1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
|
/*
* Gmsh - Copyright (C) 1997-2020 C. Geuzaine, J.-F. Remacle
*
* See the LICENSE.txt file for license information. Please report all
* issues on https://gitlab.onelab.info/gmsh/gmsh/issues.
*/
#ifndef GMSHC_H
#define GMSHC_H
/*
* This file defines the Gmsh C API (v4.7.1).
*
* Do not edit it directly: it is automatically generated by `api/gen.py'.
*
* By design, the Gmsh C API is purely functional, and only uses elementary
* C types. See `tutorial/c' and `demos/api' for examples.
*/
#include <stddef.h>
#define GMSH_API_VERSION "4.7.1"
#define GMSH_API_VERSION_MAJOR 4
#define GMSH_API_VERSION_MINOR 7
#define GMSH_API_VERSION_PATCH 1
#if defined(GMSH_DLL)
#if defined(GMSH_DLL_EXPORT)
#define GMSH_API __declspec(dllexport)
#else
#define GMSH_API __declspec(dllimport)
#endif
#else
#define GMSH_API
#endif
GMSH_API void gmshFree(void *p);
GMSH_API void *gmshMalloc(size_t n);
/* Initialize Gmsh API. This must be called before any call to the other
* functions in the API. If `argc' and `argv' (or just `argv' in Python or
* Julia) are provided, they will be handled in the same way as the command
* line arguments in the Gmsh app. If `readConfigFiles' is set, read system
* Gmsh configuration files (gmshrc and gmsh-options). Initializing the API
* sets the options "General.Terminal" to 1 and "General.AbortOnError" to 2. */
GMSH_API void gmshInitialize(int argc, char ** argv,
const int readConfigFiles,
int * ierr);
/* Finalize the Gmsh API. This must be called when you are done using the Gmsh
* API. */
GMSH_API void gmshFinalize(int * ierr);
/* Open a file. Equivalent to the `File->Open' menu in the Gmsh app. Handling
* of the file depends on its extension and/or its contents: opening a file
* with model data will create a new model. */
GMSH_API void gmshOpen(const char * fileName,
int * ierr);
/* Merge a file. Equivalent to the `File->Merge' menu in the Gmsh app.
* Handling of the file depends on its extension and/or its contents. Merging
* a file with model data will add the data to the current model. */
GMSH_API void gmshMerge(const char * fileName,
int * ierr);
/* Write a file. The export format is determined by the file extension. */
GMSH_API void gmshWrite(const char * fileName,
int * ierr);
/* Clear all loaded models and post-processing data, and add a new empty
* model. */
GMSH_API void gmshClear(int * ierr);
/* Set a numerical option to `value'. `name' is of the form "category.option"
* or "category[num].option". Available categories and options are listed in
* the Gmsh reference manual. */
GMSH_API void gmshOptionSetNumber(const char * name,
const double value,
int * ierr);
/* Get the `value' of a numerical option. `name' is of the form
* "category.option" or "category[num].option". Available categories and
* options are listed in the Gmsh reference manual. */
GMSH_API void gmshOptionGetNumber(const char * name,
double * value,
int * ierr);
/* Set a string option to `value'. `name' is of the form "category.option" or
* "category[num].option". Available categories and options are listed in the
* Gmsh reference manual. */
GMSH_API void gmshOptionSetString(const char * name,
const char * value,
int * ierr);
/* Get the `value' of a string option. `name' is of the form "category.option"
* or "category[num].option". Available categories and options are listed in
* the Gmsh reference manual. */
GMSH_API void gmshOptionGetString(const char * name,
char ** value,
int * ierr);
/* Set a color option to the RGBA value (`r', `g', `b', `a'), where where `r',
* `g', `b' and `a' should be integers between 0 and 255. `name' is of the
* form "category.option" or "category[num].option". Available categories and
* options are listed in the Gmsh reference manual, with the "Color." middle
* string removed. */
GMSH_API void gmshOptionSetColor(const char * name,
const int r,
const int g,
const int b,
const int a,
int * ierr);
/* Get the `r', `g', `b', `a' value of a color option. `name' is of the form
* "category.option" or "category[num].option". Available categories and
* options are listed in the Gmsh reference manual, with the "Color." middle
* string removed. */
GMSH_API void gmshOptionGetColor(const char * name,
int * r,
int * g,
int * b,
int * a,
int * ierr);
/* Add a new model, with name `name', and set it as the current model. */
GMSH_API void gmshModelAdd(const char * name,
int * ierr);
/* Remove the current model. */
GMSH_API void gmshModelRemove(int * ierr);
/* List the names of all models. */
GMSH_API void gmshModelList(char *** names, size_t * names_n,
int * ierr);
/* Get the name of the current model. */
GMSH_API void gmshModelGetCurrent(char ** name,
int * ierr);
/* Set the current model to the model with name `name'. If several models have
* the same name, select the one that was added first. */
GMSH_API void gmshModelSetCurrent(const char * name,
int * ierr);
/* Get all the entities in the current model. If `dim' is >= 0, return only
* the entities of the specified dimension (e.g. points if `dim' == 0). The
* entities are returned as a vector of (dim, tag) integer pairs. */
GMSH_API void gmshModelGetEntities(int ** dimTags, size_t * dimTags_n,
const int dim,
int * ierr);
/* Set the name of the entity of dimension `dim' and tag `tag'. */
GMSH_API void gmshModelSetEntityName(const int dim,
const int tag,
const char * name,
int * ierr);
/* Get the name of the entity of dimension `dim' and tag `tag'. */
GMSH_API void gmshModelGetEntityName(const int dim,
const int tag,
char ** name,
int * ierr);
/* Get all the physical groups in the current model. If `dim' is >= 0, return
* only the entities of the specified dimension (e.g. physical points if `dim'
* == 0). The entities are returned as a vector of (dim, tag) integer pairs. */
GMSH_API void gmshModelGetPhysicalGroups(int ** dimTags, size_t * dimTags_n,
const int dim,
int * ierr);
/* Get the tags of the model entities making up the physical group of
* dimension `dim' and tag `tag'. */
GMSH_API void gmshModelGetEntitiesForPhysicalGroup(const int dim,
const int tag,
int ** tags, size_t * tags_n,
int * ierr);
/* Get the tags of the physical groups (if any) to which the model entity of
* dimension `dim' and tag `tag' belongs. */
GMSH_API void gmshModelGetPhysicalGroupsForEntity(const int dim,
const int tag,
int ** physicalTags, size_t * physicalTags_n,
int * ierr);
/* Add a physical group of dimension `dim', grouping the model entities with
* tags `tags'. Return the tag of the physical group, equal to `tag' if `tag'
* is positive, or a new tag if `tag' < 0. */
GMSH_API int gmshModelAddPhysicalGroup(const int dim,
int * tags, size_t tags_n,
const int tag,
int * ierr);
/* Remove the physical groups `dimTags' from the current model. If `dimTags'
* is empty, remove all groups. */
GMSH_API void gmshModelRemovePhysicalGroups(int * dimTags, size_t dimTags_n,
int * ierr);
/* Set the name of the physical group of dimension `dim' and tag `tag'. */
GMSH_API void gmshModelSetPhysicalName(const int dim,
const int tag,
const char * name,
int * ierr);
/* Remove the physical name `name' from the current model. */
GMSH_API void gmshModelRemovePhysicalName(const char * name,
int * ierr);
/* Get the name of the physical group of dimension `dim' and tag `tag'. */
GMSH_API void gmshModelGetPhysicalName(const int dim,
const int tag,
char ** name,
int * ierr);
/* Get the boundary of the model entities `dimTags'. Return in `outDimTags'
* the boundary of the individual entities (if `combined' is false) or the
* boundary of the combined geometrical shape formed by all input entities (if
* `combined' is true). Return tags multiplied by the sign of the boundary
* entity if `oriented' is true. Apply the boundary operator recursively down
* to dimension 0 (i.e. to points) if `recursive' is true. */
GMSH_API void gmshModelGetBoundary(int * dimTags, size_t dimTags_n,
int ** outDimTags, size_t * outDimTags_n,
const int combined,
const int oriented,
const int recursive,
int * ierr);
/* Get the model entities in the bounding box defined by the two points
* (`xmin', `ymin', `zmin') and (`xmax', `ymax', `zmax'). If `dim' is >= 0,
* return only the entities of the specified dimension (e.g. points if `dim'
* == 0). */
GMSH_API void gmshModelGetEntitiesInBoundingBox(const double xmin,
const double ymin,
const double zmin,
const double xmax,
const double ymax,
const double zmax,
int ** tags, size_t * tags_n,
const int dim,
int * ierr);
/* Get the bounding box (`xmin', `ymin', `zmin'), (`xmax', `ymax', `zmax') of
* the model entity of dimension `dim' and tag `tag'. If `dim' and `tag' are
* negative, get the bounding box of the whole model. */
GMSH_API void gmshModelGetBoundingBox(const int dim,
const int tag,
double * xmin,
double * ymin,
double * zmin,
double * xmax,
double * ymax,
double * zmax,
int * ierr);
/* Get the geometrical dimension of the current model. */
GMSH_API int gmshModelGetDimension(int * ierr);
/* Add a discrete model entity (defined by a mesh) of dimension `dim' in the
* current model. Return the tag of the new discrete entity, equal to `tag' if
* `tag' is positive, or a new tag if `tag' < 0. `boundary' specifies the tags
* of the entities on the boundary of the discrete entity, if any. Specifying
* `boundary' allows Gmsh to construct the topology of the overall model. */
GMSH_API int gmshModelAddDiscreteEntity(const int dim,
const int tag,
int * boundary, size_t boundary_n,
int * ierr);
/* Remove the entities `dimTags' of the current model. If `recursive' is true,
* remove all the entities on their boundaries, down to dimension 0. */
GMSH_API void gmshModelRemoveEntities(int * dimTags, size_t dimTags_n,
const int recursive,
int * ierr);
/* Remove the entity name `name' from the current model. */
GMSH_API void gmshModelRemoveEntityName(const char * name,
int * ierr);
/* Get the type of the entity of dimension `dim' and tag `tag'. */
GMSH_API void gmshModelGetType(const int dim,
const int tag,
char ** entityType,
int * ierr);
/* In a partitioned model, get the parent of the entity of dimension `dim' and
* tag `tag', i.e. from which the entity is a part of, if any. `parentDim' and
* `parentTag' are set to -1 if the entity has no parent. */
GMSH_API void gmshModelGetParent(const int dim,
const int tag,
int * parentDim,
int * parentTag,
int * ierr);
/* In a partitioned model, return the tags of the partition(s) to which the
* entity belongs. */
GMSH_API void gmshModelGetPartitions(const int dim,
const int tag,
int ** partitions, size_t * partitions_n,
int * ierr);
/* Evaluate the parametrization of the entity of dimension `dim' and tag `tag'
* at the parametric coordinates `parametricCoord'. Only valid for `dim' equal
* to 0 (with empty `parametricCoord'), 1 (with `parametricCoord' containing
* parametric coordinates on the curve) or 2 (with `parametricCoord'
* containing pairs of u, v parametric coordinates on the surface,
* concatenated: [p1u, p1v, p2u, ...]). Return triplets of x, y, z coordinates
* in `coord', concatenated: [p1x, p1y, p1z, p2x, ...]. */
GMSH_API void gmshModelGetValue(const int dim,
const int tag,
double * parametricCoord, size_t parametricCoord_n,
double ** coord, size_t * coord_n,
int * ierr);
/* Evaluate the derivative of the parametrization of the entity of dimension
* `dim' and tag `tag' at the parametric coordinates `parametricCoord'. Only
* valid for `dim' equal to 1 (with `parametricCoord' containing parametric
* coordinates on the curve) or 2 (with `parametricCoord' containing pairs of
* u, v parametric coordinates on the surface, concatenated: [p1u, p1v, p2u,
* ...]). For `dim' equal to 1 return the x, y, z components of the derivative
* with respect to u [d1ux, d1uy, d1uz, d2ux, ...]; for `dim' equal to 2
* return the x, y, z components of the derivate with respect to u and v:
* [d1ux, d1uy, d1uz, d1vx, d1vy, d1vz, d2ux, ...]. */
GMSH_API void gmshModelGetDerivative(const int dim,
const int tag,
double * parametricCoord, size_t parametricCoord_n,
double ** derivatives, size_t * derivatives_n,
int * ierr);
/* Evaluate the (maximum) curvature of the entity of dimension `dim' and tag
* `tag' at the parametric coordinates `parametricCoord'. Only valid for `dim'
* equal to 1 (with `parametricCoord' containing parametric coordinates on the
* curve) or 2 (with `parametricCoord' containing pairs of u, v parametric
* coordinates on the surface, concatenated: [p1u, p1v, p2u, ...]). */
GMSH_API void gmshModelGetCurvature(const int dim,
const int tag,
double * parametricCoord, size_t parametricCoord_n,
double ** curvatures, size_t * curvatures_n,
int * ierr);
/* Evaluate the principal curvatures of the surface with tag `tag' at the
* parametric coordinates `parametricCoord', as well as their respective
* directions. `parametricCoord' are given by pair of u and v coordinates,
* concatenated: [p1u, p1v, p2u, ...]. */
GMSH_API void gmshModelGetPrincipalCurvatures(const int tag,
double * parametricCoord, size_t parametricCoord_n,
double ** curvatureMax, size_t * curvatureMax_n,
double ** curvatureMin, size_t * curvatureMin_n,
double ** directionMax, size_t * directionMax_n,
double ** directionMin, size_t * directionMin_n,
int * ierr);
/* Get the normal to the surface with tag `tag' at the parametric coordinates
* `parametricCoord'. `parametricCoord' are given by pairs of u and v
* coordinates, concatenated: [p1u, p1v, p2u, ...]. `normals' are returned as
* triplets of x, y, z components, concatenated: [n1x, n1y, n1z, n2x, ...]. */
GMSH_API void gmshModelGetNormal(const int tag,
double * parametricCoord, size_t parametricCoord_n,
double ** normals, size_t * normals_n,
int * ierr);
/* Get the parametric coordinates `parametricCoord' for the points `coord' on
* the entity of dimension `dim' and tag `tag'. `coord' are given as triplets
* of x, y, z coordinates, concatenated: [p1x, p1y, p1z, p2x, ...].
