursively if `recursive' is true.'''
model.add('setColor', doc, None, ivectorpair('dimTags'), iint('r'), iint('g'), iint('b'), iint('a', '255'), ibool('recursive', 'false', 'False'))

doc = '''Get the color of the model entity of dimension `dim' and tag `tag'.'''
model.add('getColor', doc, None, iint('dim'), iint('tag'), oint('r'), oint('g'), oint('b'), oint('a'))

doc = '''Set the `x', `y', `z' coordinates of a geometrical point.'''
model.add('setCoordinates', doc, None, iint('tag'), idouble('x'), idouble('y'), idouble('z'))

################################################################################

mesh = model.add_module('mesh', 'mesh functions')

doc = '''Generate a mesh of the current model, up to dimension `dim' (0, 1, 2 or 3).'''
mesh.add('generate', doc, None, iint('dim', '3'))

doc = '''Partition the mesh of the current model into `numPart' partitions.'''
mesh.add('partition', doc, None, iint('numPart'))

doc = '''Unpartition the mesh of the current model.'''
mesh.add('unpartition', doc, None)

doc = '''Optimize the mesh of the current model using `method' (empty for default tetrahedral mesh optimizer, "Netgen" for Netgen optimizer, "HighOrder" for direct high-order mesh optimizer, "HighOrderElastic" for high-order elastic smoother, "HighOrderFastCurving" for fast curving algorithm, "Laplace2D" for Laplace smoothing, "Relocate2D" and "Relocate3D" for node relocation). If `force' is set apply the optimization also to discrete entities. If `dimTags' is given, only apply the optimizer to the given entities.'''
mesh.add('optimize', doc, None, istring('method', ''), ibool('force', 'false', 'False'), iint('niter', '1'), ivectorpair('dimTags', 'gmsh::vectorpair()', "[]", "[]"))

doc = '''Recombine the mesh of the current model.'''
mesh.add('recombine', doc, None)

doc = '''Refine the mesh of the current model by uniformly splitting the elements.'''
mesh.add('refine', doc, None)

doc = '''Set the order of the elements in the mesh of the current model to `order'.'''
mesh.add('setOrder', doc, None, iint('order'))

doc = '''Get the last entities (if any) where a meshing error occurred. Currently only populated by the new 3D meshing algorithms.'''
mesh.add('getLastEntityError', doc, None, ovectorpair('dimTags'))

doc = '''Get the last nodes (if any) where a meshing error occurred. Currently only populated by the new 3D meshing algorithms.'''
mesh.add('getLastNodeError', doc, None, ovectorsize('nodeTags'))

doc = '''Clear the mesh, i.e. delete all the nodes and elements, for the entities `dimTags'. if `dimTags' is empty, clear the whole mesh. Note that the mesh of an entity can only be cleared if this entity is not on the boundary of another entity with a non-empty mesh.'''
mesh.add('clear', doc, None, ivectorpair('dimTags', 'gmsh::vectorpair()', "[]", "[]"))

doc = '''Get the nodes classified on the entity of dimension `dim' and tag `tag'. If `tag' < 0, get the nodes for all entities of dimension `dim'. If `dim' and `tag' are negative, get all the nodes in the mesh. `nodeTags' contains the node tags (their unique, strictly positive identification numbers). `coord' is a vector of length 3 times the length of `nodeTags' that contains the x, y, z coordinates of the nodes, concatenated: [n1x, n1y, n1z, n2x, ...]. If `dim' >= 0 and `returnParamtricCoord' is set, `parametricCoord' contains the parametric coordinates ([u1, u2, ...] or [u1, v1, u2, ...]) of the nodes, if available. The length of `parametricCoord' can be 0 or `dim' times the length of `nodeTags'. If `includeBoundary' is set, also return the nodes classified on the boundary of the entity (which will be reparametrized on the entity if `dim' >= 0 in order to compute their parametric coordinates).'''
mesh.add('getNodes', doc, None, ovectorsize('nodeTags'), ovectordouble('coord'), ovectordouble('parametricCoord'), iint('dim', '-1'), iint('tag', '-1'), ibool('includeBoundary', 'false', 'False'), ibool('returnParametricCoord', 'true', 'True'))

doc = '''Get the nodes classified on the entity of tag `tag', for all the elements of type `elementType'. The other arguments are treated as in `getNodes'.'''
mesh.add('getNodesByElementType', doc, None, iint('elementType'),  ovectorsize('nodeTags'), ovectordouble('coord'), ovectordouble('parametricCoord'), iint('tag', '-1'), ibool('returnParametricCoord', 'true', 'True'))

doc = '''Get the coordinates and the parametric coordinates (if any) of the node with tag `tag'. This function relies on an internal cache (a vector in case of dense node numbering, a map otherwise); for large meshes accessing nodes in bulk is often preferable.'''
mesh.add('getNode', doc, None, isize('nodeTag'), ovectordouble('coord'), ovectordouble('parametricCoord'))

doc = '''Set the coordinates and the parametric coordinates (if any) of the node with tag `tag'. This function relies on an internal cache (a vector in case of dense node numbering, a map otherwise); for large meshes accessing nodes in bulk is often preferable.'''
mesh.add('setNode', doc, None, isize('nodeTag'), ivectordouble('coord'), ivectordouble('parametricCoord'))

doc = '''Rebuild the node cache.'''
mesh.add('rebuildNodeCache', doc, None, ibool('onlyIfNecessary', 'true', 'True'))

doc = '''Rebuild the element cache.'''
mesh.add('rebuildElementCache', doc, None, ibool('onlyIfNecessary', 'true', 'True'))

doc = '''Get the nodes from all the elements belonging to the physical group of dimension `dim' and tag `tag'. `nodeTags' contains the node tags; `coord' is a vector of length 3 times the length of `nodeTags' that contains the x, y, z coordinates of the nodes, concatenated: [n1x, n1y, n1z, n2x, ...].'''
mesh.add('getNodesForPhysicalGroup', doc, None, iint('dim'), iint('tag'), ovectorsize('nodeTags'), ovectordouble('coord'))

doc = '''Add nodes classified on the model entity of dimension `dim' and tag `tag'. `nodeTags' contains the node tags (their unique, strictly positive identification numbers). `coord' is a vector of length 3 times the length of `nodeTags' that contains the x, y, z coordinates of the nodes, concatenated: [n1x, n1y, n1z, n2x, ...]. The optional `parametricCoord' vector contains the parametric coordinates of the nodes, if any. The length of `parametricCoord' can be 0 or `dim' times the length of `nodeTags'. If the `nodeTags' vector is empty, new tags are automatically assigned to the nodes.'''
mesh.add('addNodes', doc, None, iint('dim'), iint('tag'), ivectorsize('nodeTags'), ivectordouble('coord'), ivectordouble('parametricCoord', 'std::vector<double>()', "[]", "[]"))

doc = '''Reclassify all nodes on their associated model entity, based on the elements. Can be used when importing nodes in bulk (e.g. by associating them all to a single volume), to reclassify them correctly on model surfaces, curves, etc. after the elements have been set.'''
mesh.add('reclassifyNodes', doc, None)

doc = '''Relocate the nodes classified on the entity of dimension `dim' and tag `tag' using their parametric coordinates. If `tag' < 0, relocate the nodes for all entities of dimension `dim'. If `dim' and `tag' are negative, relocate all the nodes in the mesh.'''
mesh.add('relocateNodes', doc, None, iint('dim', '-1'), iint('tag', '-1'))

doc = '''Get the elements classified on the entity of dimension `dim' and tag `tag'. If `tag' < 0, get the elements for all entities of dimension `dim'. If `dim' and `tag' are negative, get all the elements in the mesh. `elementTypes' contains the MSH types of the elements (e.g. `2' for 3-node triangles: see `getElementProperties' to obtain the properties for a given element type). `elementTags' is a vector of the same length as `elementTypes'; each entry is a vector containing the tags (unique, strictly positive identifiers) of the elements of the corresponding type. `nodeTags' is also a vector of the same length as `elementTypes'; each entry is a vector of length equal to the number of elements of the given type times the number N of nodes for this type of element, that contains the node tags of all the elements of the given type, concatenated: [e1n1, e1n2, ..., e1nN, e2n1, ...].'''
mesh.add('getElements', doc, None, ovectorint('elementTypes'), ovectorvectorsize('elementTags'), ovectorvectorsize('nodeTags'), iint('dim', '-1'), iint('tag', '-1'))

doc = '''Get the type and node tags of the element with tag `tag'. This function relies on an internal cache (a vector in case of dense element numbering, a map otherwise); for large meshes accessing elements in bulk is often preferable.'''
mesh.add('getElement', doc, None, isize('elementTag'), oint('elementType'), ovectorsize('nodeTags'))

doc = '''Search the mesh for an element located at coordinates (`x', `y', `z'). This function performs a search in a spatial octree. If an element is found, return its tag, type and node tags, as well as the local coordinates (`u', `v', `w') within the reference element corresponding to search location. If `dim' is >= 0, only search for elements of the given dimension. If `strict' is not set, use a tolerance to find elements near the search location.'''
mesh.add('getElementByCoordinates', doc, None, idouble('x'), idouble('y'), idouble('z'), osize('elementTag'), oint('elementType'), ovectorsize('nodeTags'), odouble('u'), odouble('v'), odouble('w'), iint('dim', '-1'), ibool('strict', 'false', 'False'))

doc = '''Search the mesh for element(s) located at coordinates (`x', `y', `z'). This function performs a search in a spatial octree. Return the tags of all found elements in `elementTags'. Additional information about the elements can be accessed through `getElement' and `getLocalCoordinatesInElement'. If `dim' is >= 0, only search for elements of the given dimension. If `strict' is not set, use a tolerance to find elements near the search location.'''
mesh.add('getElementsByCoordinates', doc, None, idouble('x'), idouble('y'), idouble('z'), ovectorsize('elementTags'), iint('dim', '-1'), ibool('strict', 'false', 'False'))

doc = '''Return the local coordinates (`u', `v', `w') within the element `elementTag' corresponding to the model coordinates (`x', `y', `z'). This function relies on an internal cache (a vector in case of dense element numbering, a map otherwise); for large meshes accessing elements in bulk is often preferable.'''
mesh.add('getLocalCoordinatesInElement', doc, None, isize('elementTag'), idouble('x'), idouble('y'), idouble('z'), odouble('u'), odouble('v'), odouble('w'))

doc = '''Get the types of elements in the entity of dimension `dim' and tag `tag'. If `tag' < 0, get the types for all entities of dimension `dim'. If `dim' and `tag' are negative, get all the types in the mesh.'''
mesh.add('getElementTypes', doc, None, ovectorint('elementTypes'), iint('dim', '-1'), iint('tag', '-1'))

doc = '''Return an element type given its family name `familyName' ("Point", "Line", "Triangle", "Quadrangle", "Tetrahedron", "Pyramid", "Prism", "Hexahedron") and polynomial order `order'. If `serendip' is true, return the corresponding serendip element type (element without interior nodes).'''
mesh.add('getElementType', doc, oint, istring('familyName'), iint('order'), ibool('serendip', 'false', 'False'))

doc = '''Get the properties of an element of type `elementType': its name (`elementName'), dimension (`dim'), order (`order'), number of nodes (`numNodes'), local coordinates of the nodes in the reference element (`localNodeCoord' vector, of length `dim' times `numNodes') and number of primary (first order) nodes (`numPrimaryNodes').'''
mesh.add('getElementProperties', doc, None, iint('elementType'), ostring('elementName'), oint('dim'), oint('order'), oint('numNodes'), ovectordouble('localNodeCoord'), oint('numPrimaryNodes'))