* `parametricCoord' returns the parametric coordinates t on the curve (if
* `dim' = 1) or pairs of u and v coordinates concatenated on the surface (if
* `dim' = 2), i.e. [p1t, p2t, ...] or [p1u, p1v, p2u, ...]. */
GMSH_API void gmshModelGetParametrization(const int dim,
const int tag,
double * coord, size_t coord_n,
double ** parametricCoord, size_t * parametricCoord_n,
int * ierr);
/* Get the `min' and `max' bounds of the parametric coordinates for the entity
* of dimension `dim' and tag `tag'. */
GMSH_API void gmshModelGetParametrizationBounds(const int dim,
const int tag,
double ** min, size_t * min_n,
double ** max, size_t * max_n,
int * ierr);
/* Check if the parametric coordinates provided in `parametricCoord'
* correspond to points inside the entitiy of dimension `dim' and tag `tag',
* and return the number of points inside. This feature is only available for
* a subset of curves and surfaces, depending on the underyling geometrical
* representation. */
GMSH_API int gmshModelIsInside(const int dim,
const int tag,
double * parametricCoord, size_t parametricCoord_n,
int * ierr);
/* Get the points `closestCoord' on the entity of dimension `dim' and tag
* `tag' to the points `coord', by orthogonal projection. `coord' and
* `closestCoord' are given as triplets of x, y, z coordinates, concatenated:
* [p1x, p1y, p1z, p2x, ...]. `parametricCoord' returns the parametric
* coordinates t on the curve (if `dim' = 1) or pairs of u and v coordinates
* concatenated on the surface (if `dim' = 2), i.e. [p1t, p2t, ...] or [p1u,
* p1v, p2u, ...]. */
GMSH_API void gmshModelGetClosestPoint(const int dim,
const int tag,
double * coord, size_t coord_n,
double ** closestCoord, size_t * closestCoord_n,
double ** parametricCoord, size_t * parametricCoord_n,
int * ierr);
/* Reparametrize the boundary entity (point or curve, i.e. with `dim' == 0 or
* `dim' == 1) of tag `tag' on the surface `surfaceTag'. If `dim' == 1,
* reparametrize all the points corresponding to the parametric coordinates
* `parametricCoord'. Multiple matches in case of periodic surfaces can be
* selected with `which'. This feature is only available for a subset of
* entities, depending on the underyling geometrical representation. */
GMSH_API void gmshModelReparametrizeOnSurface(const int dim,
const int tag,
double * parametricCoord, size_t parametricCoord_n,
const int surfaceTag,
double ** surfaceParametricCoord, size_t * surfaceParametricCoord_n,
const int which,
int * ierr);
/* Set the visibility of the model entities `dimTags' to `value'. Apply the
* visibility setting recursively if `recursive' is true. */
GMSH_API void gmshModelSetVisibility(int * dimTags, size_t dimTags_n,
const int value,
const int recursive,
int * ierr);
/* Get the visibility of the model entity of dimension `dim' and tag `tag'. */
GMSH_API void gmshModelGetVisibility(const int dim,
const int tag,
int * value,
int * ierr);
/* Set the global visibility of the model per window to `value', where
* `windowIndex' identifies the window in the window list. */
GMSH_API void gmshModelSetVisibilityPerWindow(const int value,
const int windowIndex,
int * ierr);
/* Set the color of the model entities `dimTags' to the RGBA value (`r', `g',
* `b', `a'), where `r', `g', `b' and `a' should be integers between 0 and
* 255. Apply the color setting recursively if `recursive' is true. */
GMSH_API void gmshModelSetColor(int * dimTags, size_t dimTags_n,
const int r,
const int g,
const int b,
const int a,
const int recursive,
int * ierr);
/* Get the color of the model entity of dimension `dim' and tag `tag'. */
GMSH_API void gmshModelGetColor(const int dim,
const int tag,
int * r,
int * g,
int * b,
int * a,
int * ierr);
/* Set the `x', `y', `z' coordinates of a geometrical point. */
GMSH_API void gmshModelSetCoordinates(const int tag,
const double x,
const double y,
const double z,
int * ierr);
/* Generate a mesh of the current model, up to dimension `dim' (0, 1, 2 or 3). */
GMSH_API void gmshModelMeshGenerate(const int dim,
int * ierr);
/* Partition the mesh of the current model into `numPart' partitions. */
GMSH_API void gmshModelMeshPartition(const int numPart,
int * ierr);
/* Unpartition the mesh of the current model. */
GMSH_API void gmshModelMeshUnpartition(int * ierr);
/* Optimize the mesh of the current model using `method' (empty for default
* tetrahedral mesh optimizer, "Netgen" for Netgen optimizer, "HighOrder" for
* direct high-order mesh optimizer, "HighOrderElastic" for high-order elastic
* smoother, "HighOrderFastCurving" for fast curving algorithm, "Laplace2D"
* for Laplace smoothing, "Relocate2D" and "Relocate3D" for node relocation).
* If `force' is set apply the optimization also to discrete entities. If
* `dimTags' is given, only apply the optimizer to the given entities. */
GMSH_API void gmshModelMeshOptimize(const char * method,
const int force,
const int niter,
int * dimTags, size_t dimTags_n,
int * ierr);
/* Recombine the mesh of the current model. */
GMSH_API void gmshModelMeshRecombine(int * ierr);
/* Refine the mesh of the current model by uniformly splitting the elements. */
GMSH_API void gmshModelMeshRefine(int * ierr);
/* Set the order of the elements in the mesh of the current model to `order'. */
GMSH_API void gmshModelMeshSetOrder(const int order,
int * ierr);
/* Get the last entities (if any) where a meshing error occurred. Currently
* only populated by the new 3D meshing algorithms. */
GMSH_API void gmshModelMeshGetLastEntityError(int ** dimTags, size_t * dimTags_n,
int * ierr);
/* Get the last nodes (if any) where a meshing error occurred. Currently only
* populated by the new 3D meshing algorithms. */
GMSH_API void gmshModelMeshGetLastNodeError(size_t ** nodeTags, size_t * nodeTags_n,
int * ierr);
/* Clear the mesh, i.e. delete all the nodes and elements, for the entities
* `dimTags'. if `dimTags' is empty, clear the whole mesh. Note that the mesh
* of an entity can only be cleared if this entity is not on the boundary of
* another entity with a non-empty mesh. */
GMSH_API void gmshModelMeshClear(int * dimTags, size_t dimTags_n,
int * ierr);
/* Get the nodes classified on the entity of dimension `dim' and tag `tag'. If
* `tag' < 0, get the nodes for all entities of dimension `dim'. If `dim' and
* `tag' are negative, get all the nodes in the mesh. `nodeTags' contains the
* node tags (their unique, strictly positive identification numbers). `coord'
* is a vector of length 3 times the length of `nodeTags' that contains the x,
* y, z coordinates of the nodes, concatenated: [n1x, n1y, n1z, n2x, ...]. If
* `dim' >= 0 and `returnParamtricCoord' is set, `parametricCoord' contains
* the parametric coordinates ([u1, u2, ...] or [u1, v1, u2, ...]) of the
* nodes, if available. The length of `parametricCoord' can be 0 or `dim'
* times the length of `nodeTags'. If `includeBoundary' is set, also return
* the nodes classified on the boundary of the entity (which will be
* reparametrized on the entity if `dim' >= 0 in order to compute their
* parametric coordinates). */
GMSH_API void gmshModelMeshGetNodes(size_t ** nodeTags, size_t * nodeTags_n,
double ** coord, size_t * coord_n,
double ** parametricCoord, size_t * parametricCoord_n,
const int dim,
const int tag,
const int includeBoundary,
const int returnParametricCoord,
int * ierr);
/* Get the nodes classified on the entity of tag `tag', for all the elements
* of type `elementType'. The other arguments are treated as in `getNodes'. */
GMSH_API void gmshModelMeshGetNodesByElementType(const int elementType,
size_t ** nodeTags, size_t * nodeTags_n,
double ** coord, size_t * coord_n,
double ** parametricCoord, size_t * parametricCoord_n,
const int tag,
const int returnParametricCoord,
int * ierr);
/* Get the coordinates and the parametric coordinates (if any) of the node
* with tag `tag'. This function relies on an internal cache (a vector in case
* of dense node numbering, a map otherwise); for large meshes accessing nodes
* in bulk is often preferable. */
GMSH_API void gmshModelMeshGetNode(const size_t nodeTag,
double ** coord, size_t * coord_n,
double ** parametricCoord, size_t * parametricCoord_n,
int * ierr);
/* Set the coordinates and the parametric coordinates (if any) of the node
* with tag `tag'. This function relies on an internal cache (a vector in case
* of dense node numbering, a map otherwise); for large meshes accessing nodes
* in bulk is often preferable. */
GMSH_API void gmshModelMeshSetNode(const size_t nodeTag,
double * coord, size_t coord_n,
double * parametricCoord, size_t parametricCoord_n,
int * ierr);
/* Rebuild the node cache. */
GMSH_API void gmshModelMeshRebuildNodeCache(const int onlyIfNecessary,
int * ierr);
/* Rebuild the element cache. */
GMSH_API void gmshModelMeshRebuildElementCache(const int onlyIfNecessary,
int * ierr);
/* Get the nodes from all the elements belonging to the physical group of
* dimension `dim' and tag `tag'. `nodeTags' contains the node tags; `coord'
* is a vector of length 3 times the length of `nodeTags' that contains the x,
* y, z coordinates of the nodes, concatenated: [n1x, n1y, n1z, n2x, ...]. */
GMSH_API void gmshModelMeshGetNodesForPhysicalGroup(const int dim,
const int tag,
size_t ** nodeTags, size_t * nodeTags_n,
double ** coord, size_t * coord_n,
int * ierr);
/* Add nodes classified on the model entity of dimension `dim' and tag `tag'.
* `nodeTags' contains the node tags (their unique, strictly positive
* identification numbers). `coord' is a vector of length 3 times the length
* of `nodeTags' that contains the x, y, z coordinates of the nodes,
* concatenated: [n1x, n1y, n1z, n2x, ...]. The optional `parametricCoord'
* vector contains the parametric coordinates of the nodes, if any. The length
* of `parametricCoord' can be 0 or `dim' times the length of `nodeTags'. If
* the `nodeTags' vector is empty, new tags are automatically assigned to the
* nodes. */
GMSH_API void gmshModelMeshAddNodes(const int dim,
const int tag,
size_t * nodeTags, size_t nodeTags_n,
double * coord, size_t coord_n,
double * parametricCoord, size_t parametricCoord_n,
int * ierr);
/* Reclassify all nodes on their associated model entity, based on the
* elements. Can be used when importing nodes in bulk (e.g. by associating
* them all to a single volume), to reclassify them correctly on model
* surfaces, curves, etc. after the elements have been set. */
GMSH_API void gmshModelMeshReclassifyNodes(int * ierr);
/* Relocate the nodes classified on the entity of dimension `dim' and tag
* `tag' using their parametric coordinates. If `tag' < 0, relocate the nodes
* for all entities of dimension `dim'. If `dim' and `tag' are negative,
* relocate all the nodes in the mesh. */
GMSH_API void gmshModelMeshRelocateNodes(const int dim,
const int tag,
int * ierr);
/* Get the elements classified on the entity of dimension `dim' and tag `tag'.
* If `tag' < 0, get the elements for all entities of dimension `dim'. If
* `dim' and `tag' are negative, get all the elements in the mesh.
* `elementTypes' contains the MSH types of the elements (e.g. `2' for 3-node
* triangles: see `getElementProperties' to obtain the properties for a given
* element type). `elementTags' is a vector of the same length as
* `elementTypes'; each entry is a vector containing the tags (unique,
* strictly positive identifiers) of the elements of the corresponding type.
* `nodeTags' is also a vector of the same length as `elementTypes'; each
* entry is a vector of length equal to the number of elements of the given
* type times the number N of nodes for this type of element, that contains
* the node tags of all the elements of the given type, concatenated: [e1n1,
* e1n2, ..., e1nN, e2n1, ...]. */
GMSH_API void gmshModelMeshGetElements(int ** elementTypes, size_t * elementTypes_n,
size_t *** elementTags, size_t ** elementTags_n, size_t *elementTags_nn,
size_t *** nodeTags, size_t ** nodeTags_n, size_t *nodeTags_nn,
const int dim,
const int tag,
int * ierr);
/* Get the type and node tags of the element with tag `tag'. This function
* relies on an internal cache (a vector in case of dense element numbering, a
* map otherwise); for large meshes accessing elements in bulk is often
* preferable. */
GMSH_API void gmshModelMeshGetElement(const size_t elementTag,
int * elementType,
size_t ** nodeTags, size_t * nodeTags_n,
int * ierr);
/* Search the mesh for an element located at coordinates (`x', `y', `z'). This
* function performs a search in a spatial octree. If an element is found,
* return its tag, type and node tags, as well as the local coordinates (`u',
* `v', `w') within the reference element corresponding to search location. If
* `dim' is >= 0, only search for elements of the given dimension. If `strict'
* is not set, use a tolerance to find elements near the search location. */
GMSH_API void gmshModelMeshGetElementByCoordinates(const double x,
const double y,
const double z,
size_t * elementTag,
int * elementType,
size_t ** nodeTags, size_t * nodeTags_n,
double * u,
double * v,
double * w,
const int dim,
const int strict,
int * ierr);
/* Search the mesh for element(s) located at coordinates (`x', `y', `z'). This
* function performs a search in a spatial octree. Return the tags of all
* found elements in `elementTags'. Additional information about the elements
* can be accessed through `getElement' and `getLocalCoordinatesInElement'. If
* `dim' is >= 0, only search for elements of the given dimension. If `strict'
* is not set, use a tolerance to find elements near the search location. */
GMSH_API void gmshModelMeshGetElementsByCoordinates(const double x,
const double y,
const double z,
size_t ** elementTags, size_t * elementTags_n,
const int dim,
const int strict,
int * ierr);
/* Return the local coordinates (`u', `v', `w') within the element
* `elementTag' corresponding to the model coordinates (`x', `y', `z'). This
* function relies on an internal cache (a vector in case of dense element
* numbering, a map otherwise); for large meshes accessing elements in bulk is
* often preferable. */
GMSH_API void gmshModelMeshGetLocalCoordinatesInElement(const size_t elementTag,
const double x,
const double y,
const double z,
double * u,
double * v,
double * w,
int * ierr);
/* Get the types of elements in the entity of dimension `dim' and tag `tag'.