doc = '''Get the elements of type `elementType' classified on the entity of tag `tag'. If `tag' < 0, get the elements for all entities. `elementTags' is a vector containing the tags (unique, strictly positive identifiers) of the elements of the corresponding type. `nodeTags' is a vector of length equal to the number of elements of the given type times the number N of nodes for this type of element, that contains the node tags of all the elements of the given type, concatenated: [e1n1, e1n2, ..., e1nN, e2n1, ...]. If `numTasks' > 1, only compute and return the part of the data indexed by `task'.'''
mesh.add('getElementsByType', doc, None, iint('elementType'), ovectorsize('elementTags'), ovectorsize('nodeTags'), iint('tag', '-1'), isize('task', '0'), isize('numTasks', '1'))

doc = '''Preallocate data before calling `getElementsByType' with `numTasks' > 1. For C and C++ only.'''
mesh.add_special('preallocateElementsByType', doc, ['onlycc++'], None, iint('elementType'), ibool('elementTag'), ibool('nodeTag'), ovectorsize('elementTags'), ovectorsize('nodeTags'), iint('tag', '-1'))

doc = '''Add elements classified on the entity of dimension `dim' and tag `tag'. `types' contains the MSH types of the elements (e.g. `2' for 3-node triangles: see the Gmsh reference manual). `elementTags' is a vector of the same length as `types'; each entry is a vector containing the tags (unique, strictly positive identifiers) of the elements of the corresponding type. `nodeTags' is also a vector of the same length as `types'; each entry is a vector of length equal to the number of elements of the given type times the number N of nodes per element, that contains the node tags of all the elements of the given type, concatenated: [e1n1, e1n2, ..., e1nN, e2n1, ...].'''
mesh.add('addElements', doc, None, iint('dim'), iint('tag'), ivectorint('elementTypes'), ivectorvectorsize('elementTags'), ivectorvectorsize('nodeTags'))

doc = '''Add elements of type `elementType' classified on the entity of tag `tag'. `elementTags' contains the tags (unique, strictly positive identifiers) of the elements of the corresponding type. `nodeTags' is a vector of length equal to the number of elements times the number N of nodes per element, that contains the node tags of all the elements, concatenated: [e1n1, e1n2, ..., e1nN, e2n1, ...]. If the `elementTag' vector is empty, new tags are automatically assigned to the elements.'''
mesh.add('addElementsByType', doc, None, iint('tag'), iint('elementType'), ivectorsize('elementTags'), ivectorsize('nodeTags'))

doc = '''Get the numerical quadrature information for the given element type `elementType' and integration rule `integrationType' (e.g. "Gauss4" for a Gauss quadrature suited for integrating 4th order polynomials). `localCoord' contains the u, v, w coordinates of the G integration points in the reference element: [g1u, g1v, g1w, ..., gGu, gGv, gGw]. `weights' contains the associated weights: [g1q, ..., gGq].'''
mesh.add('getIntegrationPoints', doc, None, iint('elementType'), istring('integrationType'), ovectordouble('localCoord'), ovectordouble('weights'))

doc = '''Get the Jacobians of all the elements of type `elementType' classified on the entity of tag `tag', at the G evaluation points `localCoord' given as concatenated triplets of coordinates in the reference element [g1u, g1v, g1w, ..., gGu, gGv, gGw]. Data is returned by element, with elements in the same order as in `getElements' and `getElementsByType'. `jacobians' contains for each element the 9 entries of the 3x3 Jacobian matrix at each evaluation point. The matrix is returned by column: [e1g1Jxu, e1g1Jyu, e1g1Jzu, e1g1Jxv, ..., e1g1Jzw, e1g2Jxu, ..., e1gGJzw, e2g1Jxu, ...], with Jxu=dx/du, Jyu=dy/du, etc. `determinants' contains for each element the determinant of the Jacobian matrix at each evaluation point: [e1g1, e1g2, ... e1gG, e2g1, ...]. `coord' contains for each element the x, y, z coordinates of the evaluation points. If `tag' < 0, get the Jacobian data for all entities. If `numTasks' > 1, only compute and return the part of the data indexed by `task'.'''
mesh.add('getJacobians', doc, None, iint('elementType'), ivectordouble('localCoord'), ovectordouble('jacobians'), ovectordouble('determinants'), ovectordouble('coord'), iint('tag', '-1'), isize('task', '0'), isize('numTasks', '1'))

doc = '''Preallocate data before calling `getJacobians' with `numTasks' > 1. For C and C++ only.'''
mesh.add_special('preallocateJacobians', doc, ['onlycc++'], None, iint('elementType'), iint('numEvaluationPoints'), ibool('allocateJacobians'), ibool('allocateDeterminants'), ibool('allocateCoord'), ovectordouble('jacobians'), ovectordouble('determinants'), ovectordouble('coord'), iint('tag', '-1'))

doc = '''Get the Jacobian for a single element `elementTag', at the G evaluation points `localCoord' given as concatenated triplets of coordinates in the reference element [g1u, g1v, g1w, ..., gGu, gGv, gGw]. `jacobians' contains the 9 entries of the 3x3 Jacobian matrix at each evaluation point. The matrix is returned by column: [e1g1Jxu, e1g1Jyu, e1g1Jzu, e1g1Jxv, ..., e1g1Jzw, e1g2Jxu, ..., e1gGJzw, e2g1Jxu, ...], with Jxu=dx/du, Jyu=dy/du, etc. `determinants' contains the determinant of the Jacobian matrix at each evaluation point. `coord' contains the x, y, z coordinates of the evaluation points. This function relies on an internal cache (a vector in case of dense element numbering, a map otherwise); for large meshes accessing Jacobians in bulk is often preferable.'''
mesh.add('getJacobian', doc, None, isize('elementTag'), ivectordouble('localCoord'), ovectordouble('jacobians'), ovectordouble('determinants'), ovectordouble('coord'))

doc = '''Get the basis functions of the element of type `elementType' at the evaluation points `localCoord' (given as concatenated triplets of coordinates in the reference element [g1u, g1v, g1w, ..., gGu, gGv, gGw]), for the function space `functionSpaceType' (e.g. "Lagrange" or "GradLagrange" for Lagrange basis functions or their gradient, in the u, v, w coordinates of the reference element; or "H1Legendre3" or "GradH1Legendre3" for 3rd order hierarchical H1 Legendre functions). `numComponents' returns the number C of components of a basis function. `basisFunctions' returns the value of the N basis functions at the evaluation points, i.e. [g1f1, g1f2, ..., g1fN, g2f1, ...] when C == 1 or [g1f1u, g1f1v, g1f1w, g1f2u, ..., g1fNw, g2f1u, ...] when C == 3. For basis functions that depend on the orientation of the elements, all values for the first orientation are returned first, followed by values for the second, etc. `numOrientations' returns the overall number of orientations. If `wantedOrientations' is not empty, only return the values for the desired orientation indices.'''
mesh.add('getBasisFunctions', doc, None, iint('elementType'), ivectordouble('localCoord'), istring('functionSpaceType'), oint('numComponents'), ovectordouble('basisFunctions'), oint('numOrientations'), ivectorint('wantedOrientations', 'std::vector<int>()', "[]", "[]"))

doc = '''Get the orientation index of the elements of type `elementType' in the entity of tag `tag'. The arguments have the same meaning as in `getBasisFunctions'. `basisFunctionsOrientation' is a vector giving for each element the orientation index in the values returned by `getBasisFunctions'. For Lagrange basis functions the call is superfluous as it will return a vector of zeros.'''
mesh.add('getBasisFunctionsOrientationForElements', doc, None, iint('elementType'), istring('functionSpaceType'), ovectorint('basisFunctionsOrientation'), iint('tag','-1'), isize('task', '0'), isize('numTasks', '1'))

doc = '''Get the orientation of a single element `elementTag'.'''
mesh.add('getBasisFunctionsOrientationForElement', doc, None, isize('elementTag'), istring('functionSpaceType'), oint('basisFunctionsOrientation'))

doc = '''Get the number of possible orientations for elements of type `elementType' and function space named `functionSpaceType'.'''
mesh.add('getNumberOfOrientations', doc, oint, iint('elementType'), istring('functionSpaceType'))

doc = '''Preallocate data before calling `getBasisFunctionsOrientationForElements' with `numTasks' > 1. For C and C++ only.'''
mesh.add_special('preallocateBasisFunctionsOrientationForElements', doc, ['onlycc++'], None, iint('elementType'), ovectorint('basisFunctionsOrientation'), iint('tag', '-1'))

doc = '''Get the global edge identifier `edgeNum' for an input list of node pairs, concatenated in the vector `edgeNodes'.  Warning: this is an experimental feature and will probably change in a future release.'''
mesh.add('getEdgeNumber',doc,None,ivectorint('edgeNodes'),ovectorint('edgeNum'))

doc = '''Get the local multipliers (to guarantee H(curl)-conformity) of the order 0 H(curl) basis functions. Warning: this is an experimental feature and will probably change in a future release.'''
mesh.add('getLocalMultipliersForHcurl0',doc,None,iint('elementType'),ovectorint('localMultipliers'),iint('tag','-1'))

doc = '''Generate the `keys' for the elements of type `elementType' in the entity of tag `tag', for the `functionSpaceType' function space. Each key uniquely identifies a basis function in the function space. If `returnCoord' is set, the `coord' vector contains the x, y, z coordinates locating basis functions for sorting purposes. Warning: this is an experimental feature and will probably change in a future release.'''
mesh.add('getKeysForElements', doc, None, iint('elementType'), istring('functionSpaceType'), ovectorpair('keys'), ovectordouble('coord'), iint('tag', '-1'), ibool('returnCoord', 'true', 'True'))

doc = '''Get the keys for a single element `elementTag'.'''
mesh.add('getKeysForElement', doc, None, isize('elementTag'), istring('functionSpaceType'), ovectorpair('keys'), ovectordouble('coord'), ibool('returnCoord', 'true', 'True'))

doc = '''Get the number of keys by elements of type `elementType' for function space named `functionSpaceType'.'''
mesh.add('getNumberOfKeysForElements', doc, oint, iint('elementType'), istring('functionSpaceType'))

doc = '''Get information about the `keys'. `infoKeys' returns information about the functions associated with the `keys'. `infoKeys[0].first' describes the type of function (0 for  vertex function, 1 for edge function, 2 for face function and 3 for bubble function). `infoKeys[0].second' gives the order of the function associated with the key. Warning: this is an experimental feature and will probably change in a future release.'''
mesh.add('getInformationForElements', doc, None, ivectorpair('keys'), iint('elementType'), istring('functionSpaceType'), ovectorpair('infoKeys'))

doc = '''Get the barycenters of all elements of type `elementType' classified on the entity of tag `tag'. If `primary' is set, only the primary nodes of the elements are taken into account for the barycenter calculation. If `fast' is set, the function returns the sum of the primary node coordinates (without normalizing by the number of nodes). If `tag' < 0, get the barycenters for all entities. If `numTasks' > 1, only compute and return the part of the data indexed by `task'.'''
mesh.add('getBarycenters', doc, None, iint('elementType'), iint('tag'), ibool('fast'), ibool('primary'), ovectordouble('barycenters'), isize('task', '0'), isize('numTasks', '1'))

doc = '''Preallocate data before calling `getBarycenters' with `numTasks' > 1. For C and C++ only.'''
mesh.add_special('preallocateBarycenters', doc, ['onlycc++'], None, iint('elementType'), ovectordouble('barycenters'), iint('tag', '-1'))

doc = '''Get the nodes on the edges of all elements of type `elementType' classified on the entity of tag `tag'. `nodeTags' contains the node tags of the edges for all the elements: [e1a1n1, e1a1n2, e1a2n1, ...]. Data is returned by element, with elements in the same order as in `getElements' and `getElementsByType'. If `primary' is set, only the primary (begin/end) nodes of the edges are returned. If `tag' < 0, get the edge nodes for all entities. If `numTasks' > 1, only compute and return the part of the data indexed by `task'.'''
mesh.add('getElementEdgeNodes', doc, None, iint('elementType'), ovectorsize('nodeTags'), iint('tag', '-1'), ibool('primary', 'false', 'False'), isize('task', '0'), isize('numTasks', '1'))

doc = '''Get the nodes on the faces of type `faceType' (3 for triangular faces, 4 for quadrangular faces) of all elements of type `elementType' classified on the entity of tag `tag'. `nodeTags' contains the node tags of the faces for all elements: [e1f1n1, ..., e1f1nFaceType, e1f2n1, ...]. Data is returned by element, with elements in the same order as in `getElements' and `getElementsByType'. If `primary' is set, only the primary (corner) nodes of the faces are returned. If `tag' < 0, get the face nodes for all entities. If `numTasks' > 1, only compute and return the part of the data indexed by `task'.'''
mesh.add('getElementFaceNodes', doc, None, iint('elementType'), iint('faceType'), ovectorsize('nodeTags'), iint('tag', '-1'), ibool('primary', 'false', 'False'), isize('task', '0'), isize('numTasks', '1'))

doc = '''Get the ghost elements `elementTags' and their associated `partitions' stored in the ghost entity of dimension `dim' and tag `tag'.'''
mesh.add('getGhostElements', doc, None, iint('dim'), iint('tag'), ovectorsize('elementTags'), ovectorint('partitions'))

doc = '''Set a mesh size constraint on the model entities `dimTags'. Currently only entities of dimension 0 (points) are handled.'''
mesh.add('setSize', doc, None, ivectorpair('dimTags'), idouble('size'))

doc = '''Set mesh size constraints at the given parametric points `parametricCoord' on the model entity of dimension `dim' and tag `tag'. Currently only entities of dimension 1 (lines) are handled.'''
mesh.add('setSizeAtParametricPoints', doc, None, iint('dim'), iint('tag'), ivectordouble('parametricCoord'), ivectordouble('sizes'))

doc = '''Set a global mesh size callback. The callback should take 5 arguments (`dim', `tag', `x', `y' and `z') and return the value of the mesh size at coordinates (`x', `y', `z').'''
mesh.add('setSizeCallback', doc, None, isizefun('callback'))

doc = '''Remove the global mesh size callback.'''
mesh.add('removeSizeCallback', doc, None)

doc = '''Set a transfinite meshing constraint on the curve `tag', with `numNodes' nodes distributed according to `meshType' and `coef'. Currently supported types are "Progression" (geometrical progression with power `coef') and "Bump" (refinement toward both extremities of the curve).'''
mesh.add('setTransfiniteCurve', doc, None, iint('tag'), iint('numNodes'), istring('meshType', '"Progression"'), idouble('coef', '1.'))

doc = '''Set a transfinite meshing constraint on the surface `tag'. `arrangement' describes the arrangement of the triangles when the surface is not flagged as recombined: currently supported values are "Left", "Right", "AlternateLeft" and "AlternateRight". `cornerTags' can be used to specify the (3 or 4) corners of the transfinite interpolation explicitly; specifying the corners explicitly is mandatory if the surface has more that 3 or 4 points on its boundary.'''
mesh.add('setTransfiniteSurface', doc, None, iint('tag'), istring('arrangement', '"Left"'), ivectorint('cornerTags', 'std::vector<int>()', "[]", "[]"))

doc = '''Set a transfinite meshing constraint on the surface `tag'. `cornerTags' can be used to specify the (6 or 8) corners of the transfinite interpolation explicitly.'''
mesh.add('setTransfiniteVolume', doc, None, iint('tag'), ivectorint('cornerTags', 'std::vector<int>()', "[]", "[]"))

doc = '''Set transfinite meshing constraints on the model entities in `dimTag'. Transfinite meshing constraints are added to the curves of the quadrangular surfaces and to the faces of 6-sided volumes. Quadragular faces with a corner angle superior to `cornerAngle' (in radians) are ignored. The number of points is automatically determined from the sizing constraints. If `dimTag' is empty, the constraints are applied to all entities in the model. If `recombine' is true, the recombine flag is automatically set on the transfinite surfaces.  '''
mesh.add('setTransfiniteAutomatic', doc, None, ivectorpair('dimTags', 'gmsh::vectorpair()', "[]", "[]"), idouble('cornerAngle', '2.35', '2.35', '2.35'), ibool('recombine', 'true', 'True'))

doc = '''Set a recombination meshing constraint on the model entity of dimension `dim' and tag `tag'. Currently only entities of dimension 2 (to recombine triangles into quadrangles) are supported.'''
mesh.add('setRecombine', doc, None, iint('dim'), iint('tag'))

doc = '''Set a smoothing meshing constraint on the model entity of dimension `dim' and tag `tag'. `val' iterations of a Laplace smoother are applied.'''
mesh.add('setSmoothing', doc, None, iint('dim'), iint('tag'), iint('val'))

doc = '''Set a reverse meshing constraint on the model entity of dimension `dim' and tag `tag'. If `val' is true, the mesh orientation will be reversed with respect to the natural mesh orientation (i.e. the orientation consistent with the orientation of the geometry). If `val' is false, the mesh is left as-is.'''
mesh.add('setReverse', doc, None, iint('dim'), iint('tag'), ibool('val', 'true', 'True'))

doc = '''Set the meshing algorithm on the model entity of dimension `dim' and tag `tag'. Currently only supported for `dim' == 2.'''
mesh.add('setAlgorithm', doc, None, iint('dim'), iint('tag'), iint('val'))

doc = '''Force the mesh size to be extended from the boundary, or not, for the model entity of dimension `dim' and tag `tag'. Currently only supported for `dim' == 2.'''
mesh.add('setSizeFromBoundary', doc, None, iint('dim'), iint('tag'), iint('val'))

doc = '''Set a compound meshing constraint on the model entities of dimension `dim' and tags `tags'. During meshing, compound entities are treated as a single discrete entity, which is automatically reparametrized.'''
mesh.add('setCompound', doc, None, iint('dim'), ivectorint('tags'))

doc = '''Set meshing constraints on the bounding surfaces of the volume of tag `tag' so that all surfaces are oriented with outward pointing normals. Currently only available with the OpenCASCADE kernel, as it relies on the STL triangulation.'''
mesh.add('setOutwardOrientation', doc, None, iint('tag'))

doc = '''Embed the model entities of dimension `dim' and tags `tags' in the (`inDim', `inTag') model entity. The dimension `dim' can 0, 1 or 2 and must be strictly smaller than `inDim', which must be either 2 or 3. The embedded entities should not be part of the boundary of the entity `inTag', whose mesh will conform to the mesh of the embedded entities.'''
mesh.add('embed', doc, None, iint('dim'), ivectorint('tags'), iint('inDim'), iint('inTag'))

doc = '''Remove embedded entities from the model entities `dimTags'. if `dim' is >= 0, only remove embedded entities of the given dimension (e.g. embedded points if `dim' == 0).'''
mesh.add('removeEmbedded', doc, None, ivectorpair('dimTags'), iint('dim', '-1'))

doc = '''Reorder the elements of type `elementType' classified on the entity of tag `tag' according to `ordering'.'''
mesh.add('reorderElements', doc, None, iint('elementType'), iint('tag'), ivectorsize('ordering'))

doc = '''Renumber the node tags in a continuous sequence.'''
mesh.add('renumberNodes', doc, None)

doc = '''Renumber the element tags in a continuous sequence.'''
mesh.add('renumberElements', doc, None)

doc = '''Set the meshes of the entities of dimension `dim' and tag `tags' as periodic copies of the meshes of entities `tagsMaster', using the affine transformation specified in `affineTransformation' (16 entries of a 4x4 matrix, by row). If used after meshing, generate the periodic node correspondence information assuming the meshes of entities `tags' effectively match the meshes of entities `tagsMaster' (useful for structured and extruded meshes). Currently only available for @code{dim} == 1 and @code{dim} == 2.'''
mesh.add('setPeriodic', doc, None, iint('dim'), ivectorint('tags'), ivectorint('tagsMaster'), ivectordouble('affineTransform'))

doc = '''Get the master entity `tagMaster', the node tags `nodeTags' and their corresponding master node tags `nodeTagsMaster', and the affine transform `affineTransform' for the entity of dimension `dim' and tag `tag'. If `includeHighOrderNodes' is set, include high-order nodes in the returned data.'''
mesh.add('getPeriodicNodes', doc, None, iint('dim'), iint('tag'), oint('tagMaster'), ovectorsize('nodeTags'), ovectorsize('nodeTagsMaster'), ovectordouble('affineTransform'), ibool('includeHighOrderNodes', 'false', 'False'))

doc = '''Remove duplicate nodes in the mesh of the current model.'''
mesh.add('removeDuplicateNodes', doc, None)

doc = '''Split (into two triangles) all quadrangles in surface `tag' whose quality is lower than `quality'. If `tag' < 0, split quadrangles in all surfaces.'''
mesh.add('splitQuadrangles', doc, None, idouble('quality', '1.'), iint('tag', '-1'))

doc = '''Classify ("color") the surface mesh based on the angle threshold `angle' (in radians), and create new discrete surfaces, curves and points accordingly. If `boundary' is set, also create discrete curves on the boundary if the surface is open. If `forReparametrization' is set, create edges and surfaces that can be reparametrized using a single map. If `curveAngle' is less than Pi, also force curves to be split according to `curveAngle'.'''
mesh.add('classifySurfaces', doc, None, idouble('angle'), ibool('boundary', 'true', 'True'), ibool('forReparametrization', 'false', 'False'), idouble('curveAngle', 'M_PI', 'pi', 'pi'))

doc = '''Create a geometry for the discrete entities `dimTags' (represented solely by a mesh, without an underlying CAD description), i.e. create a parametrization for discrete curves and surfaces, assuming that each can be parametrized with a single map. If `dimTags' is empty, create a geometry for all the discrete entities.'''
mesh.add('createGeometry', doc, None, ivectorpair('dimTags', 'gmsh::vectorpair()', "[]", "[]"))

doc = '''Create a boundary representation from the mesh if the model does not have one (e.g. when imported from mesh file formats with no BRep representation of the underlying model). If `makeSimplyConnected' is set, enforce simply connected discrete surfaces and volumes. If `exportDiscrete' is set, clear any built-in CAD kernel entities and export the discrete entities in the built-in CAD kernel.'''
mesh.add('createTopology', doc, None, ibool('makeSimplyConnected', 'true', 'True'), ibool('exportDiscrete', 'true', 'True'))

doc = '''Compute a basis representation for homology spaces after a mesh has been generated. The computation domain is given in a list of physical group tags `domainTags'; if empty, the whole mesh is the domain. The computation subdomain for relative homology computation is given in a list of physical group tags `subdomainTags'; if empty, absolute homology is computed. The dimensions homology bases to be computed are given in the list `dim'; if empty, all bases are computed. Resulting basis representation chains are stored as physical groups in the mesh.'''
mesh.add('computeHomology', doc, None, ivectorint('domainTags', 'std::vector<int>()', "[]", "[]"), ivectorint('subdomainTags', 'std::vector<int>()', "[]", "[]"), ivectorint('dims', 'std::vector<int>()', "[]", "[]"))

doc = '''Compute a basis representation for cohomology spaces after a mesh has been generated. The computation domain is given in a list of physical group tags `domainTags'; if empty, the whole mesh is the domain. The computation subdomain for relative cohomology computation is given in a list of physical group tags `subdomainTags'; if empty, absolute cohomology is computed. The dimensions homology bases to be computed are given in the list `dim'; if empty, all bases are computed. Resulting basis representation cochains are stored as physical groups in the mesh.'''
mesh.add('computeCohomology', doc, None, ivectorint('domainTags', 'std::vector<int>()', "[]", "[]"), ivectorint('subdomainTags', 'std::vector<int>()', "[]", "[]"), ivectorint('dims', 'std::vector<int>()', "[]", "[]"))

doc = '''Compute a cross field for the current mesh. The function creates 3 views: the H function, the Theta function and cross directions. Return the tags of the views'''
mesh.add('computeCrossField', doc, None, ovectorint('viewTags'))