* If `tag' < 0, get the types for all entities of dimension `dim'. If `dim'
* and `tag' are negative, get all the types in the mesh. */
GMSH_API void gmshModelMeshGetElementTypes(int ** elementTypes, size_t * elementTypes_n,
const int dim,
const int tag,
int * ierr);
/* Return an element type given its family name `familyName' ("Point", "Line",
* "Triangle", "Quadrangle", "Tetrahedron", "Pyramid", "Prism", "Hexahedron")
* and polynomial order `order'. If `serendip' is true, return the
* corresponding serendip element type (element without interior nodes). */
GMSH_API int gmshModelMeshGetElementType(const char * familyName,
const int order,
const int serendip,
int * ierr);
/* Get the properties of an element of type `elementType': its name
* (`elementName'), dimension (`dim'), order (`order'), number of nodes
* (`numNodes'), local coordinates of the nodes in the reference element
* (`localNodeCoord' vector, of length `dim' times `numNodes') and number of
* primary (first order) nodes (`numPrimaryNodes'). */
GMSH_API void gmshModelMeshGetElementProperties(const int elementType,
char ** elementName,
int * dim,
int * order,
int * numNodes,
double ** localNodeCoord, size_t * localNodeCoord_n,
int * numPrimaryNodes,
int * ierr);
/* Get the elements of type `elementType' classified on the entity of tag
* `tag'. If `tag' < 0, get the elements for all entities. `elementTags' is a
* vector containing the tags (unique, strictly positive identifiers) of the
* elements of the corresponding type. `nodeTags' is a vector of length equal
* to the number of elements of the given type times the number N of nodes for
* this type of element, that contains the node tags of all the elements of
* the given type, concatenated: [e1n1, e1n2, ..., e1nN, e2n1, ...]. If
* `numTasks' > 1, only compute and return the part of the data indexed by
* `task'. */
GMSH_API void gmshModelMeshGetElementsByType(const int elementType,
size_t ** elementTags, size_t * elementTags_n,
size_t ** nodeTags, size_t * nodeTags_n,
const int tag,
const size_t task,
const size_t numTasks,
int * ierr);
/* Preallocate data before calling `getElementsByType' with `numTasks' > 1.
* For C and C++ only. */
GMSH_API void gmshModelMeshPreallocateElementsByType(const int elementType,
const int elementTag,
const int nodeTag,
size_t ** elementTags, size_t * elementTags_n,
size_t ** nodeTags, size_t * nodeTags_n,
const int tag,
int * ierr);
/* Add elements classified on the entity of dimension `dim' and tag `tag'.
* `types' contains the MSH types of the elements (e.g. `2' for 3-node
* triangles: see the Gmsh reference manual). `elementTags' is a vector of the
* same length as `types'; each entry is a vector containing the tags (unique,
* strictly positive identifiers) of the elements of the corresponding type.
* `nodeTags' is also a vector of the same length as `types'; each entry is a
* vector of length equal to the number of elements of the given type times
* the number N of nodes per element, that contains the node tags of all the
* elements of the given type, concatenated: [e1n1, e1n2, ..., e1nN, e2n1,
* ...]. */
GMSH_API void gmshModelMeshAddElements(const int dim,
const int tag,
int * elementTypes, size_t elementTypes_n,
const size_t ** elementTags, const size_t * elementTags_n, size_t elementTags_nn,
const size_t ** nodeTags, const size_t * nodeTags_n, size_t nodeTags_nn,
int * ierr);
/* Add elements of type `elementType' classified on the entity of tag `tag'.
* `elementTags' contains the tags (unique, strictly positive identifiers) of
* the elements of the corresponding type. `nodeTags' is a vector of length
* equal to the number of elements times the number N of nodes per element,
* that contains the node tags of all the elements, concatenated: [e1n1, e1n2,
* ..., e1nN, e2n1, ...]. If the `elementTag' vector is empty, new tags are
* automatically assigned to the elements. */
GMSH_API void gmshModelMeshAddElementsByType(const int tag,
const int elementType,
size_t * elementTags, size_t elementTags_n,
size_t * nodeTags, size_t nodeTags_n,
int * ierr);
/* Get the numerical quadrature information for the given element type
* `elementType' and integration rule `integrationType' (e.g. "Gauss4" for a
* Gauss quadrature suited for integrating 4th order polynomials).
* `localCoord' contains the u, v, w coordinates of the G integration points
* in the reference element: [g1u, g1v, g1w, ..., gGu, gGv, gGw]. `weights'
* contains the associated weights: [g1q, ..., gGq]. */
GMSH_API void gmshModelMeshGetIntegrationPoints(const int elementType,
const char * integrationType,
double ** localCoord, size_t * localCoord_n,
double ** weights, size_t * weights_n,
int * ierr);
/* Get the Jacobians of all the elements of type `elementType' classified on
* the entity of tag `tag', at the G evaluation points `localCoord' given as
* concatenated triplets of coordinates in the reference element [g1u, g1v,
* g1w, ..., gGu, gGv, gGw]. Data is returned by element, with elements in the
* same order as in `getElements' and `getElementsByType'. `jacobians'
* contains for each element the 9 entries of the 3x3 Jacobian matrix at each
* evaluation point. The matrix is returned by column: [e1g1Jxu, e1g1Jyu,
* e1g1Jzu, e1g1Jxv, ..., e1g1Jzw, e1g2Jxu, ..., e1gGJzw, e2g1Jxu, ...], with
* Jxu=dx/du, Jyu=dy/du, etc. `determinants' contains for each element the
* determinant of the Jacobian matrix at each evaluation point: [e1g1, e1g2,
* ... e1gG, e2g1, ...]. `coord' contains for each element the x, y, z
* coordinates of the evaluation points. If `tag' < 0, get the Jacobian data
* for all entities. If `numTasks' > 1, only compute and return the part of
* the data indexed by `task'. */
GMSH_API void gmshModelMeshGetJacobians(const int elementType,
double * localCoord, size_t localCoord_n,
double ** jacobians, size_t * jacobians_n,
double ** determinants, size_t * determinants_n,
double ** coord, size_t * coord_n,
const int tag,
const size_t task,
const size_t numTasks,
int * ierr);
/* Preallocate data before calling `getJacobians' with `numTasks' > 1. For C
* and C++ only. */
GMSH_API void gmshModelMeshPreallocateJacobians(const int elementType,
const int numEvaluationPoints,
const int allocateJacobians,
const int allocateDeterminants,
const int allocateCoord,
double ** jacobians, size_t * jacobians_n,
double ** determinants, size_t * determinants_n,
double ** coord, size_t * coord_n,
const int tag,
int * ierr);
/* Get the Jacobian for a single element `elementTag', at the G evaluation
* points `localCoord' given as concatenated triplets of coordinates in the
* reference element [g1u, g1v, g1w, ..., gGu, gGv, gGw]. `jacobians' contains
* the 9 entries of the 3x3 Jacobian matrix at each evaluation point. The
* matrix is returned by column: [e1g1Jxu, e1g1Jyu, e1g1Jzu, e1g1Jxv, ...,
* e1g1Jzw, e1g2Jxu, ..., e1gGJzw, e2g1Jxu, ...], with Jxu=dx/du, Jyu=dy/du,
* etc. `determinants' contains the determinant of the Jacobian matrix at each
* evaluation point. `coord' contains the x, y, z coordinates of the
* evaluation points. This function relies on an internal cache (a vector in
* case of dense element numbering, a map otherwise); for large meshes
* accessing Jacobians in bulk is often preferable. */
GMSH_API void gmshModelMeshGetJacobian(const size_t elementTag,
double * localCoord, size_t localCoord_n,
double ** jacobians, size_t * jacobians_n,
double ** determinants, size_t * determinants_n,
double ** coord, size_t * coord_n,
int * ierr);
/* Get the basis functions of the element of type `elementType' at the
* evaluation points `localCoord' (given as concatenated triplets of
* coordinates in the reference element [g1u, g1v, g1w, ..., gGu, gGv, gGw]),
* for the function space `functionSpaceType' (e.g. "Lagrange" or
* "GradLagrange" for Lagrange basis functions or their gradient, in the u, v,
* w coordinates of the reference element; or "H1Legendre3" or
* "GradH1Legendre3" for 3rd order hierarchical H1 Legendre functions).
* `numComponents' returns the number C of components of a basis function.
* `basisFunctions' returns the value of the N basis functions at the
* evaluation points, i.e. [g1f1, g1f2, ..., g1fN, g2f1, ...] when C == 1 or
* [g1f1u, g1f1v, g1f1w, g1f2u, ..., g1fNw, g2f1u, ...] when C == 3. For basis
* functions that depend on the orientation of the elements, all values for
* the first orientation are returned first, followed by values for the
* second, etc. `numOrientations' returns the overall number of orientations.
* If `wantedOrientations' is not empty, only return the values for the
* desired orientation indices. */
GMSH_API void gmshModelMeshGetBasisFunctions(const int elementType,
double * localCoord, size_t localCoord_n,
const char * functionSpaceType,
int * numComponents,
double ** basisFunctions, size_t * basisFunctions_n,
int * numOrientations,
int * wantedOrientations, size_t wantedOrientations_n,
int * ierr);
/* Get the orientation index of the elements of type `elementType' in the
* entity of tag `tag'. The arguments have the same meaning as in
* `getBasisFunctions'. `basisFunctionsOrientation' is a vector giving for
* each element the orientation index in the values returned by
* `getBasisFunctions'. For Lagrange basis functions the call is superfluous
* as it will return a vector of zeros. */
GMSH_API void gmshModelMeshGetBasisFunctionsOrientationForElements(const int elementType,
const char * functionSpaceType,
int ** basisFunctionsOrientation, size_t * basisFunctionsOrientation_n,
const int tag,
const size_t task,
const size_t numTasks,
int * ierr);
/* Get the orientation of a single element `elementTag'. */
GMSH_API void gmshModelMeshGetBasisFunctionsOrientationForElement(const size_t elementTag,
const char * functionSpaceType,
int * basisFunctionsOrientation,
int * ierr);
/* Get the number of possible orientations for elements of type `elementType'
* and function space named `functionSpaceType'. */
GMSH_API int gmshModelMeshGetNumberOfOrientations(const int elementType,
const char * functionSpaceType,
int * ierr);
/* Preallocate data before calling `getBasisFunctionsOrientationForElements'
* with `numTasks' > 1. For C and C++ only. */
GMSH_API void gmshModelMeshPreallocateBasisFunctionsOrientationForElements(const int elementType,
int ** basisFunctionsOrientation, size_t * basisFunctionsOrientation_n,
const int tag,
int * ierr);
/* Get the global edge identifier `edgeNum' for an input list of node pairs,
* concatenated in the vector `edgeNodes'. Warning: this is an experimental
* feature and will probably change in a future release. */
GMSH_API void gmshModelMeshGetEdgeNumber(int * edgeNodes, size_t edgeNodes_n,
int ** edgeNum, size_t * edgeNum_n,
int * ierr);
/* Get the local multipliers (to guarantee H(curl)-conformity) of the order 0
* H(curl) basis functions. Warning: this is an experimental feature and will
* probably change in a future release. */
GMSH_API void gmshModelMeshGetLocalMultipliersForHcurl0(const int elementType,
int ** localMultipliers, size_t * localMultipliers_n,
const int tag,
int * ierr);
/* Generate the `keys' for the elements of type `elementType' in the entity of
* tag `tag', for the `functionSpaceType' function space. Each key uniquely
* identifies a basis function in the function space. If `returnCoord' is set,
* the `coord' vector contains the x, y, z coordinates locating basis
* functions for sorting purposes. Warning: this is an experimental feature
* and will probably change in a future release. */
GMSH_API void gmshModelMeshGetKeysForElements(const int elementType,
const char * functionSpaceType,
int ** keys, size_t * keys_n,
double ** coord, size_t * coord_n,
const int tag,
const int returnCoord,
int * ierr);
/* Get the keys for a single element `elementTag'. */
GMSH_API void gmshModelMeshGetKeysForElement(const size_t elementTag,
const char * functionSpaceType,
int ** keys, size_t * keys_n,
double ** coord, size_t * coord_n,
const int returnCoord,
int * ierr);
/* Get the number of keys by elements of type `elementType' for function space
* named `functionSpaceType'. */
GMSH_API int gmshModelMeshGetNumberOfKeysForElements(const int elementType,
const char * functionSpaceType,
int * ierr);
/* Get information about the `keys'. `infoKeys' returns information about the
* functions associated with the `keys'. `infoKeys[0].first' describes the
* type of function (0 for vertex function, 1 for edge function, 2 for face
* function and 3 for bubble function). `infoKeys[0].second' gives the order
* of the function associated with the key. Warning: this is an experimental
* feature and will probably change in a future release. */
GMSH_API void gmshModelMeshGetInformationForElements(int * keys, size_t keys_n,
const int elementType,
const char * functionSpaceType,
int ** infoKeys, size_t * infoKeys_n,
int * ierr);
/* Get the barycenters of all elements of type `elementType' classified on the
* entity of tag `tag'. If `primary' is set, only the primary nodes of the
* elements are taken into account for the barycenter calculation. If `fast'
* is set, the function returns the sum of the primary node coordinates
* (without normalizing by the number of nodes). If `tag' < 0, get the
* barycenters for all entities. If `numTasks' > 1, only compute and return
* the part of the data indexed by `task'. */
GMSH_API void gmshModelMeshGetBarycenters(const int elementType,
const int tag,
const int fast,
const int primary,
double ** barycenters, size_t * barycenters_n,
const size_t task,
const size_t numTasks,
int * ierr);
/* Preallocate data before calling `getBarycenters' with `numTasks' > 1. For C
* and C++ only. */
GMSH_API void gmshModelMeshPreallocateBarycenters(const int elementType,
double ** barycenters, size_t * barycenters_n,
const int tag,
int * ierr);