################################################################################

field = mesh.add_module('field', 'mesh size field functions')

doc = '''Add a new mesh size field of type `fieldType'. If `tag' is positive, assign the tag explicitly; otherwise a new tag is assigned automatically. Return the field tag.'''
field.add('add', doc, oint, istring('fieldType'), iint('tag', '-1'))

doc = '''Remove the field with tag `tag'.'''
field.add('remove', doc, None, iint('tag'))

doc = '''Set the numerical option `option' to value `value' for field `tag'.'''
field.add('setNumber', doc, None, iint('tag'), istring('option'), idouble('value'))

doc = '''Set the string option `option' to value `value' for field `tag'.'''
field.add('setString', doc, None, iint('tag'), istring('option'), istring('value'))

doc = '''Set the numerical list option `option' to value `value' for field `tag'.'''
field.add('setNumbers', doc, None, iint('tag'), istring('option'), ivectordouble('value'))

doc = '''Set the field `tag' as the background mesh size field.'''
field.add('setAsBackgroundMesh', doc, None, iint('tag'))

doc = '''Set the field `tag' as a boundary layer size field.'''
field.add('setAsBoundaryLayer', doc, None, iint('tag'))

################################################################################

geo = model.add_module('geo', 'built-in CAD kernel functions')

doc = '''Add a geometrical point in the built-in CAD representation, at coordinates (`x', `y', `z'). If `meshSize' is > 0, add a meshing constraint at that point. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the point. (Note that the point will be added in the current model only after `synchronize' is called. This behavior holds for all the entities added in the geo module.)'''
geo.add('addPoint', doc, oint, idouble('x'), idouble('y'), idouble('z'), idouble('meshSize', '0.'), iint('tag', '-1'))

doc = '''Add a straight line segment in the built-in CAD representation, between the two points with tags `startTag' and `endTag'. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the line.'''
geo.add('addLine', doc, oint, iint('startTag'), iint('endTag'), iint('tag', '-1'))

doc = '''Add a circle arc (strictly smaller than Pi) in the built-in CAD representation, between the two points with tags `startTag' and `endTag', and with center `centerTag'. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. If (`nx', `ny', `nz') != (0, 0, 0), explicitly set the plane of the circle arc. Return the tag of the circle arc.'''
geo.add('addCircleArc', doc, oint, iint('startTag'), iint('centerTag'), iint('endTag'), iint('tag', '-1'), idouble('nx', '0.'), idouble('ny', '0.'), idouble('nz', '0.'))

doc = '''Add an ellipse arc (strictly smaller than Pi) in the built-in CAD representation, between the two points `startTag' and `endTag', and with center `centerTag' and major axis point `majorTag'. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. If (`nx', `ny', `nz') != (0, 0, 0), explicitly set the plane of the circle arc. Return the tag of the ellipse arc.'''
geo.add('addEllipseArc', doc, oint, iint('startTag'), iint('centerTag'), iint('majorTag'), iint('endTag'), iint('tag', '-1'), idouble('nx', '0.'), idouble('ny', '0.'), idouble('nz', '0.'))

doc = '''Add a spline (Catmull-Rom) curve in the built-in CAD representation, going through the points `pointTags'. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Create a periodic curve if the first and last points are the same. Return the tag of the spline curve.'''
geo.add('addSpline', doc, oint, ivectorint('pointTags'), iint('tag', '-1'))

doc = '''Add a cubic b-spline curve in the built-in CAD representation, with `pointTags' control points. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Creates a periodic curve if the first and last points are the same. Return the tag of the b-spline curve.'''
geo.add('addBSpline', doc, oint, ivectorint('pointTags'), iint('tag', '-1'))

doc = '''Add a Bezier curve in the built-in CAD representation, with `pointTags' control points. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically.  Return the tag of the Bezier curve.'''
geo.add('addBezier', doc, oint, ivectorint('pointTags'), iint('tag', '-1'))

doc = '''Add a polyline curve in the built-in CAD representation, going through the points `pointTags'. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Create a periodic curve if the first and last points are the same. Return the tag of the polyline curve.'''
geo.add('addPolyline', doc, oint, ivectorint('pointTags'), iint('tag', '-1'))

doc = '''Add a spline (Catmull-Rom) curve in the built-in CAD representation, going through points sampling the curves in `curveTags'. The density of sampling points on each curve is governed by `numIntervals'. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the spline.'''
geo.add('addCompoundSpline', doc, oint, ivectorint('curveTags'), iint('numIntervals', '5'), iint('tag', '-1'))

doc = '''Add a b-spline curve in the built-in CAD representation, with control points sampling the curves in `curveTags'. The density of sampling points on each curve is governed by `numIntervals'. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the b-spline.'''
geo.add('addCompoundBSpline', doc, oint, ivectorint('curveTags'), iint('numIntervals', '20'), iint('tag', '-1'))

doc = '''Add a curve loop (a closed wire) in the built-in CAD representation, formed by the curves `curveTags'. `curveTags' should contain (signed) tags of model entities of dimension 1 forming a closed loop: a negative tag signifies that the underlying curve is considered with reversed orientation. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. If `reorient' is set, automatically reorient the curves if necessary. Return the tag of the curve loop.'''
geo.add('addCurveLoop', doc, oint, ivectorint('curveTags'), iint('tag', '-1'), ibool('reorient', 'false', 'False'))

doc = '''Add a plane surface in the built-in CAD representation, defined by one or more curve loops `wireTags'. The first curve loop defines the exterior contour; additional curve loop define holes. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the surface.'''
geo.add('addPlaneSurface', doc, oint, ivectorint('wireTags'), iint('tag', '-1'))

doc = '''Add a surface in the built-in CAD representation, filling the curve loops in `wireTags' using transfinite interpolation. Currently only a single curve loop is supported; this curve loop should be composed by 3 or 4 curves only. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the surface.'''
geo.add('addSurfaceFilling', doc, oint, ivectorint('wireTags'), iint('tag', '-1'), iint('sphereCenterTag', '-1'))

doc = '''Add a surface loop (a closed shell) formed by `surfaceTags' in the built-in CAD representation.  If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the shell.'''
geo.add('addSurfaceLoop', doc, oint, ivectorint('surfaceTags'), iint('tag', '-1'))

doc = '''Add a volume (a region) in the built-in CAD representation, defined by one or more shells `shellTags'. The first surface loop defines the exterior boundary; additional surface loop define holes. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the volume.'''
geo.add('addVolume', doc, oint, ivectorint('shellTags'), iint('tag', '-1'))

doc = '''Extrude the entities `dimTags' in the built-in CAD representation, using a translation along (`dx', `dy', `dz'). Return extruded entities in `outDimTags'. If `numElements' is not empty, also extrude the mesh: the entries in `numElements' give the number of elements in each layer. If `height' is not empty, it provides the (cumulative) height of the different layers, normalized to 1. If `dx' == `dy' == `dz' == 0, the entities are extruded along their normal.'''
geo.add('extrude', doc, None, ivectorpair('dimTags'), idouble('dx'), idouble('dy'), idouble('dz'), ovectorpair('outDimTags'), ivectorint('numElements', 'std::vector<int>()', "[]", "[]"), ivectordouble('heights', 'std::vector<double>()', "[]", "[]"), ibool('recombine', 'false', 'False'))

doc = '''Extrude the entities `dimTags' in the built-in CAD representation, using a rotation of `angle' radians around the axis of revolution defined by the point (`x', `y', `z') and the direction (`ax', `ay', `az'). The angle should be strictly smaller than Pi. Return extruded entities in `outDimTags'. If `numElements' is not empty, also extrude the mesh: the entries in `numElements' give the number of elements in each layer. If `height' is not empty, it provides the (cumulative) height of the different layers, normalized to 1.'''
geo.add('revolve', doc, None, ivectorpair('dimTags'), idouble('x'), idouble('y'), idouble('z'), idouble('ax'), idouble('ay'), idouble('az'), idouble('angle'), ovectorpair('outDimTags'), ivectorint('numElements', 'std::vector<int>()', "[]", "[]"), ivectordouble('heights', 'std::vector<double>()', "[]", "[]"), ibool('recombine', 'false', 'False'))

doc = '''Extrude the entities `dimTags' in the built-in CAD representation, using a combined translation and rotation of `angle' radians, along (`dx', `dy', `dz') and around the axis of revolution defined by the point (`x', `y', `z') and the direction (`ax', `ay', `az'). The angle should be strictly smaller than Pi. Return extruded entities in `outDimTags'. If `numElements' is not empty, also extrude the mesh: the entries in `numElements' give the number of elements in each layer. If `height' is not empty, it provides the (cumulative) height of the different layers, normalized to 1.'''
geo.add('twist', doc, None, ivectorpair('dimTags'), idouble('x'), idouble('y'), idouble('z'), idouble('dx'), idouble('dy'), idouble('dz'), idouble('ax'), idouble('ay'), idouble('az'), idouble('angle'), ovectorpair('outDimTags'), ivectorint('numElements', 'std::vector<int>()', "[]", "[]"), ivectordouble('heights', 'std::vector<double>()', "[]", "[]"), ibool('recombine', 'false', 'False'))

doc = '''Translate the entities `dimTags' in the built-in CAD representation along (`dx', `dy', `dz').'''
geo.add('translate', doc, None, ivectorpair('dimTags'), idouble('dx'), idouble('dy'), idouble('dz'))

doc = '''Rotate the entities `dimTags' in the built-in CAD representation by `angle' radians around the axis of revolution defined by the point (`x', `y', `z') and the direction (`ax', `ay', `az').'''
geo.add('rotate', doc, None, ivectorpair('dimTags'), idouble('x'), idouble('y'), idouble('z'), idouble('ax'), idouble('ay'), idouble('az'), idouble('angle'))

doc = '''Scale the entities `dimTag' in the built-in CAD representation by factors `a', `b' and `c' along the three coordinate axes; use (`x', `y', `z') as the center of the homothetic transformation.'''
geo.add('dilate', doc, None, ivectorpair('dimTags'), idouble('x'), idouble('y'), idouble('z'), idouble('a'), idouble('b'), idouble('c'))

doc = '''Mirror the entities `dimTag' in the built-in CAD representation, with respect to the plane of equation `a' * x + `b' * y + `c' * z + `d' = 0.'''
geo.add('mirror', doc, None, ivectorpair('dimTags'), idouble('a'), idouble('b'), idouble('c'), idouble('d'))
doc += ''' (This is a synonym for `mirror', which will be deprecated in a future release.)'''
geo.add('symmetrize', doc, None, ivectorpair('dimTags'), idouble('a'), idouble('b'), idouble('c'), idouble('d'))

doc = '''Copy the entities `dimTags' in the built-in CAD representation; the new entities are returned in `outDimTags'.'''
geo.add('copy', doc, None, ivectorpair('dimTags'), ovectorpair('outDimTags'))