/* Get the nodes on the edges of all elements of type `elementType' classified
* on the entity of tag `tag'. `nodeTags' contains the node tags of the edges
* for all the elements: [e1a1n1, e1a1n2, e1a2n1, ...]. Data is returned by
* element, with elements in the same order as in `getElements' and
* `getElementsByType'. If `primary' is set, only the primary (begin/end)
* nodes of the edges are returned. If `tag' < 0, get the edge nodes for all
* entities. If `numTasks' > 1, only compute and return the part of the data
* indexed by `task'. */
GMSH_API void gmshModelMeshGetElementEdgeNodes(const int elementType,
size_t ** nodeTags, size_t * nodeTags_n,
const int tag,
const int primary,
const size_t task,
const size_t numTasks,
int * ierr);
/* Get the nodes on the faces of type `faceType' (3 for triangular faces, 4
* for quadrangular faces) of all elements of type `elementType' classified on
* the entity of tag `tag'. `nodeTags' contains the node tags of the faces for
* all elements: [e1f1n1, ..., e1f1nFaceType, e1f2n1, ...]. Data is returned
* by element, with elements in the same order as in `getElements' and
* `getElementsByType'. If `primary' is set, only the primary (corner) nodes
* of the faces are returned. If `tag' < 0, get the face nodes for all
* entities. If `numTasks' > 1, only compute and return the part of the data
* indexed by `task'. */
GMSH_API void gmshModelMeshGetElementFaceNodes(const int elementType,
const int faceType,
size_t ** nodeTags, size_t * nodeTags_n,
const int tag,
const int primary,
const size_t task,
const size_t numTasks,
int * ierr);
/* Get the ghost elements `elementTags' and their associated `partitions'
* stored in the ghost entity of dimension `dim' and tag `tag'. */
GMSH_API void gmshModelMeshGetGhostElements(const int dim,
const int tag,
size_t ** elementTags, size_t * elementTags_n,
int ** partitions, size_t * partitions_n,
int * ierr);
/* Set a mesh size constraint on the model entities `dimTags'. Currently only
* entities of dimension 0 (points) are handled. */
GMSH_API void gmshModelMeshSetSize(int * dimTags, size_t dimTags_n,
const double size,
int * ierr);
/* Set mesh size constraints at the given parametric points `parametricCoord'
* on the model entity of dimension `dim' and tag `tag'. Currently only
* entities of dimension 1 (lines) are handled. */
GMSH_API void gmshModelMeshSetSizeAtParametricPoints(const int dim,
const int tag,
double * parametricCoord, size_t parametricCoord_n,
double * sizes, size_t sizes_n,
int * ierr);
/* Set a global mesh size callback. The callback should take 5 arguments
* (`dim', `tag', `x', `y' and `z') and return the value of the mesh size at
* coordinates (`x', `y', `z'). */
GMSH_API void gmshModelMeshSetSizeCallback(double (*callback)(int dim, int tag, double x, double y, double z, void * data), void * callback_data,
int * ierr);
/* Remove the global mesh size callback. */
GMSH_API void gmshModelMeshRemoveSizeCallback(int * ierr);
/* Set a transfinite meshing constraint on the curve `tag', with `numNodes'
* nodes distributed according to `meshType' and `coef'. Currently supported
* types are "Progression" (geometrical progression with power `coef') and
* "Bump" (refinement toward both extremities of the curve). */
GMSH_API void gmshModelMeshSetTransfiniteCurve(const int tag,
const int numNodes,
const char * meshType,
const double coef,
int * ierr);
/* Set a transfinite meshing constraint on the surface `tag'. `arrangement'
* describes the arrangement of the triangles when the surface is not flagged
* as recombined: currently supported values are "Left", "Right",
* "AlternateLeft" and "AlternateRight". `cornerTags' can be used to specify
* the (3 or 4) corners of the transfinite interpolation explicitly;
* specifying the corners explicitly is mandatory if the surface has more that
* 3 or 4 points on its boundary. */
GMSH_API void gmshModelMeshSetTransfiniteSurface(const int tag,
const char * arrangement,
int * cornerTags, size_t cornerTags_n,
int * ierr);
/* Set a transfinite meshing constraint on the surface `tag'. `cornerTags' can
* be used to specify the (6 or 8) corners of the transfinite interpolation
* explicitly. */
GMSH_API void gmshModelMeshSetTransfiniteVolume(const int tag,
int * cornerTags, size_t cornerTags_n,
int * ierr);
/* Set transfinite meshing constraints on the model entities in `dimTag'.
* Transfinite meshing constraints are added to the curves of the quadrangular
* surfaces and to the faces of 6-sided volumes. Quadragular faces with a
* corner angle superior to `cornerAngle' (in radians) are ignored. The number
* of points is automatically determined from the sizing constraints. If
* `dimTag' is empty, the constraints are applied to all entities in the
* model. If `recombine' is true, the recombine flag is automatically set on
* the transfinite surfaces. */
GMSH_API void gmshModelMeshSetTransfiniteAutomatic(int * dimTags, size_t dimTags_n,
const double cornerAngle,
const int recombine,
int * ierr);
/* Set a recombination meshing constraint on the model entity of dimension
* `dim' and tag `tag'. Currently only entities of dimension 2 (to recombine
* triangles into quadrangles) are supported. */
GMSH_API void gmshModelMeshSetRecombine(const int dim,
const int tag,
int * ierr);
/* Set a smoothing meshing constraint on the model entity of dimension `dim'
* and tag `tag'. `val' iterations of a Laplace smoother are applied. */
GMSH_API void gmshModelMeshSetSmoothing(const int dim,
const int tag,
const int val,
int * ierr);
/* Set a reverse meshing constraint on the model entity of dimension `dim' and
* tag `tag'. If `val' is true, the mesh orientation will be reversed with
* respect to the natural mesh orientation (i.e. the orientation consistent
* with the orientation of the geometry). If `val' is false, the mesh is left
* as-is. */
GMSH_API void gmshModelMeshSetReverse(const int dim,
const int tag,
const int val,
int * ierr);
/* Set the meshing algorithm on the model entity of dimension `dim' and tag
* `tag'. Currently only supported for `dim' == 2. */
GMSH_API void gmshModelMeshSetAlgorithm(const int dim,
const int tag,
const int val,
int * ierr);
/* Force the mesh size to be extended from the boundary, or not, for the model
* entity of dimension `dim' and tag `tag'. Currently only supported for `dim'
* == 2. */
GMSH_API void gmshModelMeshSetSizeFromBoundary(const int dim,
const int tag,
const int val,
int * ierr);
/* Set a compound meshing constraint on the model entities of dimension `dim'
* and tags `tags'. During meshing, compound entities are treated as a single
* discrete entity, which is automatically reparametrized. */
GMSH_API void gmshModelMeshSetCompound(const int dim,
int * tags, size_t tags_n,
int * ierr);
/* Set meshing constraints on the bounding surfaces of the volume of tag `tag'
* so that all surfaces are oriented with outward pointing normals. Currently
* only available with the OpenCASCADE kernel, as it relies on the STL
* triangulation. */
GMSH_API void gmshModelMeshSetOutwardOrientation(const int tag,
int * ierr);
/* Embed the model entities of dimension `dim' and tags `tags' in the
* (`inDim', `inTag') model entity. The dimension `dim' can 0, 1 or 2 and must
* be strictly smaller than `inDim', which must be either 2 or 3. The embedded
* entities should not be part of the boundary of the entity `inTag', whose
* mesh will conform to the mesh of the embedded entities. */
GMSH_API void gmshModelMeshEmbed(const int dim,
int * tags, size_t tags_n,
const int inDim,
const int inTag,
int * ierr);
/* Remove embedded entities from the model entities `dimTags'. if `dim' is >=
* 0, only remove embedded entities of the given dimension (e.g. embedded
* points if `dim' == 0). */
GMSH_API void gmshModelMeshRemoveEmbedded(int * dimTags, size_t dimTags_n,
const int dim,
int * ierr);
/* Reorder the elements of type `elementType' classified on the entity of tag
* `tag' according to `ordering'. */
GMSH_API void gmshModelMeshReorderElements(const int elementType,
const int tag,
size_t * ordering, size_t ordering_n,
int * ierr);
/* Renumber the node tags in a continuous sequence. */
GMSH_API void gmshModelMeshRenumberNodes(int * ierr);
/* Renumber the element tags in a continuous sequence. */
GMSH_API void gmshModelMeshRenumberElements(int * ierr);
/* Set the meshes of the entities of dimension `dim' and tag `tags' as
* periodic copies of the meshes of entities `tagsMaster', using the affine
* transformation specified in `affineTransformation' (16 entries of a 4x4
* matrix, by row). If used after meshing, generate the periodic node
* correspondence information assuming the meshes of entities `tags'
* effectively match the meshes of entities `tagsMaster' (useful for
* structured and extruded meshes). Currently only available for @code{dim} ==
* 1 and @code{dim} == 2. */
GMSH_API void gmshModelMeshSetPeriodic(const int dim,
int * tags, size_t tags_n,
int * tagsMaster, size_t tagsMaster_n,
double * affineTransform, size_t affineTransform_n,
int * ierr);
/* Get the master entity `tagMaster', the node tags `nodeTags' and their
* corresponding master node tags `nodeTagsMaster', and the affine transform
* `affineTransform' for the entity of dimension `dim' and tag `tag'. If
* `includeHighOrderNodes' is set, include high-order nodes in the returned
* data. */
GMSH_API void gmshModelMeshGetPeriodicNodes(const int dim,
const int tag,
int * tagMaster,
size_t ** nodeTags, size_t * nodeTags_n,
size_t ** nodeTagsMaster, size_t * nodeTagsMaster_n,
double ** affineTransform, size_t * affineTransform_n,
const int includeHighOrderNodes,
int * ierr);
/* Remove duplicate nodes in the mesh of the current model. */
GMSH_API void gmshModelMeshRemoveDuplicateNodes(int * ierr);
/* Split (into two triangles) all quadrangles in surface `tag' whose quality
* is lower than `quality'. If `tag' < 0, split quadrangles in all surfaces. */
GMSH_API void gmshModelMeshSplitQuadrangles(const double quality,
const int tag,
int * ierr);
/* Classify ("color") the surface mesh based on the angle threshold `angle'
* (in radians), and create new discrete surfaces, curves and points
* accordingly. If `boundary' is set, also create discrete curves on the
* boundary if the surface is open. If `forReparametrization' is set, create
* edges and surfaces that can be reparametrized using a single map. If
* `curveAngle' is less than Pi, also force curves to be split according to
* `curveAngle'. */
GMSH_API void gmshModelMeshClassifySurfaces(const double angle,
const int boundary,
const int forReparametrization,
const double curveAngle,
int * ierr);
/* Create a geometry for the discrete entities `dimTags' (represented solely
* by a mesh, without an underlying CAD description), i.e. create a
* parametrization for discrete curves and surfaces, assuming that each can be
* parametrized with a single map. If `dimTags' is empty, create a geometry
* for all the discrete entities. */
GMSH_API void gmshModelMeshCreateGeometry(int * dimTags, size_t dimTags_n,
int * ierr);
/* Create a boundary representation from the mesh if the model does not have
* one (e.g. when imported from mesh file formats with no BRep representation
* of the underlying model). If `makeSimplyConnected' is set, enforce simply
* connected discrete surfaces and volumes. If `exportDiscrete' is set, clear
* any built-in CAD kernel entities and export the discrete entities in the
* built-in CAD kernel. */
GMSH_API void gmshModelMeshCreateTopology(const int makeSimplyConnected,
const int exportDiscrete,
int * ierr);
/* Compute a basis representation for homology spaces after a mesh has been
* generated. The computation domain is given in a list of physical group tags
* `domainTags'; if empty, the whole mesh is the domain. The computation
* subdomain for relative homology computation is given in a list of physical
* group tags `subdomainTags'; if empty, absolute homology is computed. The
* dimensions homology bases to be computed are given in the list `dim'; if
* empty, all bases are computed. Resulting basis representation chains are
* stored as physical groups in the mesh. */
GMSH_API void gmshModelMeshComputeHomology(int * domainTags, size_t domainTags_n,
int * subdomainTags, size_t subdomainTags_n,
int * dims, size_t dims_n,
int * ierr);
/* Compute a basis representation for cohomology spaces after a mesh has been
* generated. The computation domain is given in a list of physical group tags
* `domainTags'; if empty, the whole mesh is the domain. The computation
* subdomain for relative cohomology computation is given in a list of
* physical group tags `subdomainTags'; if empty, absolute cohomology is
* computed. The dimensions homology bases to be computed are given in the
* list `dim'; if empty, all bases are computed. Resulting basis
* representation cochains are stored as physical groups in the mesh. */
GMSH_API void gmshModelMeshComputeCohomology(int * domainTags, size_t domainTags_n,
int * subdomainTags, size_t subdomainTags_n,
int * dims, size_t dims_n,
int * ierr);
/* Compute a cross field for the current mesh. The function creates 3 views:
* the H function, the Theta function and cross directions. Return the tags of
* the views */
GMSH_API void gmshModelMeshComputeCrossField(int ** viewTags, size_t * viewTags_n,
int * ierr);
/* Add a new mesh size field of type `fieldType'. If `tag' is positive, assign
* the tag explicitly; otherwise a new tag is assigned automatically. Return
* the field tag. */
GMSH_API int gmshModelMeshFieldAdd(const char * fieldType,
const int tag,
int * ierr);
/* Remove the field with tag `tag'. */
GMSH_API void gmshModelMeshFieldRemove(const int tag,
int * ierr);
/* Set the numerical option `option' to value `value' for field `tag'. */
GMSH_API void gmshModelMeshFieldSetNumber(const int tag,
const char * option,
const double value,
int * ierr);
/* Set the string option `option' to value `value' for field `tag'. */
GMSH_API void gmshModelMeshFieldSetString(const int tag,
const char * option,
const char * value,
int * ierr);
/* Set the numerical list option `option' to value `value' for field `tag'. */
GMSH_API void gmshModelMeshFieldSetNumbers(const int tag,
const char * option,
double * value, size_t value_n,
int * ierr);
/* Set the field `tag' as the background mesh size field. */
GMSH_API void gmshModelMeshFieldSetAsBackgroundMesh(const int tag,
int * ierr);
/* Set the field `tag' as a boundary layer size field. */
GMSH_API void gmshModelMeshFieldSetAsBoundaryLayer(const int tag,
int * ierr);
/* Add a geometrical point in the built-in CAD representation, at coordinates
* (`x', `y', `z'). If `meshSize' is > 0, add a meshing constraint at that
* point. If `tag' is positive, set the tag explicitly; otherwise a new tag is
* selected automatically. Return the tag of the point. (Note that the point
* will be added in the current model only after `synchronize' is called. This
* behavior holds for all the entities added in the geo module.) */
GMSH_API int gmshModelGeoAddPoint(const double x,
const double y,
const double z,
const double meshSize,
const int tag,
int * ierr);
/* Add a straight line segment in the built-in CAD representation, between the
* two points with tags `startTag' and `endTag'. If `tag' is positive, set the
* tag explicitly; otherwise a new tag is selected automatically. Return the
* tag of the line. */
GMSH_API int gmshModelGeoAddLine(const int startTag,
const int endTag,
const int tag,
int * ierr);
/* Add a circle arc (strictly smaller than Pi) in the built-in CAD
* representation, between the two points with tags `startTag' and `endTag',
* and with center `centerTag'. If `tag' is positive, set the tag explicitly;
* otherwise a new tag is selected automatically. If (`nx', `ny', `nz') != (0,
* 0, 0), explicitly set the plane of the circle arc. Return the tag of the
* circle arc. */
GMSH_API int gmshModelGeoAddCircleArc(const int startTag,
const int centerTag,
const int endTag,
const int tag,
const double nx,
const double ny,
const double nz,
int * ierr);
/* Add an ellipse arc (strictly smaller than Pi) in the built-in CAD
* representation, between the two points `startTag' and `endTag', and with
* center `centerTag' and major axis point `majorTag'. If `tag' is positive,
* set the tag explicitly; otherwise a new tag is selected automatically. If
* (`nx', `ny', `nz') != (0, 0, 0), explicitly set the plane of the circle
* arc. Return the tag of the ellipse arc. */
GMSH_API int gmshModelGeoAddEllipseArc(const int startTag,
const int centerTag,
const int majorTag,
const int endTag,
const int tag,
const double nx,
const double ny,
const double nz,
int * ierr);
/* Add a spline (Catmull-Rom) curve in the built-in CAD representation, going
* through the points `pointTags'. If `tag' is positive, set the tag
* explicitly; otherwise a new tag is selected automatically. Create a
* periodic curve if the first and last points are the same. Return the tag of
* the spline curve. */
GMSH_API int gmshModelGeoAddSpline(int * pointTags, size_t pointTags_n,
const int tag,
int * ierr);
/* Add a cubic b-spline curve in the built-in CAD representation, with
* `pointTags' control points. If `tag' is positive, set the tag explicitly;
* otherwise a new tag is selected automatically. Creates a periodic curve if
* the first and last points are the same. Return the tag of the b-spline
* curve. */
GMSH_API int gmshModelGeoAddBSpline(int * pointTags, size_t pointTags_n,
const int tag,
int * ierr);
/* Add a Bezier curve in the built-in CAD representation, with `pointTags'
* control points. If `tag' is positive, set the tag explicitly; otherwise a
* new tag is selected automatically. Return the tag of the Bezier curve. */
GMSH_API int gmshModelGeoAddBezier(int * pointTags, size_t pointTags_n,
const int tag,
int * ierr);
/* Add a polyline curve in the built-in CAD representation, going through the
* points `pointTags'. If `tag' is positive, set the tag explicitly; otherwise
* a new tag is selected automatically. Create a periodic curve if the first
* and last points are the same. Return the tag of the polyline curve. */
GMSH_API int gmshModelGeoAddPolyline(int * pointTags, size_t pointTags_n,
const int tag,
int * ierr);
/* Add a spline (Catmull-Rom) curve in the built-in CAD representation, going
* through points sampling the curves in `curveTags'. The density of sampling
* points on each curve is governed by `numIntervals'. If `tag' is positive,
* set the tag explicitly; otherwise a new tag is selected automatically.
* Return the tag of the spline. */
GMSH_API int gmshModelGeoAddCompoundSpline(int * curveTags, size_t curveTags_n,
const int numIntervals,
const int tag,
int * ierr);
/* Add a b-spline curve in the built-in CAD representation, with control
* points sampling the curves in `curveTags'. The density of sampling points
* on each curve is governed by `numIntervals'. If `tag' is positive, set the
* tag explicitly; otherwise a new tag is selected automatically. Return the
* tag of the b-spline. */
GMSH_API int gmshModelGeoAddCompoundBSpline(int * curveTags, size_t curveTags_n,
const int numIntervals,
const int tag,
int * ierr);
/* Add a curve loop (a closed wire) in the built-in CAD representation, formed
* by the curves `curveTags'. `curveTags' should contain (signed) tags of
* model entities of dimension 1 forming a closed loop: a negative tag
* signifies that the underlying curve is considered with reversed
* orientation. If `tag' is positive, set the tag explicitly; otherwise a new
* tag is selected automatically. If `reorient' is set, automatically reorient
* the curves if necessary. Return the tag of the curve loop. */
GMSH_API int gmshModelGeoAddCurveLoop(int * curveTags, size_t curveTags_n,
const int tag,
const int reorient,
int * ierr);
/* Add a plane surface in the built-in CAD representation, defined by one or
* more curve loops `wireTags'. The first curve loop defines the exterior
* contour; additional curve loop define holes. If `tag' is positive, set the
* tag explicitly; otherwise a new tag is selected automatically. Return the
* tag of the surface. */
GMSH_API int gmshModelGeoAddPlaneSurface(int * wireTags, size_t wireTags_n,
const int tag,
int * ierr);
/* Add a surface in the built-in CAD representation, filling the curve loops
* in `wireTags' using transfinite interpolation. Currently only a single
* curve loop is supported; this curve loop should be composed by 3 or 4
* curves only. If `tag' is positive, set the tag explicitly; otherwise a new
* tag is selected automatically. Return the tag of the surface. */
GMSH_API int gmshModelGeoAddSurfaceFilling(int * wireTags, size_t wireTags_n,
const int tag,
const int sphereCenterTag,
int * ierr);
/* Add a surface loop (a closed shell) formed by `surfaceTags' in the built-in
* CAD representation. If `tag' is positive, set the tag explicitly;
* otherwise a new tag is selected automatically. Return the tag of the shell. */
GMSH_API int gmshModelGeoAddSurfaceLoop(int * surfaceTags, size_t surfaceTags_n,
const int tag,
int * ierr);
/* Add a volume (a region) in the built-in CAD representation, defined by one
* or more shells `shellTags'. The first surface loop defines the exterior
* boundary; additional surface loop define holes. If `tag' is positive, set
* the tag explicitly; otherwise a new tag is selected automatically. Return
* the tag of the volume. */
GMSH_API int gmshModelGeoAddVolume(int * shellTags, size_t shellTags_n,
const int tag,
int * ierr);
/* Extrude the entities `dimTags' in the built-in CAD representation, using a
* translation along (`dx', `dy', `dz'). Return extruded entities in
* `outDimTags'. If `numElements' is not empty, also extrude the mesh: the
* entries in `numElements' give the number of elements in each layer. If
* `height' is not empty, it provides the (cumulative) height of the different
* layers, normalized to 1. If `dx' == `dy' == `dz' == 0, the entities are
* extruded along their normal. */
GMSH_API void gmshModelGeoExtrude(int * dimTags, size_t dimTags_n,
const double dx,
const double dy,
const double dz,
int ** outDimTags, size_t * outDimTags_n,
int * numElements, size_t numElements_n,
double * heights, size_t heights_n,
const int recombine,
int * ierr);
/* Extrude the entities `dimTags' in the built-in CAD representation, using a
* rotation of `angle' radians around the axis of revolution defined by the
* point (`x', `y', `z') and the direction (`ax', `ay', `az'). The angle
* should be strictly smaller than Pi. Return extruded entities in
* `outDimTags'. If `numElements' is not empty, also extrude the mesh: the
* entries in `numElements' give the number of elements in each layer. If
* `height' is not empty, it provides the (cumulative) height of the different
* layers, normalized to 1. */
GMSH_API void gmshModelGeoRevolve(int * dimTags, size_t dimTags_n,
const double x,
const double y,
const double z,
const double ax,
const double ay,
const double az,
const double angle,
int ** outDimTags, size_t * outDimTags_n,
int * numElements, size_t numElements_n,
double * heights, size_t heights_n,
const int recombine,
int * ierr);
/* Extrude the entities `dimTags' in the built-in CAD representation, using a
* combined translation and rotation of `angle' radians, along (`dx', `dy',
* `dz') and around the axis of revolution defined by the point (`x', `y',
* `z') and the direction (`ax', `ay', `az'). The angle should be strictly
* smaller than Pi. Return extruded entities in `outDimTags'. If `numElements'
* is not empty, also extrude the mesh: the entries in `numElements' give the
* number of elements in each layer. If `height' is not empty, it provides the
* (cumulative) height of the different layers, normalized to 1. */
GMSH_API void gmshModelGeoTwist(int * dimTags, size_t dimTags_n,
const double x,
const double y,
const double z,
const double dx,
const double dy,
const double dz,
const double ax,
const double ay,
const double az,
const double angle,
int ** outDimTags, size_t * outDimTags_n,
int * numElements, size_t numElements_n,
double * heights, size_t heights_n,
const int recombine,
int * ierr);
/* Translate the entities `dimTags' in the built-in CAD representation along
* (`dx', `dy', `dz'). */
GMSH_API void gmshModelGeoTranslate(int * dimTags, size_t dimTags_n,
const double dx,
const double dy,
const double dz,
int * ierr);
/* Rotate the entities `dimTags' in the built-in CAD representation by `angle'
* radians around the axis of revolution defined by the point (`x', `y', `z')
* and the direction (`ax', `ay', `az'). */
GMSH_API void gmshModelGeoRotate(int * dimTags, size_t dimTags_n,
const double x,
const double y,
const double z,
const double ax,
const double ay,
const double az,
const double angle,
int * ierr);
/* Scale the entities `dimTag' in the built-in CAD representation by factors
* `a', `b' and `c' along the three coordinate axes; use (`x', `y', `z') as
* the center of the homothetic transformation. */
GMSH_API void gmshModelGeoDilate(int * dimTags, size_t dimTags_n,
const double x,
const double y,
const double z,
const double a,
const double b,
const double c,
int * ierr);
/* Mirror the entities `dimTag' in the built-in CAD representation, with
* respect to the plane of equation `a' * x + `b' * y + `c' * z + `d' = 0. */
GMSH_API void gmshModelGeoMirror(int * dimTags, size_t dimTags_n,
const double a,
const double b,
const double c,
const double d,
int * ierr);
/* Mirror the entities `dimTag' in the built-in CAD representation, with
* respect to the plane of equation `a' * x + `b' * y + `c' * z + `d' = 0.
* (This is a synonym for `mirror', which will be deprecated in a future
* release.) */
GMSH_API void gmshModelGeoSymmetrize(int * dimTags, size_t dimTags_n,
const double a,
const double b,
const double c,
const double d,
int * ierr);
/* Copy the entities `dimTags' in the built-in CAD representation; the new
* entities are returned in `outDimTags'. */
GMSH_API void gmshModelGeoCopy(int * dimTags, size_t dimTags_n,
int ** outDimTags, size_t * outDimTags_n,
int * ierr);
/* Remove the entities `dimTags' in the built-in CAD representation. If
* `recursive' is true, remove all the entities on their boundaries, down to
* dimension 0. */
GMSH_API void gmshModelGeoRemove(int * dimTags, size_t dimTags_n,
const int recursive,
int * ierr);
/* Remove all duplicate entities in the built-in CAD representation (different
* entities at the same geometrical location). */
GMSH_API void gmshModelGeoRemoveAllDuplicates(int * ierr);
/* Split the curve of tag `tag' in the built-in CAD representation, on the
* control points `pointTags'. Return the tags `curveTags' of the newly
* created curves. */
GMSH_API void gmshModelGeoSplitCurve(const int tag,
int * pointTags, size_t pointTags_n,
int ** curveTags, size_t * curveTags_n,
int * ierr);
/* Get the maximum tag of entities of dimension `dim' in the built-in CAD
* representation. */
GMSH_API int gmshModelGeoGetMaxTag(const int dim,
int * ierr);
/* Set the maximum tag `maxTag' for entities of dimension `dim' in the built-
* in CAD representation. */
GMSH_API void gmshModelGeoSetMaxTag(const int dim,
const int maxTag,
int * ierr);
/* Add a physical group of dimension `dim', grouping the entities with tags
* `tags' in the built-in CAD representation. Return the tag of the physical
* group, equal to `tag' if `tag' is positive, or a new tag if `tag' < 0. */
GMSH_API int gmshModelGeoAddPhysicalGroup(const int dim,
int * tags, size_t tags_n,
const int tag,
int * ierr);
/* Remove the physical groups `dimTags' from the built-in CAD representation.