doc = '''Remove the entities `dimTags' in the built-in CAD representation. If `recursive' is true, remove all the entities on their boundaries, down to dimension 0.'''
geo.add('remove', doc, None, ivectorpair('dimTags'), ibool('recursive', 'false', 'False'))

doc = '''Remove all duplicate entities in the built-in CAD representation (different entities at the same geometrical location).'''
geo.add('removeAllDuplicates', doc, None)

doc = '''Split the curve of tag `tag' in the built-in CAD representation, on the control points `pointTags'. Return the tags `curveTags' of the newly created curves.'''
geo.add('splitCurve', doc, None, iint('tag'), ivectorint('pointTags'), ovectorint('curveTags'))

doc = '''Get the maximum tag of entities of dimension `dim' in the built-in CAD representation.'''
geo.add('getMaxTag', doc, oint, iint('dim'))

doc = '''Set the maximum tag `maxTag' for entities of dimension `dim' in the built-in CAD representation.'''
geo.add('setMaxTag', doc, None, iint('dim'), iint('maxTag'))

doc = '''Add a physical group of dimension `dim', grouping the entities with tags `tags' in the built-in CAD representation. Return the tag of the physical group, equal to `tag' if `tag' is positive, or a new tag if `tag' < 0.'''
geo.add('addPhysicalGroup', doc, oint, iint('dim'), ivectorint('tags'), iint('tag', '-1'))

doc = '''Remove the physical groups `dimTags' from the built-in CAD representation. If `dimTags' is empty, remove all groups.'''
geo.add('removePhysicalGroups', doc, None, ivectorpair('dimTags', 'gmsh::vectorpair()', "[]", "[]"))

doc = '''Synchronize the built-in CAD representation with the current Gmsh model. This can be called at any time, but since it involves a non trivial amount of processing, the number of synchronization points should normally be minimized. Without synchronization the entities in the built-in CAD representation are not available to any function outside of the built-in CAD kernel functions.'''
geo.add('synchronize', doc, None)

################################################################################

mesh = geo.add_module('mesh', 'built-in CAD kernel meshing constraints')

doc = '''Set a mesh size constraint on the entities `dimTags' in the built-in CAD kernel representation. Currently only entities of dimension 0 (points) are handled.'''
mesh.add('setSize', doc, None, ivectorpair('dimTags'), idouble('size'))

doc = '''Set a transfinite meshing constraint on the curve `tag' in the built-in CAD kernel representation, with `numNodes' nodes distributed according to `meshType' and `coef'. Currently supported types are "Progression" (geometrical progression with power `coef') and "Bump" (refinement toward both extremities of the curve).'''
mesh.add('setTransfiniteCurve', doc, None, iint('tag'), iint('nPoints'), istring('meshType', '"Progression"'), idouble('coef', '1.'))

doc = '''Set a transfinite meshing constraint on the surface `tag' in the built-in CAD kernel representation. `arrangement' describes the arrangement of the triangles when the surface is not flagged as recombined: currently supported values are "Left", "Right", "AlternateLeft" and "AlternateRight". `cornerTags' can be used to specify the (3 or 4) corners of the transfinite interpolation explicitly; specifying the corners explicitly is mandatory if the surface has more that 3 or 4 points on its boundary.'''
mesh.add('setTransfiniteSurface', doc, None, iint('tag'), istring('arrangement', '"Left"'), ivectorint('cornerTags', 'std::vector<int>()', "[]", "[]"))

doc = '''Set a transfinite meshing constraint on the surface `tag' in the built-in CAD kernel representation. `cornerTags' can be used to specify the (6 or 8) corners of the transfinite interpolation explicitly.'''
mesh.add('setTransfiniteVolume', doc, None, iint('tag'), ivectorint('cornerTags', 'std::vector<int>()', "[]", "[]"))

doc = '''Set a recombination meshing constraint on the entity of dimension `dim' and tag `tag' in the built-in CAD kernel representation. Currently only entities of dimension 2 (to recombine triangles into quadrangles) are supported.'''
mesh.add('setRecombine', doc, None, iint('dim'), iint('tag'), idouble('angle', '45.'))

doc = '''Set a smoothing meshing constraint on the entity of dimension `dim' and tag `tag' in the built-in CAD kernel representation. `val' iterations of a Laplace smoother are applied.'''
mesh.add('setSmoothing', doc, None, iint('dim'), iint('tag'), iint('val'))

doc = '''Set a reverse meshing constraint on the entity of dimension `dim' and tag `tag' in the built-in CAD kernel representation. If `val' is true, the mesh orientation will be reversed with respect to the natural mesh orientation (i.e. the orientation consistent with the orientation of the geometry). If `val' is false, the mesh is left as-is.'''
mesh.add('setReverse', doc, None, iint('dim'), iint('tag'), ibool('val', 'true', 'True'))

doc = '''Set the meshing algorithm on the entity of dimension `dim' and tag `tag' in the built-in CAD kernel representation. Currently only supported for `dim' == 2.'''
mesh.add('setAlgorithm', doc, None, iint('dim'), iint('tag'), iint('val'))

doc = '''Force the mesh size to be extended from the boundary, or not, for the entity of dimension `dim' and tag `tag' in the built-in CAD kernel representation. Currently only supported for `dim' == 2.'''
mesh.add('setSizeFromBoundary', doc, None, iint('dim'), iint('tag'), iint('val'))

################################################################################

occ = model.add_module('occ', 'OpenCASCADE CAD kernel functions')

doc = '''Add a geometrical point in the OpenCASCADE CAD representation, at coordinates (`x', `y', `z'). If `meshSize' is > 0, add a meshing constraint at that point. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the point. (Note that the point will be added in the current model only after `synchronize' is called. This behavior holds for all the entities added in the occ module.)'''
occ.add('addPoint', doc, oint, idouble('x'), idouble('y'), idouble('z'), idouble('meshSize', '0.'), iint('tag', '-1'))

doc = '''Add a straight line segment in the OpenCASCADE CAD representation, between the two points with tags `startTag' and `endTag'. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the line.'''
occ.add('addLine', doc, oint, iint('startTag'), iint('endTag'), iint('tag', '-1'))

doc = '''Add a circle arc in the OpenCASCADE CAD representation, between the two points with tags `startTag' and `endTag', with center `centerTag'. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the circle arc.'''
occ.add('addCircleArc', doc, oint, iint('startTag'), iint('centerTag'), iint('endTag'), iint('tag', '-1'))

doc = '''Add a circle of center (`x', `y', `z') and radius `r' in the OpenCASCADE CAD representation. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. If `angle1' and `angle2' are specified, create a circle arc between the two angles. Return the tag of the circle.'''
occ.add('addCircle', doc, oint, idouble('x'), idouble('y'), idouble('z'), idouble('r'), iint('tag', '-1'), idouble('angle1', '0.'), idouble('angle2', '2*M_PI', '2*pi', '2*pi'))

doc = '''Add an ellipse arc in the OpenCASCADE CAD representation, between the two points `startTag' and `endTag', and with center `centerTag' and major axis point `majorTag'. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the ellipse arc. Note that OpenCASCADE does not allow creating ellipse arcs with the major radius smaller than the minor radius.'''
occ.add('addEllipseArc', doc, oint, iint('startTag'), iint('centerTag'), iint('majorTag'), iint('endTag'), iint('tag', '-1'))

doc = '''Add an ellipse of center (`x', `y', `z') and radii `r1' and `r2' along the x- and y-axes, respectively, in the OpenCASCADE CAD representation. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. If `angle1' and `angle2' are specified, create an ellipse arc between the two angles. Return the tag of the ellipse. Note that OpenCASCADE does not allow creating ellipses with the major radius (along the x-axis) smaller than or equal to the minor radius (along the y-axis): rotate the shape or use `addCircle' in such cases.'''
occ.add('addEllipse', doc, oint, idouble('x'), idouble('y'), idouble('z'), idouble('r1'), idouble('r2'), iint('tag', '-1'), idouble('angle1', '0.'), idouble('angle2', '2*M_PI', '2*pi', '2*pi'))

doc = '''Add a spline (C2 b-spline) curve in the OpenCASCADE CAD representation, going through the points `pointTags'. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Create a periodic curve if the first and last points are the same. Return the tag of the spline curve.'''
occ.add('addSpline', doc, oint, ivectorint('pointTags'), iint('tag', '-1'))

doc = '''Add a b-spline curve of degree `degree' in the OpenCASCADE CAD representation, with `pointTags' control points. If `weights', `knots' or `multiplicities' are not provided, default parameters are computed automatically. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Create a periodic curve if the first and last points are the same. Return the tag of the b-spline curve.'''
occ.add('addBSpline', doc, oint, ivectorint('pointTags'), iint('tag', '-1'), iint('degree', '3'), ivectordouble('weights', 'std::vector<double>()', "[]", "[]"), ivectordouble('knots', 'std::vector<double>()', "[]", "[]"), ivectorint('multiplicities', 'std::vector<int>()', "[]", "[]"))

doc = '''Add a Bezier curve in the OpenCASCADE CAD representation, with `pointTags' control points. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the Bezier curve.'''
occ.add('addBezier', doc, oint, ivectorint('pointTags'), iint('tag', '-1'))

doc = '''Add a wire (open or closed) in the OpenCASCADE CAD representation, formed by the curves `curveTags'. Note that an OpenCASCADE wire can be made of curves that share geometrically identical (but topologically different) points. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the wire.'''
occ.add('addWire', doc, oint, ivectorint('curveTags'), iint('tag', '-1'), ibool('checkClosed', 'false', 'False'))

doc = '''Add a curve loop (a closed wire) in the OpenCASCADE CAD representation, formed by the curves `curveTags'. `curveTags' should contain tags of curves forming a closed loop. Note that an OpenCASCADE curve loop can be made of curves that share geometrically identical (but topologically different) points. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the curve loop.'''
occ.add('addCurveLoop', doc, oint, ivectorint('curveTags'), iint('tag', '-1'))

doc = '''Add a rectangle in the OpenCASCADE CAD representation, with lower left corner at (`x', `y', `z') and upper right corner at (`x' + `dx', `y' + `dy', `z'). If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Round the corners if `roundedRadius' is nonzero. Return the tag of the rectangle.'''
occ.add('addRectangle', doc, oint, idouble('x'), idouble('y'), idouble('z'), idouble('dx'), idouble('dy'), iint('tag', '-1'), idouble('roundedRadius', '0.'))