* If `dimTags' is empty, remove all groups. */
GMSH_API void gmshModelGeoRemovePhysicalGroups(int * dimTags, size_t dimTags_n,
int * ierr);
/* Synchronize the built-in CAD representation with the current Gmsh model.
* This can be called at any time, but since it involves a non trivial amount
* of processing, the number of synchronization points should normally be
* minimized. Without synchronization the entities in the built-in CAD
* representation are not available to any function outside of the built-in
* CAD kernel functions. */
GMSH_API void gmshModelGeoSynchronize(int * ierr);
/* Set a mesh size constraint on the entities `dimTags' in the built-in CAD
* kernel representation. Currently only entities of dimension 0 (points) are
* handled. */
GMSH_API void gmshModelGeoMeshSetSize(int * dimTags, size_t dimTags_n,
const double size,
int * ierr);
/* Set a transfinite meshing constraint on the curve `tag' in the built-in CAD
* kernel representation, with `numNodes' nodes distributed according to
* `meshType' and `coef'. Currently supported types are "Progression"
* (geometrical progression with power `coef') and "Bump" (refinement toward
* both extremities of the curve). */
GMSH_API void gmshModelGeoMeshSetTransfiniteCurve(const int tag,
const int nPoints,
const char * meshType,
const double coef,
int * ierr);
/* Set a transfinite meshing constraint on the surface `tag' in the built-in
* CAD kernel representation. `arrangement' describes the arrangement of the
* triangles when the surface is not flagged as recombined: currently
* supported values are "Left", "Right", "AlternateLeft" and "AlternateRight".
* `cornerTags' can be used to specify the (3 or 4) corners of the transfinite
* interpolation explicitly; specifying the corners explicitly is mandatory if
* the surface has more that 3 or 4 points on its boundary. */
GMSH_API void gmshModelGeoMeshSetTransfiniteSurface(const int tag,
const char * arrangement,
int * cornerTags, size_t cornerTags_n,
int * ierr);
/* Set a transfinite meshing constraint on the surface `tag' in the built-in
* CAD kernel representation. `cornerTags' can be used to specify the (6 or 8)
* corners of the transfinite interpolation explicitly. */
GMSH_API void gmshModelGeoMeshSetTransfiniteVolume(const int tag,
int * cornerTags, size_t cornerTags_n,
int * ierr);
/* Set a recombination meshing constraint on the entity of dimension `dim' and
* tag `tag' in the built-in CAD kernel representation. Currently only
* entities of dimension 2 (to recombine triangles into quadrangles) are
* supported. */
GMSH_API void gmshModelGeoMeshSetRecombine(const int dim,
const int tag,
const double angle,
int * ierr);
/* Set a smoothing meshing constraint on the entity of dimension `dim' and tag
* `tag' in the built-in CAD kernel representation. `val' iterations of a
* Laplace smoother are applied. */
GMSH_API void gmshModelGeoMeshSetSmoothing(const int dim,
const int tag,
const int val,
int * ierr);
/* Set a reverse meshing constraint on the entity of dimension `dim' and tag
* `tag' in the built-in CAD kernel representation. If `val' is true, the mesh
* orientation will be reversed with respect to the natural mesh orientation
* (i.e. the orientation consistent with the orientation of the geometry). If
* `val' is false, the mesh is left as-is. */
GMSH_API void gmshModelGeoMeshSetReverse(const int dim,
const int tag,
const int val,
int * ierr);
/* Set the meshing algorithm on the entity of dimension `dim' and tag `tag' in
* the built-in CAD kernel representation. Currently only supported for `dim'
* == 2. */
GMSH_API void gmshModelGeoMeshSetAlgorithm(const int dim,
const int tag,
const int val,
int * ierr);
/* Force the mesh size to be extended from the boundary, or not, for the
* entity of dimension `dim' and tag `tag' in the built-in CAD kernel
* representation. Currently only supported for `dim' == 2. */
GMSH_API void gmshModelGeoMeshSetSizeFromBoundary(const int dim,
const int tag,
const int val,
int * ierr);
/* Add a geometrical point in the OpenCASCADE CAD representation, at
* coordinates (`x', `y', `z'). If `meshSize' is > 0, add a meshing constraint
* at that point. If `tag' is positive, set the tag explicitly; otherwise a
* new tag is selected automatically. Return the tag of the point. (Note that
* the point will be added in the current model only after `synchronize' is
* called. This behavior holds for all the entities added in the occ module.) */
GMSH_API int gmshModelOccAddPoint(const double x,
const double y,
const double z,
const double meshSize,
const int tag,
int * ierr);
/* Add a straight line segment in the OpenCASCADE CAD representation, between
* the two points with tags `startTag' and `endTag'. If `tag' is positive, set
* the tag explicitly; otherwise a new tag is selected automatically. Return
* the tag of the line. */
GMSH_API int gmshModelOccAddLine(const int startTag,
const int endTag,
const int tag,
int * ierr);
/* Add a circle arc in the OpenCASCADE CAD representation, between the two
* points with tags `startTag' and `endTag', with center `centerTag'. If `tag'
* is positive, set the tag explicitly; otherwise a new tag is selected
* automatically. Return the tag of the circle arc. */
GMSH_API int gmshModelOccAddCircleArc(const int startTag,
const int centerTag,
const int endTag,
const int tag,
int * ierr);
/* Add a circle of center (`x', `y', `z') and radius `r' in the OpenCASCADE
* CAD representation. If `tag' is positive, set the tag explicitly; otherwise
* a new tag is selected automatically. If `angle1' and `angle2' are
* specified, create a circle arc between the two angles. Return the tag of
* the circle. */
GMSH_API int gmshModelOccAddCircle(const double x,
const double y,
const double z,
const double r,
const int tag,
const double angle1,
const double angle2,
int * ierr);
/* Add an ellipse arc in the OpenCASCADE CAD representation, between the two
* points `startTag' and `endTag', and with center `centerTag' and major axis
* point `majorTag'. If `tag' is positive, set the tag explicitly; otherwise a
* new tag is selected automatically. Return the tag of the ellipse arc. Note
* that OpenCASCADE does not allow creating ellipse arcs with the major radius
* smaller than the minor radius. */
GMSH_API int gmshModelOccAddEllipseArc(const int startTag,
const int centerTag,
const int majorTag,
const int endTag,
const int tag,
int * ierr);
/* Add an ellipse of center (`x', `y', `z') and radii `r1' and `r2' along the
* x- and y-axes, respectively, in the OpenCASCADE CAD representation. If
* `tag' is positive, set the tag explicitly; otherwise a new tag is selected
* automatically. If `angle1' and `angle2' are specified, create an ellipse
* arc between the two angles. Return the tag of the ellipse. Note that
* OpenCASCADE does not allow creating ellipses with the major radius (along
* the x-axis) smaller than or equal to the minor radius (along the y-axis):
* rotate the shape or use `addCircle' in such cases. */
GMSH_API int gmshModelOccAddEllipse(const double x,
const double y,
const double z,
const double r1,
const double r2,
const int tag,
const double angle1,
const double angle2,
int * ierr);
/* Add a spline (C2 b-spline) curve in the OpenCASCADE CAD representation,
* going through the points `pointTags'. If `tag' is positive, set the tag
* explicitly; otherwise a new tag is selected automatically. Create a
* periodic curve if the first and last points are the same. Return the tag of
* the spline curve. */
GMSH_API int gmshModelOccAddSpline(int * pointTags, size_t pointTags_n,
const int tag,
int * ierr);
/* Add a b-spline curve of degree `degree' in the OpenCASCADE CAD
* representation, with `pointTags' control points. If `weights', `knots' or
* `multiplicities' are not provided, default parameters are computed
* automatically. If `tag' is positive, set the tag explicitly; otherwise a
* new tag is selected automatically. Create a periodic curve if the first and
* last points are the same. Return the tag of the b-spline curve. */
GMSH_API int gmshModelOccAddBSpline(int * pointTags, size_t pointTags_n,
const int tag,
const int degree,
double * weights, size_t weights_n,
double * knots, size_t knots_n,
int * multiplicities, size_t multiplicities_n,
int * ierr);
/* Add a Bezier curve in the OpenCASCADE CAD representation, with `pointTags'
* control points. If `tag' is positive, set the tag explicitly; otherwise a
* new tag is selected automatically. Return the tag of the Bezier curve. */
GMSH_API int gmshModelOccAddBezier(int * pointTags, size_t pointTags_n,
const int tag,
int * ierr);
/* Add a wire (open or closed) in the OpenCASCADE CAD representation, formed
* by the curves `curveTags'. Note that an OpenCASCADE wire can be made of
* curves that share geometrically identical (but topologically different)
* points. If `tag' is positive, set the tag explicitly; otherwise a new tag
* is selected automatically. Return the tag of the wire. */
GMSH_API int gmshModelOccAddWire(int * curveTags, size_t curveTags_n,
const int tag,
const int checkClosed,
int * ierr);
/* Add a curve loop (a closed wire) in the OpenCASCADE CAD representation,
* formed by the curves `curveTags'. `curveTags' should contain tags of curves
* forming a closed loop. Note that an OpenCASCADE curve loop can be made of
* curves that share geometrically identical (but topologically different)
* points. If `tag' is positive, set the tag explicitly; otherwise a new tag
* is selected automatically. Return the tag of the curve loop. */
GMSH_API int gmshModelOccAddCurveLoop(int * curveTags, size_t curveTags_n,
const int tag,
int * ierr);
/* Add a rectangle in the OpenCASCADE CAD representation, with lower left
* corner at (`x', `y', `z') and upper right corner at (`x' + `dx', `y' +
* `dy', `z'). If `tag' is positive, set the tag explicitly; otherwise a new
* tag is selected automatically. Round the corners if `roundedRadius' is
* nonzero. Return the tag of the rectangle. */
GMSH_API int gmshModelOccAddRectangle(const double x,
const double y,
const double z,
const double dx,
const double dy,
const int tag,
const double roundedRadius,
int * ierr);
/* Add a disk in the OpenCASCADE CAD representation, with center (`xc', `yc',
* `zc') and radius `rx' along the x-axis and `ry' along the y-axis. If `tag'
* is positive, set the tag explicitly; otherwise a new tag is selected
* automatically. Return the tag of the disk. */
GMSH_API int gmshModelOccAddDisk(const double xc,
const double yc,
const double zc,
const double rx,
const double ry,
const int tag,
int * ierr);
/* Add a plane surface in the OpenCASCADE CAD representation, defined by one
* or more curve loops (or closed wires) `wireTags'. The first curve loop
* defines the exterior contour; additional curve loop define holes. If `tag'
* is positive, set the tag explicitly; otherwise a new tag is selected
* automatically. Return the tag of the surface. */
GMSH_API int gmshModelOccAddPlaneSurface(int * wireTags, size_t wireTags_n,
const int tag,
int * ierr);
/* Add a surface in the OpenCASCADE CAD representation, filling the curve loop
* `wireTag'. If `tag' is positive, set the tag explicitly; otherwise a new
* tag is selected automatically. Return the tag of the surface. If
* `pointTags' are provided, force the surface to pass through the given
* points. */
GMSH_API int gmshModelOccAddSurfaceFilling(const int wireTag,
const int tag,
int * pointTags, size_t pointTags_n,
int * ierr);
/* Add a BSpline surface in the OpenCASCADE CAD representation, filling the
* curve loop `wireTag'. The curve loop should be made of 2, 3 or 4 BSpline
* curves. The optional `type' argument specifies the type of filling:
* "Stretch" creates the flattest patch, "Curved" (the default) creates the
* most rounded patch, and "Coons" creates a rounded patch with less depth
* than "Curved". If `tag' is positive, set the tag explicitly; otherwise a
* new tag is selected automatically. Return the tag of the surface. */
GMSH_API int gmshModelOccAddBSplineFilling(const int wireTag,
const int tag,
const char * type,
int * ierr);
/* Add a Bezier surface in the OpenCASCADE CAD representation, filling the
* curve loop `wireTag'. The curve loop should be made of 2, 3 or 4 Bezier
* curves. The optional `type' argument specifies the type of filling:
* "Stretch" creates the flattest patch, "Curved" (the default) creates the
* most rounded patch, and "Coons" creates a rounded patch with less depth
* than "Curved". If `tag' is positive, set the tag explicitly; otherwise a
* new tag is selected automatically. Return the tag of the surface. */
GMSH_API int gmshModelOccAddBezierFilling(const int wireTag,
const int tag,
const char * type,
int * ierr);
/* Add a b-spline surface of degree `degreeU' x `degreeV' in the OpenCASCADE
* CAD representation, with `pointTags' control points given as a single
* vector [Pu1v1, ... Pu`numPointsU'v1, Pu1v2, ...]. If `weights', `knotsU',
* `knotsV', `multiplicitiesU' or `multiplicitiesV' are not provided, default
* parameters are computed automatically. If `tag' is positive, set the tag
* explicitly; otherwise a new tag is selected automatically. Return the tag
* of the b-spline surface. */
GMSH_API int gmshModelOccAddBSplineSurface(int * pointTags, size_t pointTags_n,
const int numPointsU,
const int tag,
const int degreeU,
const int degreeV,
double * weights, size_t weights_n,
double * knotsU, size_t knotsU_n,
double * knotsV, size_t knotsV_n,
int * multiplicitiesU, size_t multiplicitiesU_n,
int * multiplicitiesV, size_t multiplicitiesV_n,
int * ierr);
/* Add a Bezier surface in the OpenCASCADE CAD representation, with
* `pointTags' control points given as a single vector [Pu1v1, ...
* Pu`numPointsU'v1, Pu1v2, ...]. If `tag' is positive, set the tag
* explicitly; otherwise a new tag is selected automatically. Return the tag
* of the b-spline surface. */
GMSH_API int gmshModelOccAddBezierSurface(int * pointTags, size_t pointTags_n,
const int numPointsU,
const int tag,
int * ierr);
/* Add a surface loop (a closed shell) in the OpenCASCADE CAD representation,
* formed by `surfaceTags'. If `tag' is positive, set the tag explicitly;
* otherwise a new tag is selected automatically. Return the tag of the
* surface loop. Setting `sewing' allows to build a shell made of surfaces
* that share geometrically identical (but topologically different) curves. */
GMSH_API int gmshModelOccAddSurfaceLoop(int * surfaceTags, size_t surfaceTags_n,
const int tag,
const int sewing,
int * ierr);
/* Add a volume (a region) in the OpenCASCADE CAD representation, defined by
* one or more surface loops `shellTags'. The first surface loop defines the
* exterior boundary; additional surface loop define holes. If `tag' is
* positive, set the tag explicitly; otherwise a new tag is selected
* automatically. Return the tag of the volume. */
GMSH_API int gmshModelOccAddVolume(int * shellTags, size_t shellTags_n,
const int tag,
int * ierr);
/* Add a sphere of center (`xc', `yc', `zc') and radius `r' in the OpenCASCADE
* CAD representation. The optional `angle1' and `angle2' arguments define the
* polar angle opening (from -Pi/2 to Pi/2). The optional `angle3' argument
* defines the azimuthal opening (from 0 to 2*Pi). If `tag' is positive, set
* the tag explicitly; otherwise a new tag is selected automatically. Return
* the tag of the sphere. */
GMSH_API int gmshModelOccAddSphere(const double xc,
const double yc,
const double zc,
const double radius,
const int tag,
const double angle1,
const double angle2,
const double angle3,
int * ierr);
/* Add a parallelepipedic box in the OpenCASCADE CAD representation, defined
* by a point (`x', `y', `z') and the extents along the x-, y- and z-axes. If
* `tag' is positive, set the tag explicitly; otherwise a new tag is selected
* automatically. Return the tag of the box. */
GMSH_API int gmshModelOccAddBox(const double x,
const double y,
const double z,
const double dx,
const double dy,
const double dz,
const int tag,
int * ierr);
/* Add a cylinder in the OpenCASCADE CAD representation, defined by the center
* (`x', `y', `z') of its first circular face, the 3 components (`dx', `dy',
* `dz') of the vector defining its axis and its radius `r'. The optional
* `angle' argument defines the angular opening (from 0 to 2*Pi). If `tag' is
* positive, set the tag explicitly; otherwise a new tag is selected
* automatically. Return the tag of the cylinder. */
GMSH_API int gmshModelOccAddCylinder(const double x,
const double y,
const double z,
const double dx,
const double dy,
const double dz,
const double r,
const int tag,
const double angle,
int * ierr);
/* Add a cone in the OpenCASCADE CAD representation, defined by the center
* (`x', `y', `z') of its first circular face, the 3 components of the vector
* (`dx', `dy', `dz') defining its axis and the two radii `r1' and `r2' of the
* faces (these radii can be zero). If `tag' is positive, set the tag
* explicitly; otherwise a new tag is selected automatically. `angle' defines
* the optional angular opening (from 0 to 2*Pi). Return the tag of the cone. */
GMSH_API int gmshModelOccAddCone(const double x,
const double y,
const double z,
const double dx,
const double dy,
const double dz,
const double r1,
const double r2,
const int tag,
const double angle,
int * ierr);
/* Add a right angular wedge in the OpenCASCADE CAD representation, defined by
* the right-angle point (`x', `y', `z') and the 3 extends along the x-, y-
* and z-axes (`dx', `dy', `dz'). If `tag' is positive, set the tag
* explicitly; otherwise a new tag is selected automatically. The optional
* argument `ltx' defines the top extent along the x-axis. Return the tag of
* the wedge. */
GMSH_API int gmshModelOccAddWedge(const double x,
const double y,
const double z,
const double dx,
const double dy,
const double dz,
const int tag,
const double ltx,
int * ierr);
/* Add a torus in the OpenCASCADE CAD representation, defined by its center
* (`x', `y', `z') and its 2 radii `r' and `r2'. If `tag' is positive, set the
* tag explicitly; otherwise a new tag is selected automatically. The optional
* argument `angle' defines the angular opening (from 0 to 2*Pi). Return the
* tag of the wedge. */
GMSH_API int gmshModelOccAddTorus(const double x,
const double y,
const double z,
const double r1,
const double r2,
const int tag,
const double angle,
int * ierr);
/* Add a volume (if the optional argument `makeSolid' is set) or surfaces in
* the OpenCASCADE CAD representation, defined through the open or closed
* wires `wireTags'. If `tag' is positive, set the tag explicitly; otherwise a
* new tag is selected automatically. The new entities are returned in
* `outDimTags'. If the optional argument `makeRuled' is set, the surfaces
* created on the boundary are forced to be ruled surfaces. If `maxDegree' is
* positive, set the maximal degree of resulting surface. */
GMSH_API void gmshModelOccAddThruSections(int * wireTags, size_t wireTags_n,
int ** outDimTags, size_t * outDimTags_n,
const int tag,
const int makeSolid,
const int makeRuled,
const int maxDegree,
int * ierr);
/* Add a hollowed volume in the OpenCASCADE CAD representation, built from an
* initial volume `volumeTag' and a set of faces from this volume
* `excludeSurfaceTags', which are to be removed. The remaining faces of the
* volume become the walls of the hollowed solid, with thickness `offset'. If
* `tag' is positive, set the tag explicitly; otherwise a new tag is selected
* automatically. */
GMSH_API void gmshModelOccAddThickSolid(const int volumeTag,
int * excludeSurfaceTags, size_t excludeSurfaceTags_n,
const double offset,
int ** outDimTags, size_t * outDimTags_n,
const int tag,
int * ierr);
/* Extrude the entities `dimTags' in the OpenCASCADE CAD representation, using
* a translation along (`dx', `dy', `dz'). Return extruded entities in
* `outDimTags'. If `numElements' is not empty, also extrude the mesh: the
* entries in `numElements' give the number of elements in each layer. If
* `height' is not empty, it provides the (cumulative) height of the different
* layers, normalized to 1. */
GMSH_API void gmshModelOccExtrude(int * dimTags, size_t dimTags_n,
const double dx,
const double dy,
const double dz,
int ** outDimTags, size_t * outDimTags_n,
int * numElements, size_t numElements_n,
double * heights, size_t heights_n,
const int recombine,
int * ierr);
/* Extrude the entities `dimTags' in the OpenCASCADE CAD representation, using
* a rotation of `angle' radians around the axis of revolution defined by the
* point (`x', `y', `z') and the direction (`ax', `ay', `az'). Return extruded
* entities in `outDimTags'. If `numElements' is not empty, also extrude the
* mesh: the entries in `numElements' give the number of elements in each
* layer. If `height' is not empty, it provides the (cumulative) height of the
* different layers, normalized to 1. When the mesh is extruded the angle
* should be strictly smaller than 2*Pi. */
GMSH_API void gmshModelOccRevolve(int * dimTags, size_t dimTags_n,
const double x,
const double y,
const double z,
const double ax,
const double ay,
const double az,
const double angle,
int ** outDimTags, size_t * outDimTags_n,
int * numElements, size_t numElements_n,
double * heights, size_t heights_n,
const int recombine,
int * ierr);
/* Add a pipe in the OpenCASCADE CAD representation, by extruding the entities
* `dimTags' along the wire `wireTag'. Return the pipe in `outDimTags'. */
GMSH_API void gmshModelOccAddPipe(int * dimTags, size_t dimTags_n,
const int wireTag,
int ** outDimTags, size_t * outDimTags_n,
int * ierr);
/* Fillet the volumes `volumeTags' on the curves `curveTags' with radii
* `radii'. The `radii' vector can either contain a single radius, as many
* radii as `curveTags', or twice as many as `curveTags' (in which case
* different radii are provided for the begin and end points of the curves).
* Return the filleted entities in `outDimTags'. Remove the original volume if
* `removeVolume' is set. */
GMSH_API void gmshModelOccFillet(int * volumeTags, size_t volumeTags_n,
int * curveTags, size_t curveTags_n,
double * radii, size_t radii_n,
int ** outDimTags, size_t * outDimTags_n,
const int removeVolume,
int * ierr);
/* Chamfer the volumes `volumeTags' on the curves `curveTags' with distances
* `distances' measured on surfaces `surfaceTags'. The `distances' vector can
* either contain a single distance, as many distances as `curveTags' and
* `surfaceTags', or twice as many as `curveTags' and `surfaceTags' (in which
* case the first in each pair is measured on the corresponding surface in
* `surfaceTags', the other on the other adjacent surface). Return the
* chamfered entities in `outDimTags'. Remove the original volume if
* `removeVolume' is set. */
GMSH_API void gmshModelOccChamfer(int * volumeTags, size_t volumeTags_n,
int * curveTags, size_t curveTags_n,
int * surfaceTags, size_t surfaceTags_n,
double * distances, size_t distances_n,
int ** outDimTags, size_t * outDimTags_n,
const int removeVolume,
int * ierr);
/* Compute the boolean union (the fusion) of the entities `objectDimTags' and
* `toolDimTags' in the OpenCASCADE CAD representation. Return the resulting
* entities in `outDimTags'. If `tag' is positive, try to set the tag
* explicitly (only valid if the boolean operation results in a single
* entity). Remove the object if `removeObject' is set. Remove the tool if
* `removeTool' is set. */
GMSH_API void gmshModelOccFuse(int * objectDimTags, size_t objectDimTags_n,
int * toolDimTags, size_t toolDimTags_n,
int ** outDimTags, size_t * outDimTags_n,
int *** outDimTagsMap, size_t ** outDimTagsMap_n, size_t *outDimTagsMap_nn,
const int tag,
const int removeObject,
const int removeTool,
int * ierr);
/* Compute the boolean intersection (the common parts) of the entities
* `objectDimTags' and `toolDimTags' in the OpenCASCADE CAD representation.
* Return the resulting entities in `outDimTags'. If `tag' is positive, try to
* set the tag explicitly (only valid if the boolean operation results in a
* single entity). Remove the object if `removeObject' is set. Remove the tool
* if `removeTool' is set. */
GMSH_API void gmshModelOccIntersect(int * objectDimTags, size_t objectDimTags_n,
int * toolDimTags, size_t toolDimTags_n,
int ** outDimTags, size_t * outDimTags_n,
int *** outDimTagsMap, size_t ** outDimTagsMap_n, size_t *outDimTagsMap_nn,
const int tag,
const int removeObject,
const int removeTool,
int * ierr);
/* Compute the boolean difference between the entities `objectDimTags' and
* `toolDimTags' in the OpenCASCADE CAD representation. Return the resulting
* entities in `outDimTags'. If `tag' is positive, try to set the tag
* explicitly (only valid if the boolean operation results in a single
* entity). Remove the object if `removeObject' is set. Remove the tool if
* `removeTool' is set. */
GMSH_API void gmshModelOccCut(int * objectDimTags, size_t objectDimTags_n,
int * toolDimTags, size_t toolDimTags_n,
int ** outDimTags, size_t * outDimTags_n,
int *** outDimTagsMap, size_t ** outDimTagsMap_n, size_t *outDimTagsMap_nn,
const int tag,
const int removeObject,
const int removeTool,
int * ierr);
/* Compute the boolean fragments (general fuse) of the entities
* `objectDimTags' and `toolDimTags' in the OpenCASCADE CAD representation.
* Return the resulting entities in `outDimTags'. If `tag' is positive, try to
* set the tag explicitly (only valid if the boolean operation results in a
* single entity). Remove the object if `removeObject' is set. Remove the tool
* if `removeTool' is set. */
GMSH_API void gmshModelOccFragment(int * objectDimTags, size_t objectDimTags_n,
int * toolDimTags, size_t toolDimTags_n,
int ** outDimTags, size_t * outDimTags_n,
int *** outDimTagsMap, size_t ** outDimTagsMap_n, size_t *outDimTagsMap_nn,
const int tag,
const int removeObject,
const int removeTool,
int * ierr);
/* Translate the entities `dimTags' in the OpenCASCADE CAD representation
* along (`dx', `dy', `dz'). */
GMSH_API void gmshModelOccTranslate(int * dimTags, size_t dimTags_n,
const double dx,
const double dy,
const double dz,
int * ierr);
/* Rotate the entities `dimTags' in the OpenCASCADE CAD representation by
* `angle' radians around the axis of revolution defined by the point (`x',
* `y', `z') and the direction (`ax', `ay', `az'). */
GMSH_API void gmshModelOccRotate(int * dimTags, size_t dimTags_n,
const double x,
const double y,
const double z,
const double ax,
const double ay,
const double az,
const double angle,
int * ierr);
/* Scale the entities `dimTags' in the OpenCASCADE CAD representation by
* factors `a', `b' and `c' along the three coordinate axes; use (`x', `y',
* `z') as the center of the homothetic transformation. */
GMSH_API void gmshModelOccDilate(int * dimTags, size_t dimTags_n,
const double x,
const double y,
const double z,
const double a,
const double b,
const double c,
int * ierr);
/* Mirror the entities `dimTags' in the OpenCASCADE CAD representation, with
* respect to the plane of equation `a' * x + `b' * y + `c' * z + `d' = 0. */
GMSH_API void gmshModelOccMirror(int * dimTags, size_t dimTags_n,
const double a,
const double b,
const double c,
const double d,
int * ierr);
/* Mirror the entities `dimTags' in the OpenCASCADE CAD representation, with
* respect to the plane of equation `a' * x + `b' * y + `c' * z + `d' = 0.