doc = '''Add a disk in the OpenCASCADE CAD representation, with center (`xc', `yc', `zc') and radius `rx' along the x-axis and `ry' along the y-axis. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the disk.'''
occ.add('addDisk', doc, oint, idouble('xc'), idouble('yc'), idouble('zc'), idouble('rx'), idouble('ry'), iint('tag', '-1'))

doc = '''Add a plane surface in the OpenCASCADE CAD representation, defined by one or more curve loops (or closed wires) `wireTags'. The first curve loop defines the exterior contour; additional curve loop define holes. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the surface.'''
occ.add('addPlaneSurface', doc, oint, ivectorint('wireTags'), iint('tag', '-1'))

doc = '''Add a surface in the OpenCASCADE CAD representation, filling the curve loop `wireTag'. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the surface. If `pointTags' are provided, force the surface to pass through the given points.'''
occ.add('addSurfaceFilling', doc, oint, iint('wireTag'), iint('tag', '-1'), ivectorint('pointTags', 'std::vector<int>()', "[]", "[]"))

doc = '''Add a BSpline surface in the OpenCASCADE CAD representation, filling the curve loop `wireTag'. The curve loop should be made of 2, 3 or 4 BSpline curves. The optional `type' argument specifies the type of filling: "Stretch" creates the flattest patch, "Curved" (the default) creates the most rounded patch, and "Coons" creates a rounded patch with less depth than "Curved". If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the surface.'''
occ.add('addBSplineFilling', doc, oint, iint('wireTag'), iint('tag', '-1'), istring('type', '""'))

doc = '''Add a Bezier surface in the OpenCASCADE CAD representation, filling the curve loop `wireTag'. The curve loop should be made of 2, 3 or 4 Bezier curves. The optional `type' argument specifies the type of filling: "Stretch" creates the flattest patch, "Curved" (the default) creates the most rounded patch, and "Coons" creates a rounded patch with less depth than "Curved". If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the surface.'''
occ.add('addBezierFilling', doc, oint, iint('wireTag'), iint('tag', '-1'), istring('type', '""'))

doc = '''Add a b-spline surface of degree `degreeU' x `degreeV' in the OpenCASCADE CAD representation, with `pointTags' control points given as a single vector [Pu1v1, ... Pu`numPointsU'v1, Pu1v2, ...]. If `weights', `knotsU', `knotsV', `multiplicitiesU' or `multiplicitiesV' are not provided, default parameters are computed automatically. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the b-spline surface.'''
occ.add('addBSplineSurface', doc, oint, ivectorint('pointTags'), iint('numPointsU'), iint('tag', '-1'), iint('degreeU', '3'), iint('degreeV', '3'), ivectordouble('weights', 'std::vector<double>()', "[]", "[]"), ivectordouble('knotsU', 'std::vector<double>()', "[]", "[]"), ivectordouble('knotsV', 'std::vector<double>()', "[]", "[]"), ivectorint('multiplicitiesU', 'std::vector<int>()', "[]", "[]"), ivectorint('multiplicitiesV', 'std::vector<int>()', "[]", "[]"))

doc = '''Add a Bezier surface in the OpenCASCADE CAD representation, with `pointTags' control points given as a single vector [Pu1v1, ... Pu`numPointsU'v1, Pu1v2, ...]. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the b-spline surface.'''
occ.add('addBezierSurface', doc, oint, ivectorint('pointTags'), iint('numPointsU'), iint('tag', '-1'))

doc = '''Add a surface loop (a closed shell) in the OpenCASCADE CAD representation, formed by `surfaceTags'.  If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the surface loop. Setting `sewing' allows to build a shell made of surfaces that share geometrically identical (but topologically different) curves.'''
occ.add('addSurfaceLoop', doc, oint, ivectorint('surfaceTags'), iint('tag', '-1'), ibool('sewing', 'false', 'False'))

doc = '''Add a volume (a region) in the OpenCASCADE CAD representation, defined by one or more surface loops `shellTags'. The first surface loop defines the exterior boundary; additional surface loop define holes. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the volume.'''
occ.add('addVolume', doc, oint, ivectorint('shellTags'), iint('tag', '-1'))

doc = '''Add a sphere of center (`xc', `yc', `zc') and radius `r' in the OpenCASCADE CAD representation. The optional `angle1' and `angle2' arguments define the polar angle opening (from -Pi/2 to Pi/2). The optional `angle3' argument defines the azimuthal opening (from 0 to 2*Pi). If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the sphere.'''
occ.add('addSphere', doc, oint, idouble('xc'), idouble('yc'), idouble('zc'), idouble('radius'), iint('tag', '-1'), idouble('angle1', '-M_PI/2', '-pi/2', '-pi/2'), idouble('angle2', 'M_PI/2', 'pi/2', 'pi/2'), idouble('angle3', '2*M_PI', '2*pi', '2*pi'))

doc = '''Add a parallelepipedic box in the OpenCASCADE CAD representation, defined by a point (`x', `y', `z') and the extents along the x-, y- and z-axes. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the box.'''
occ.add('addBox', doc, oint, idouble('x'), idouble('y'), idouble('z'), idouble('dx'), idouble('dy'), idouble('dz'), iint('tag', '-1'))

doc = '''Add a cylinder in the OpenCASCADE CAD representation, defined by the center (`x', `y', `z') of its first circular face, the 3 components (`dx', `dy', `dz') of the vector defining its axis and its radius `r'. The optional `angle' argument defines the angular opening (from 0 to 2*Pi). If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the cylinder.'''
occ.add('addCylinder', doc, oint, idouble('x'), idouble('y'), idouble('z'), idouble('dx'), idouble('dy'), idouble('dz'), idouble('r'), iint('tag', '-1'), idouble('angle', '2*M_PI', '2*pi', '2*pi'))

doc = '''Add a cone in the OpenCASCADE CAD representation, defined by the center (`x', `y', `z') of its first circular face, the 3 components of the vector (`dx', `dy', `dz') defining its axis and the two radii `r1' and `r2' of the faces (these radii can be zero). If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. `angle' defines the optional angular opening (from 0 to 2*Pi). Return the tag of the cone.'''
occ.add('addCone', doc, oint, idouble('x'), idouble('y'), idouble('z'), idouble('dx'), idouble('dy'), idouble('dz'), idouble('r1'), idouble('r2'), iint('tag', '-1'), idouble('angle', '2*M_PI', '2*pi', '2*pi'))

doc = '''Add a right angular wedge in the OpenCASCADE CAD representation, defined by the right-angle point (`x', `y', `z') and the 3 extends along the x-, y- and z-axes (`dx', `dy', `dz'). If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. The optional argument `ltx' defines the top extent along the x-axis. Return the tag of the wedge.'''
occ.add('addWedge', doc, oint, idouble('x'), idouble('y'), idouble('z'), idouble('dx'), idouble('dy'), idouble('dz'), iint('tag', '-1'), idouble('ltx', '0.'))

doc = '''Add a torus in the OpenCASCADE CAD representation, defined by its center (`x', `y', `z') and its 2 radii `r' and `r2'. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. The optional argument `angle' defines the angular opening (from 0 to 2*Pi). Return the tag of the wedge.'''
occ.add('addTorus', doc, oint, idouble('x'), idouble('y'), idouble('z'), idouble('r1'), idouble('r2'), iint('tag', '-1'), idouble('angle', '2*M_PI', '2*pi', '2*pi'))

doc = '''Add a volume (if the optional argument `makeSolid' is set) or surfaces in the OpenCASCADE CAD representation, defined through the open or closed wires `wireTags'. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. The new entities are returned in `outDimTags'. If the optional argument `makeRuled' is set, the surfaces created on the boundary are forced to be ruled surfaces. If `maxDegree' is positive, set the maximal degree of resulting surface.'''
occ.add('addThruSections', doc, None, ivectorint('wireTags'), ovectorpair('outDimTags'), iint('tag', '-1'), ibool('makeSolid', 'true', 'True'), ibool('makeRuled', 'false', 'False'), iint('maxDegree', '-1'))

doc = '''Add a hollowed volume in the OpenCASCADE CAD representation, built from an initial volume `volumeTag' and a set of faces from this volume `excludeSurfaceTags', which are to be removed. The remaining faces of the volume become the walls of the hollowed solid, with thickness `offset'. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically.'''
occ.add('addThickSolid', doc, None, iint('volumeTag'), ivectorint('excludeSurfaceTags'), idouble('offset'), ovectorpair('outDimTags'), iint('tag', '-1'))

doc = '''Extrude the entities `dimTags' in the OpenCASCADE CAD representation, using a translation along (`dx', `dy', `dz'). Return extruded entities in `outDimTags'. If `numElements' is not empty, also extrude the mesh: the entries in `numElements' give the number of elements in each layer. If `height' is not empty, it provides the (cumulative) height of the different layers, normalized to 1.'''
occ.add('extrude', doc, None, ivectorpair('dimTags'), idouble('dx'), idouble('dy'), idouble('dz'), ovectorpair('outDimTags'), ivectorint('numElements', 'std::vector<int>()', "[]", "[]"), ivectordouble('heights', 'std::vector<double>()', "[]", "[]"), ibool('recombine', 'false', 'False'))

doc = '''Extrude the entities `dimTags' in the OpenCASCADE CAD representation, using a rotation of `angle' radians around the axis of revolution defined by the point (`x', `y', `z') and the direction (`ax', `ay', `az'). Return extruded entities in `outDimTags'. If `numElements' is not empty, also extrude the mesh: the entries in `numElements' give the number of elements in each layer. If `height' is not empty, it provides the (cumulative) height of the different layers, normalized to 1. When the mesh is extruded the angle should be strictly smaller than 2*Pi.'''
occ.add('revolve', doc, None, ivectorpair('dimTags'), idouble('x'), idouble('y'), idouble('z'), idouble('ax'), idouble('ay'), idouble('az'), idouble('angle'), ovectorpair('outDimTags'), ivectorint('numElements', 'std::vector<int>()', "[]", "[]"), ivectordouble('heights', 'std::vector<double>()', "[]", "[]"), ibool('recombine', 'false', 'False'))

doc = '''Add a pipe in the OpenCASCADE CAD representation, by extruding the entities `dimTags' along the wire `wireTag'. Return the pipe in `outDimTags'.'''
occ.add('addPipe', doc, None, ivectorpair('dimTags'), iint('wireTag'), ovectorpair('outDimTags'))

doc = '''Fillet the volumes `volumeTags' on the curves `curveTags' with radii `radii'. The `radii' vector can either contain a single radius, as many radii as `curveTags', or twice as many as `curveTags' (in which case different radii are provided for the begin and end points of the curves). Return the filleted entities in `outDimTags'. Remove the original volume if `removeVolume' is set.'''
occ.add('fillet', doc, None, ivectorint('volumeTags'), ivectorint('curveTags'), ivectordouble('radii'), ovectorpair('outDimTags'), ibool('removeVolume', 'true', 'True'))

doc = '''Chamfer the volumes `volumeTags' on the curves `curveTags' with distances `distances' measured on surfaces `surfaceTags'. The `distances' vector can either contain a single distance, as many distances as `curveTags' and `surfaceTags', or twice as many as `curveTags' and `surfaceTags' (in which case the first in each pair is measured on the corresponding surface in `surfaceTags', the other on the other adjacent surface). Return the chamfered entities in `outDimTags'. Remove the original volume if `removeVolume' is set.'''
occ.add('chamfer', doc, None, ivectorint('volumeTags'), ivectorint('curveTags'), ivectorint('surfaceTags'), ivectordouble('distances'), ovectorpair('outDimTags'), ibool('removeVolume', 'true', 'True'))

doc = '''Compute the boolean union (the fusion) of the entities `objectDimTags' and `toolDimTags' in the OpenCASCADE CAD representation. Return the resulting entities in `outDimTags'. If `tag' is positive, try to set the tag explicitly (only valid if the boolean operation results in a single entity). Remove the object if `removeObject' is set. Remove the tool if `removeTool' is set.'''
occ.add('fuse', doc, None, ivectorpair('objectDimTags'), ivectorpair('toolDimTags'), ovectorpair('outDimTags'), ovectorvectorpair('outDimTagsMap'), iint('tag', '-1'), ibool('removeObject', 'true', 'True'), ibool('removeTool', 'true', 'True'))

doc = '''Compute the boolean intersection (the common parts) of the entities `objectDimTags' and `toolDimTags' in the OpenCASCADE CAD representation. Return the resulting entities in `outDimTags'. If `tag' is positive, try to set the tag explicitly (only valid if the boolean operation results in a single entity). Remove the object if `removeObject' is set. Remove the tool if `removeTool' is set.'''
occ.add('intersect', doc, None, ivectorpair('objectDimTags'), ivectorpair('toolDimTags'), ovectorpair('outDimTags'), ovectorvectorpair('outDimTagsMap'), iint('tag', '-1'), ibool('removeObject', 'true', 'True'), ibool('removeTool', 'true', 'True'))

doc = '''Compute the boolean difference between the entities `objectDimTags' and `toolDimTags' in the OpenCASCADE CAD representation. Return the resulting entities in `outDimTags'. If `tag' is positive, try to set the tag explicitly (only valid if the boolean operation results in a single entity). Remove the object if `removeObject' is set. Remove the tool if `removeTool' is set.'''
occ.add('cut', doc, None, ivectorpair('objectDimTags'), ivectorpair('toolDimTags'), ovectorpair('outDimTags'), ovectorvectorpair('outDimTagsMap'), iint('tag', '-1'), ibool('removeObject', 'true', 'True'), ibool('removeTool', 'true', 'True'))

doc = '''Compute the boolean fragments (general fuse) of the entities `objectDimTags' and `toolDimTags' in the OpenCASCADE CAD representation. Return the resulting entities in `outDimTags'. If `tag' is positive, try to set the tag explicitly (only valid if the boolean operation results in a single entity). Remove the object if `removeObject' is set. Remove the tool if `removeTool' is set.'''
occ.add('fragment', doc, None, ivectorpair('objectDimTags'), ivectorpair('toolDimTags'), ovectorpair('outDimTags'), ovectorvectorpair('outDimTagsMap'), iint('tag', '-1'), ibool('removeObject', 'true', 'True'), ibool('removeTool', 'true', 'True'))

doc = '''Translate the entities `dimTags' in the OpenCASCADE CAD representation along (`dx', `dy', `dz').'''
occ.add('translate', doc, None, ivectorpair('dimTags'), idouble('dx'), idouble('dy'), idouble('dz'))

doc = '''Rotate the entities `dimTags' in the OpenCASCADE CAD representation by `angle' radians around the axis of revolution defined by the point (`x', `y', `z') and the direction (`ax', `ay', `az').'''
occ.add('rotate', doc, None, ivectorpair('dimTags'), idouble('x'), idouble('y'), idouble('z'), idouble('ax'), idouble('ay'), idouble('az'), idouble('angle'))

doc = '''Scale the entities `dimTags' in the OpenCASCADE CAD representation by factors `a', `b' and `c' along the three coordinate axes; use (`x', `y', `z') as the center of the homothetic transformation.'''
occ.add('dilate', doc, None, ivectorpair('dimTags'), idouble('x'), idouble('y'), idouble('z'), idouble('a'), idouble('b'), idouble('c'))

doc = '''Mirror the entities `dimTags' in the OpenCASCADE CAD representation, with respect to the plane of equation `a' * x + `b' * y + `c' * z + `d' = 0.'''
occ.add('mirror', doc, None, ivectorpair('dimTags'), idouble('a'), idouble('b'), idouble('c'), idouble('d'))
doc += ''' (This is a synonym for `mirror', which will be deprecated in a future release.)'''
occ.add('symmetrize', doc, None, ivectorpair('dimTags'), idouble('a'), idouble('b'), idouble('c'), idouble('d'))

doc = '''Apply a general affine transformation matrix `a' (16 entries of a 4x4 matrix, by row; only the 12 first can be provided for convenience) to the entities `dimTags' in the OpenCASCADE CAD representation.'''
occ.add('affineTransform', doc, None, ivectorpair('dimTags'), ivectordouble('a'))

doc = '''Copy the entities `dimTags' in the OpenCASCADE CAD representation; the new entities are returned in `outDimTags'.'''
occ.add('copy', doc, None, ivectorpair('dimTags'), ovectorpair('outDimTags'))

doc = '''Remove the entities `dimTags' in the OpenCASCADE CAD representation. If `recursive' is true, remove all the entities on their boundaries, down to dimension 0.'''
occ.add('remove', doc, None, ivectorpair('dimTags'), ibool('recursive', 'false', 'False'))

doc = '''Remove all duplicate entities in the OpenCASCADE CAD representation (different entities at the same geometrical location) after intersecting (using boolean fragments) all highest dimensional entities.'''
occ.add('removeAllDuplicates', doc, None)

doc = '''Apply various healing procedures to the entities `dimTags' (or to all the entities in the model if `dimTags' is empty) in the OpenCASCADE CAD representation. Return the healed entities in `outDimTags'. Available healing options are listed in the Gmsh reference manual.'''
occ.add('healShapes', doc, None, ovectorpair('outDimTags'), ivectorpair('dimTags', 'gmsh::vectorpair()', "[]", "[]"), idouble('tolerance', '1e-8'), ibool('fixDegenerated', 'true', 'True'), ibool('fixSmallEdges', 'true', 'True'), ibool('fixSmallFaces', 'true', 'True'), ibool('sewFaces', 'true', 'True'), ibool('makeSolids', 'true', 'True'))

doc = '''Import BREP, STEP or IGES shapes from the file `fileName' in the OpenCASCADE CAD representation. The imported entities are returned in `outDimTags'. If the optional argument `highestDimOnly' is set, only import the highest dimensional entities in the file. The optional argument `format' can be used to force the format of the file (currently "brep", "step" or "iges").'''
occ.add('importShapes', doc, None, istring('fileName'), ovectorpair('outDimTags'), ibool('highestDimOnly', 'true', 'True'), istring('format', '""'))

doc = '''Imports an OpenCASCADE `shape' by providing a pointer to a native OpenCASCADE `TopoDS_Shape' object (passed as a pointer to void). The imported entities are returned in `outDimTags'. If the optional argument `highestDimOnly' is set, only import the highest dimensional entities in `shape'. For C and C++ only. Warning: this function is unsafe, as providing an invalid pointer will lead to undefined behavior.'''
occ.add_special('importShapesNativePointer', doc, ['onlycc++'], None, ivoidstar('shape'), ovectorpair('outDimTags'), ibool('highestDimOnly', 'true', 'True'))

doc = '''Get all the OpenCASCADE entities. If `dim' is >= 0, return only the entities of the specified dimension (e.g. points if `dim' == 0). The entities are returned as a vector of (dim, tag) integer pairs.'''
occ.add('getEntities', doc, None, ovectorpair('dimTags'), iint('dim', '-1'))

doc = '''Get the OpenCASCADE entities in the bounding box defined by the two points (`xmin', `ymin', `zmin') and (`xmax', `ymax', `zmax'). If `dim' is >= 0, return only the entities of the specified dimension (e.g. points if `dim' == 0).'''
occ.add('getEntitiesInBoundingBox', doc, None, idouble('xmin'), idouble('ymin'), idouble('zmin'), idouble('xmax'), idouble('ymax'), idouble('zmax'), ovectorpair('tags'), iint('dim', '-1'))

doc = '''Get the bounding box (`xmin', `ymin', `zmin'), (`xmax', `ymax', `zmax') of the OpenCASCADE entity of dimension `dim' and tag `tag'.'''
occ.add('getBoundingBox', doc, None, iint('dim'), iint('tag'), odouble('xmin'), odouble('ymin'), odouble('zmin'), odouble('xmax'), odouble('ymax'), odouble('zmax'))

doc = '''Get the mass of the OpenCASCADE entity of dimension `dim' and tag `tag'.'''
occ.add('getMass', doc, None, iint('dim'), iint('tag'), odouble('mass'))

doc = '''Get the center of mass of the OpenCASCADE entity of dimension `dim' and tag `tag'.'''
occ.add('getCenterOfMass', doc, None, iint('dim'), iint('tag'), odouble('x'), odouble('y'), odouble('z'))

doc = '''Get the matrix of inertia (by row) of the OpenCASCADE entity of dimension `dim' and tag `tag'.'''
occ.add('getMatrixOfInertia', doc, None, iint('dim'), iint('tag'), ovectordouble('mat'))

doc = '''Get the maximum tag of entities of dimension `dim' in the OpenCASCADE CAD representation.'''
occ.add('getMaxTag', doc, oint, iint('dim'))

doc = '''Set the maximum tag `maxTag' for entities of dimension `dim' in the OpenCASCADE CAD representation.'''
occ.add('setMaxTag', doc, None, iint('dim'), iint('maxTag'))

doc = '''Synchronize the OpenCASCADE CAD representation with the current Gmsh model. This can be called at any time, but since it involves a non trivial amount of processing, the number of synchronization points should normally be minimized. Without synchronization the entities in the OpenCASCADE CAD representation are not available to any function outside of the OpenCASCADE CAD kernel functions.'''
occ.add('synchronize', doc, None)

################################################################################

mesh = occ.add_module('mesh', 'OpenCASCADE CAD kernel meshing constraints')

doc = '''Set a mesh size constraint on the entities `dimTags' in the OpenCASCADE CAD representation. Currently only entities of dimension 0 (points) are handled.'''
mesh.add('setSize', doc, None, ivectorpair('dimTags'), idouble('size'))

################################################################################

view = gmsh.add_module('view', 'post-processing view functions')

doc = '''Add a new post-processing view, with name `name'. If `tag' is positive use it (and remove the view with that tag if it already exists), otherwise associate a new tag. Return the view tag.'''
view.add('add', doc, oint, istring('name'), iint('tag', '-1'))

doc = '''Remove the view with tag `tag'.'''
view.add('remove', doc, None, iint('tag'))

doc = '''Get the index of the view with tag `tag' in the list of currently loaded views. This dynamic index (it can change when views are removed) is used to access view options.'''
view.add('getIndex', doc, oint, iint('tag'))

doc = '''Get the tags of all views.'''
view.add('getTags', doc, None, ovectorint('tags'))

doc = '''Add model-based post-processing data to the view with tag `tag'. `modelName' identifies the model the data is attached to. `dataType' specifies the type of data, currently either "NodeData", "ElementData" or "ElementNodeData". `step' specifies the identifier (>= 0) of the data in a sequence. `tags' gives the tags of the nodes or elements in the mesh to which the data is associated. `data' is a vector of the same length as `tags': each entry is the vector of double precision numbers representing the data associated with the corresponding tag. The optional `time' argument associate a time value with the data. `numComponents' gives the number of data components (1 for scalar data, 3 for vector data, etc.) per entity; if negative, it is automatically inferred (when possible) from the input data. `partition' allows to specify data in several sub-sets.'''
view.add('addModelData', doc, None, iint('tag'), iint('step'), istring('modelName'), istring('dataType'), ivectorsize('tags'), ivectorvectordouble('data'), idouble('time', '0.'), iint('numComponents', '-1'), iint('partition', '0'))

doc = '''Add homogeneous model-based post-processing data to the view with tag `tag'. The arguments have the same meaning as in `addModelData', except that `data' is supposed to be homogeneous and is thus flattened in a single vector. For data types that can lead to different data sizes per tag (like "ElementNodeData"), the data should be padded.'''
view.add('addHomogeneousModelData', doc, None, iint('tag'), iint('step'), istring('modelName'), istring('dataType'), ivectorsize('tags'), ivectordouble('data'), idouble('time', '0.'), iint('numComponents', '-1'), iint('partition', '0'))

doc = '''Get model-based post-processing data from the view with tag `tag' at step `step'. Return the `data' associated to the nodes or the elements with tags `tags', as well as the `dataType' and the number of components `numComponents'.'''
view.add_special('getModelData', doc, ['rawc'], None, iint('tag'), iint('step'), ostring('dataType'), ovectorsize('tags'), ovectorvectordouble('data'), odouble('time'), oint('numComponents'))

doc = '''Get homogeneous model-based post-processing data from the view with tag `tag' at step `step'. The arguments have the same meaning as in `getModelData', except that `data' is returned flattened in a single vector, with the appropriate padding if necessary.'''
view.add('getHomogeneousModelData', doc, None, iint('tag'), iint('step'), ostring('dataType'), ovectorsize('tags'), ovectordouble('data'), odouble('time'), oint('numComponents'))

doc = '''Add list-based post-processing data to the view with tag `tag'. List-based datasets are independent from any model and any mesh. `dataType' identifies the data by concatenating the field type ("S" for scalar, "V" for vector, "T" for tensor) and the element type ("P" for point, "L" for line, "T" for triangle, "S" for tetrahedron, "I" for prism, "H" for hexaHedron, "Y" for pyramid). For example `dataType' should be "ST" for a scalar field on triangles. `numEle' gives the number of elements in the data. `data' contains the data for the `numEle' elements, concatenated, with node coordinates followed by values per node, repeated for each step: [e1x1, ..., e1xn, e1y1, ..., e1yn, e1z1, ..., e1zn, e1v1..., e1vN, e2x1, ...].'''
view.add('addListData', doc, None, iint('tag'), istring('dataType'), iint('numEle'), ivectordouble('data'))

doc = '''Get list-based post-processing data from the view with tag `tag'. Return the types `dataTypes', the number of elements `numElements' for each data type and the `data' for each data type.'''
view.add('getListData', doc, None, iint('tag'), ovectorstring('dataType'), ovectorint('numElements'), ovectorvectordouble('data'))

doc = '''Add a string to a list-based post-processing view with tag `tag'. If `coord' contains 3 coordinates the string is positioned in the 3D model space ("3D string"); if it contains 2 coordinates it is positioned in the 2D graphics viewport ("2D string"). `data' contains one or more (for multistep views) strings. `style' contains key-value pairs of styling parameters, concatenated. Available keys are "Font" (possible values: "Times-Roman", "Times-Bold", "Times-Italic", "Times-BoldItalic", "Helvetica", "Helvetica-Bold", "Helvetica-Oblique", "Helvetica-BoldOblique", "Courier", "Courier-Bold", "Courier-Oblique", "Courier-BoldOblique", "Symbol", "ZapfDingbats", "Screen"), "FontSize" and "Align" (possible values: "Left" or "BottomLeft", "Center" or "BottomCenter", "Right" or "BottomRight", "TopLeft", "TopCenter", "TopRight", "CenterLeft", "CenterCenter", "CenterRight").'''
view.add('addListDataString', doc, None, iint('tag'), ivectordouble('coord'), ivectorstring('data'), ivectorstring('style', 'std::vector<std::string>()', "[]", "[]"))

doc = '''Get list-based post-processing data strings (2D strings if `dim' = 2, 3D strings if `dim' = 3) from the view with tag `tag'. Return the coordinates in `coord', the strings in `data' and the styles in `style'.'''
view.add('getListDataStrings', doc, None, iint('tag'), iint('dim'), ovectordouble('coord'), ovectorstring('data'), ovectorstring('style'))

doc = '''Set interpolation matrices for the element family `type' ("Line", "Triangle", "Quadrangle", "Tetrahedron", "Hexahedron", "Prism", "Pyramid") in the view `tag'. The approximation of the values over an element is written as a linear combination of `d' basis functions f_i(u, v, w) = sum_(j = 0, ..., `d' - 1) `coef'[i][j] u^`exp'[j][0] v^`exp'[j][1] w^`exp'[j][2], i = 0, ..., `d'-1, with u, v, w the coordinates in the reference element. The `coef' matrix (of size `d' x `d') and the `exp' matrix (of size `d' x 3) are stored as vectors, by row. If `dGeo' is positive, use `coefGeo' and `expGeo' to define the interpolation of the x, y, z coordinates of the element in terms of the u, v, w coordinates, in exactly the same way. If `d' < 0, remove the interpolation matrices.'''
view.add('setInterpolationMatrices', doc, None, iint('tag'), istring('type'), iint('d'), ivectordouble('coef'), ivectordouble('exp'), iint('dGeo', '0'), ivectordouble('coefGeo', 'std::vector<double>()', "[]", "[]"), ivectordouble('expGeo', 'std::vector<double>()', "[]", "[]"))

doc = '''Add a post-processing view as an `alias' of the reference view with tag `refTag'. If `copyOptions' is set, copy the options of the reference view. If `tag' is positive use it (and remove the view with that tag if it already exists), otherwise associate a new tag. Return the view tag.'''
view.add('addAlias', doc, oint, iint('refTag'), ibool('copyOptions', 'false', 'False'), iint('tag', '-1'))

doc = '''Copy the options from the view with tag `refTag' to the view with tag `tag'.'''
view.add('copyOptions', doc, None, iint('refTag'), iint('tag'))

doc = '''Combine elements (if `what' == "elements") or steps (if `what' == "steps") of all views (`how' == "all"), all visible views (`how' == "visible") or all views having the same name (`how' == "name"). Remove original views if `remove' is set.'''
view.add('combine', doc, None, istring('what'), istring('how'), ibool('remove', 'true', 'True'), ibool('copyOptions', 'true', 'True'))

doc = '''Probe the view `tag' for its `value' at point (`x', `y', `z'). Return only the value at step `step' is `step' is positive. Return only values with `numComp' if `numComp' is positive. Return the gradient of the `value' if `gradient' is set. Probes with a geometrical tolerance (in the reference unit cube) of `tolerance' if `tolerance' is not zero. Return the result from the element described by its coordinates if `xElementCoord', `yElementCoord' and `zElementCoord' are provided.'''
view.add('probe', doc, None, iint('tag'), idouble('x'), idouble('y'), idouble('z'), ovectordouble('value'), iint('step', '-1'), iint('numComp', '-1'), ibool('gradient', 'false', 'False'), idouble('tolerance', '0.'), ivectordouble('xElemCoord', 'std::vector<double>()', "[]", "[]"), ivectordouble('yElemCoord', 'std::vector<double>()', "[]", "[]"), ivectordouble('zElemCoord', 'std::vector<double>()', "[]", "[]"))

doc = '''Write the view to a file `fileName'. The export format is determined by the file extension. Append to the file if `append' is set.'''
view.add('write', doc, None, iint('tag'), istring('fileName'), ibool('append', 'false', 'False'))

doc = '''Set the global visibility of the view `tag' per window to `value', where `windowIndex' identifies the window in the window list.'''
view.add('setVisibilityPerWindow', doc, None, iint('tag'), iint('value'), iint('windowIndex', '0'))

################################################################################

plugin = gmsh.add_module('plugin', 'plugin functions')

doc = '''Set the numerical option `option' to the value `value' for plugin `name'.'''
plugin.add('setNumber', doc, None, istring('name'), istring('option'), idouble('value'))

doc = '''Set the string option `option' to the value `value' for plugin `name'.'''
plugin.add('setString', doc, None, istring('name'), istring('option'), istring('value'))

doc = '''Run the plugin `name'.'''
plugin.add('run', doc, None, istring('name'))

################################################################################

graphics = gmsh.add_module('graphics', 'graphics functions')

doc = '''Draw all the OpenGL scenes.'''
graphics.add('draw', doc, None)

################################################################################

fltk = gmsh.add_module('fltk', 'FLTK graphical user interface functions')

doc = '''Create the FLTK graphical user interface. Can only be called in the main thread.'''
fltk.add('initialize', doc, None)

doc = '''Wait at most `time' seconds for user interface events and return. If `time' < 0, wait indefinitely. First automatically create the user interface if it has not yet been initialized. Can only be called in the main thread.'''
fltk.add('wait', doc, None, idouble('time', '-1.'))

doc = '''Update the user interface (potentially creating new widgets and windows). First automatically create the user interface if it has not yet been initialized. Can only be called in the main thread: use `awake("update")' to trigger an update of the user interface from another thread.'''
fltk.add('update', doc, None)

doc = '''Awake the main user interface thread and process pending events, and optionally perform an action (currently the only `action' allowed is "update"). '''
fltk.add('awake', doc, None, istring('action', '""'))

doc = '''Block the current thread until it can safely modify the user interface.'''
fltk.add('lock', doc, None)

doc = '''Release the lock that was set using lock.'''
fltk.add('unlock', doc, None)

doc = '''Run the event loop of the graphical user interface, i.e. repeatedly call `wait()'. First automatically create the user interface if it has not yet been initialized. Can only be called in the main thread.'''
fltk.add('run', doc, None)

doc = '''Check if the user interface is available (e.g. to detect if it has been closed).'''
fltk.add('isAvailable', doc, oint)

doc = '''Select entities in the user interface. If `dim' is >= 0, return only the entities of the specified dimension (e.g. points if `dim' == 0).'''
fltk.add('selectEntities', doc, oint, ovectorpair('dimTags'), iint('dim', '-1'))

doc = '''Select elements in the user interface.'''
fltk.add('selectElements', doc, oint, ovectorsize('elementTags'))

doc = '''Select views in the user interface.'''
fltk.add('selectViews', doc, oint, ovectorint('viewTags'))

doc = '''Split the current window horizontally (if `how' = "h") or vertically (if `how' = "v"), using ratio `ratio'. If `how' = "u", restore a single window.'''
fltk.add('splitCurrentWindow', doc, None, istring('how', '"v"'), idouble('ratio', '0.5'))

doc = '''Set the current window by speficying its index (starting at 0) in the list of all windows. When new windows are created by splits, new windows are appended at the end of the list.'''
fltk.add('setCurrentWindow', doc, None, iint('windowIndex', '0'))

################################################################################

onelab = gmsh.add_module('onelab', 'ONELAB server functions')

doc = '''Set one or more parameters in the ONELAB database, encoded in `format'.'''
onelab.add('set', doc, None, istring('data'), istring('format', '"json"'))

doc = '''Get all the parameters (or a single one if `name' is specified) from the ONELAB database, encoded in `format'.'''
onelab.add('get', doc, None, ostring('data'), istring('name', '""'), istring('format', '"json"'))

doc = '''Set the value of the number parameter `name' in the ONELAB database. Create the parameter if it does not exist; update the value if the parameter exists.'''
onelab.add('setNumber', doc, None, istring('name'), ivectordouble('value'))

doc = '''Set the value of the string parameter `name' in the ONELAB database. Create the parameter if it does not exist; update the value if the parameter exists.'''
onelab.add('setString', doc, None, istring('name'), ivectorstring('value'))

doc = '''Get the value of the number parameter `name' from the ONELAB database. Return an empty vector if the parameter does not exist.'''
onelab.add('getNumber', doc, None, istring('name'), ovectordouble('value'))

doc = '''Get the value of the string parameter `name' from the ONELAB database. Return an empty vector if the parameter does not exist.'''
onelab.add('getString', doc, None, istring('name'), ovectorstring('value'))

doc = '''Clear the ONELAB database, or remove a single parameter if `name' is given.'''
onelab.add('clear', doc, None, istring('name', '""'))

doc = '''Run a ONELAB client. If `name' is provided, create a new ONELAB client with name `name' and executes `command'. If not, try to run a client that might be linked to the processed input files.'''
onelab.add('run', doc, None, istring('name', '""'), istring('command', '""'))

################################################################################

logger = gmsh.add_module('logger', 'information logging functions')

doc = '''Write a `message'. `level' can be "info", "warning" or "error".'''
logger.add('write', doc, None, istring('message'), istring('level', '"info"'))

doc = '''Start logging messages.'''
logger.add('start', doc, None)

doc = '''Get logged messages.'''
logger.add('get', doc, None, ovectorstring('log'))

doc = '''Stop logging messages.'''
logger.add('stop', doc, None)

doc = '''Return wall clock time.'''
logger.add('getWallTime', doc, odouble)

doc = '''Return CPU time.'''
logger.add('getCpuTime', doc, odouble)

doc = '''Return last error message, if any.'''
logger.add('getLastError', doc, None, ostring('error'))

################################################################################

api.write_cpp()
api.write_c()
api.write_python()
api.write_julia()
api.write_texi()