* (This is a synonym for `mirror', which will be deprecated in a future
* release.) */
GMSH_API void gmshModelOccSymmetrize(int * dimTags, size_t dimTags_n,
const double a,
const double b,
const double c,
const double d,
int * ierr);
/* Apply a general affine transformation matrix `a' (16 entries of a 4x4
* matrix, by row; only the 12 first can be provided for convenience) to the
* entities `dimTags' in the OpenCASCADE CAD representation. */
GMSH_API void gmshModelOccAffineTransform(int * dimTags, size_t dimTags_n,
double * a, size_t a_n,
int * ierr);
/* Copy the entities `dimTags' in the OpenCASCADE CAD representation; the new
* entities are returned in `outDimTags'. */
GMSH_API void gmshModelOccCopy(int * dimTags, size_t dimTags_n,
int ** outDimTags, size_t * outDimTags_n,
int * ierr);
/* Remove the entities `dimTags' in the OpenCASCADE CAD representation. If
* `recursive' is true, remove all the entities on their boundaries, down to
* dimension 0. */
GMSH_API void gmshModelOccRemove(int * dimTags, size_t dimTags_n,
const int recursive,
int * ierr);
/* Remove all duplicate entities in the OpenCASCADE CAD representation
* (different entities at the same geometrical location) after intersecting
* (using boolean fragments) all highest dimensional entities. */
GMSH_API void gmshModelOccRemoveAllDuplicates(int * ierr);
/* Apply various healing procedures to the entities `dimTags' (or to all the
* entities in the model if `dimTags' is empty) in the OpenCASCADE CAD
* representation. Return the healed entities in `outDimTags'. Available
* healing options are listed in the Gmsh reference manual. */
GMSH_API void gmshModelOccHealShapes(int ** outDimTags, size_t * outDimTags_n,
int * dimTags, size_t dimTags_n,
const double tolerance,
const int fixDegenerated,
const int fixSmallEdges,
const int fixSmallFaces,
const int sewFaces,
const int makeSolids,
int * ierr);
/* Import BREP, STEP or IGES shapes from the file `fileName' in the
* OpenCASCADE CAD representation. The imported entities are returned in
* `outDimTags'. If the optional argument `highestDimOnly' is set, only import
* the highest dimensional entities in the file. The optional argument
* `format' can be used to force the format of the file (currently "brep",
* "step" or "iges"). */
GMSH_API void gmshModelOccImportShapes(const char * fileName,
int ** outDimTags, size_t * outDimTags_n,
const int highestDimOnly,
const char * format,
int * ierr);
/* Imports an OpenCASCADE `shape' by providing a pointer to a native
* OpenCASCADE `TopoDS_Shape' object (passed as a pointer to void). The
* imported entities are returned in `outDimTags'. If the optional argument
* `highestDimOnly' is set, only import the highest dimensional entities in
* `shape'. For C and C++ only. Warning: this function is unsafe, as providing
* an invalid pointer will lead to undefined behavior. */
GMSH_API void gmshModelOccImportShapesNativePointer(const void * shape,
int ** outDimTags, size_t * outDimTags_n,
const int highestDimOnly,
int * ierr);
/* Get all the OpenCASCADE entities. If `dim' is >= 0, return only the
* entities of the specified dimension (e.g. points if `dim' == 0). The
* entities are returned as a vector of (dim, tag) integer pairs. */
GMSH_API void gmshModelOccGetEntities(int ** dimTags, size_t * dimTags_n,
const int dim,
int * ierr);
/* Get the OpenCASCADE entities in the bounding box defined by the two points
* (`xmin', `ymin', `zmin') and (`xmax', `ymax', `zmax'). If `dim' is >= 0,
* return only the entities of the specified dimension (e.g. points if `dim'
* == 0). */
GMSH_API void gmshModelOccGetEntitiesInBoundingBox(const double xmin,
const double ymin,
const double zmin,
const double xmax,
const double ymax,
const double zmax,
int ** tags, size_t * tags_n,
const int dim,
int * ierr);
/* Get the bounding box (`xmin', `ymin', `zmin'), (`xmax', `ymax', `zmax') of
* the OpenCASCADE entity of dimension `dim' and tag `tag'. */
GMSH_API void gmshModelOccGetBoundingBox(const int dim,
const int tag,
double * xmin,
double * ymin,
double * zmin,
double * xmax,
double * ymax,
double * zmax,
int * ierr);
/* Get the mass of the OpenCASCADE entity of dimension `dim' and tag `tag'. */
GMSH_API void gmshModelOccGetMass(const int dim,
const int tag,
double * mass,
int * ierr);
/* Get the center of mass of the OpenCASCADE entity of dimension `dim' and tag
* `tag'. */
GMSH_API void gmshModelOccGetCenterOfMass(const int dim,
const int tag,
double * x,
double * y,
double * z,
int * ierr);
/* Get the matrix of inertia (by row) of the OpenCASCADE entity of dimension
* `dim' and tag `tag'. */
GMSH_API void gmshModelOccGetMatrixOfInertia(const int dim,
const int tag,
double ** mat, size_t * mat_n,
int * ierr);
/* Get the maximum tag of entities of dimension `dim' in the OpenCASCADE CAD
* representation. */
GMSH_API int gmshModelOccGetMaxTag(const int dim,
int * ierr);
/* Set the maximum tag `maxTag' for entities of dimension `dim' in the
* OpenCASCADE CAD representation. */
GMSH_API void gmshModelOccSetMaxTag(const int dim,
const int maxTag,
int * ierr);
/* Synchronize the OpenCASCADE CAD representation with the current Gmsh model.
* This can be called at any time, but since it involves a non trivial amount
* of processing, the number of synchronization points should normally be
* minimized. Without synchronization the entities in the OpenCASCADE CAD
* representation are not available to any function outside of the OpenCASCADE
* CAD kernel functions. */
GMSH_API void gmshModelOccSynchronize(int * ierr);
/* Set a mesh size constraint on the entities `dimTags' in the OpenCASCADE CAD
* representation. Currently only entities of dimension 0 (points) are
* handled. */
GMSH_API void gmshModelOccMeshSetSize(int * dimTags, size_t dimTags_n,
const double size,
int * ierr);
/* Add a new post-processing view, with name `name'. If `tag' is positive use
* it (and remove the view with that tag if it already exists), otherwise
* associate a new tag. Return the view tag. */
GMSH_API int gmshViewAdd(const char * name,
const int tag,
int * ierr);
/* Remove the view with tag `tag'. */
GMSH_API void gmshViewRemove(const int tag,
int * ierr);
/* Get the index of the view with tag `tag' in the list of currently loaded
* views. This dynamic index (it can change when views are removed) is used to
* access view options. */
GMSH_API int gmshViewGetIndex(const int tag,
int * ierr);
/* Get the tags of all views. */
GMSH_API void gmshViewGetTags(int ** tags, size_t * tags_n,
int * ierr);
/* Add model-based post-processing data to the view with tag `tag'.
* `modelName' identifies the model the data is attached to. `dataType'
* specifies the type of data, currently either "NodeData", "ElementData" or
* "ElementNodeData". `step' specifies the identifier (>= 0) of the data in a
* sequence. `tags' gives the tags of the nodes or elements in the mesh to
* which the data is associated. `data' is a vector of the same length as
* `tags': each entry is the vector of double precision numbers representing
* the data associated with the corresponding tag. The optional `time'
* argument associate a time value with the data. `numComponents' gives the
* number of data components (1 for scalar data, 3 for vector data, etc.) per
* entity; if negative, it is automatically inferred (when possible) from the
* input data. `partition' allows to specify data in several sub-sets. */
GMSH_API void gmshViewAddModelData(const int tag,
const int step,
const char * modelName,
const char * dataType,
size_t * tags, size_t tags_n,
const double ** data, const size_t * data_n, size_t data_nn,
const double time,
const int numComponents,
const int partition,
int * ierr);
/* Add homogeneous model-based post-processing data to the view with tag
* `tag'. The arguments have the same meaning as in `addModelData', except
* that `data' is supposed to be homogeneous and is thus flattened in a single
* vector. For data types that can lead to different data sizes per tag (like
* "ElementNodeData"), the data should be padded. */
GMSH_API void gmshViewAddHomogeneousModelData(const int tag,
const int step,
const char * modelName,
const char * dataType,
size_t * tags, size_t tags_n,
double * data, size_t data_n,
const double time,
const int numComponents,
const int partition,
int * ierr);
/* Get model-based post-processing data from the view with tag `tag' at step
* `step'. Return the `data' associated to the nodes or the elements with tags
* `tags', as well as the `dataType' and the number of components
* `numComponents'. */
GMSH_API void gmshViewGetModelData(const int tag,
const int step,
char ** dataType,
size_t ** tags, size_t * tags_n,
double *** data, size_t ** data_n, size_t *data_nn,
double * time,
int * numComponents,
int * ierr);
/* Get homogeneous model-based post-processing data from the view with tag
* `tag' at step `step'. The arguments have the same meaning as in
* `getModelData', except that `data' is returned flattened in a single
* vector, with the appropriate padding if necessary. */
GMSH_API void gmshViewGetHomogeneousModelData(const int tag,
const int step,
char ** dataType,
size_t ** tags, size_t * tags_n,
double ** data, size_t * data_n,
double * time,
int * numComponents,
int * ierr);
/* Add list-based post-processing data to the view with tag `tag'. List-based
* datasets are independent from any model and any mesh. `dataType' identifies
* the data by concatenating the field type ("S" for scalar, "V" for vector,
* "T" for tensor) and the element type ("P" for point, "L" for line, "T" for
* triangle, "S" for tetrahedron, "I" for prism, "H" for hexaHedron, "Y" for
* pyramid). For example `dataType' should be "ST" for a scalar field on
* triangles. `numEle' gives the number of elements in the data. `data'
* contains the data for the `numEle' elements, concatenated, with node
* coordinates followed by values per node, repeated for each step: [e1x1,
* ..., e1xn, e1y1, ..., e1yn, e1z1, ..., e1zn, e1v1..., e1vN, e2x1, ...]. */
GMSH_API void gmshViewAddListData(const int tag,
const char * dataType,
const int numEle,
double * data, size_t data_n,
int * ierr);
/* Get list-based post-processing data from the view with tag `tag'. Return
* the types `dataTypes', the number of elements `numElements' for each data
* type and the `data' for each data type. */
GMSH_API void gmshViewGetListData(const int tag,
char *** dataType, size_t * dataType_n,
int ** numElements, size_t * numElements_n,
double *** data, size_t ** data_n, size_t *data_nn,
int * ierr);
/* Add a string to a list-based post-processing view with tag `tag'. If
* `coord' contains 3 coordinates the string is positioned in the 3D model
* space ("3D string"); if it contains 2 coordinates it is positioned in the
* 2D graphics viewport ("2D string"). `data' contains one or more (for
* multistep views) strings. `style' contains key-value pairs of styling
* parameters, concatenated. Available keys are "Font" (possible values:
* "Times-Roman", "Times-Bold", "Times-Italic", "Times-BoldItalic",
* "Helvetica", "Helvetica-Bold", "Helvetica-Oblique", "Helvetica-
* BoldOblique", "Courier", "Courier-Bold", "Courier-Oblique", "Courier-
* BoldOblique", "Symbol", "ZapfDingbats", "Screen"), "FontSize" and "Align"
* (possible values: "Left" or "BottomLeft", "Center" or "BottomCenter",
* "Right" or "BottomRight", "TopLeft", "TopCenter", "TopRight", "CenterLeft",
* "CenterCenter", "CenterRight"). */
GMSH_API void gmshViewAddListDataString(const int tag,
double * coord, size_t coord_n,
char ** data, size_t data_n,
char ** style, size_t style_n,
int * ierr);
/* Get list-based post-processing data strings (2D strings if `dim' = 2, 3D
* strings if `dim' = 3) from the view with tag `tag'. Return the coordinates
* in `coord', the strings in `data' and the styles in `style'. */
GMSH_API void gmshViewGetListDataStrings(const int tag,
const int dim,
double ** coord, size_t * coord_n,
char *** data, size_t * data_n,
char *** style, size_t * style_n,
int * ierr);
/* Set interpolation matrices for the element family `type' ("Line",
* "Triangle", "Quadrangle", "Tetrahedron", "Hexahedron", "Prism", "Pyramid")
* in the view `tag'. The approximation of the values over an element is
* written as a linear combination of `d' basis functions f_i(u, v, w) =
* sum_(j = 0, ..., `d' - 1) `coef'[i][j] u^`exp'[j][0] v^`exp'[j][1]
* w^`exp'[j][2], i = 0, ..., `d'-1, with u, v, w the coordinates in the
* reference element. The `coef' matrix (of size `d' x `d') and the `exp'
* matrix (of size `d' x 3) are stored as vectors, by row. If `dGeo' is
* positive, use `coefGeo' and `expGeo' to define the interpolation of the x,
* y, z coordinates of the element in terms of the u, v, w coordinates, in
* exactly the same way. If `d' < 0, remove the interpolation matrices. */
GMSH_API void gmshViewSetInterpolationMatrices(const int tag,
const char * type,
const int d,
double * coef, size_t coef_n,
double * exp, size_t exp_n,
const int dGeo,
double * coefGeo, size_t coefGeo_n,
double * expGeo, size_t expGeo_n,
int * ierr);
/* Add a post-processing view as an `alias' of the reference view with tag
* `refTag'. If `copyOptions' is set, copy the options of the reference view.
* If `tag' is positive use it (and remove the view with that tag if it
* already exists), otherwise associate a new tag. Return the view tag. */
GMSH_API int gmshViewAddAlias(const int refTag,
const int copyOptions,
const int tag,
int * ierr);
/* Copy the options from the view with tag `refTag' to the view with tag
* `tag'. */
GMSH_API void gmshViewCopyOptions(const int refTag,
const int tag,
int * ierr);
/* Combine elements (if `what' == "elements") or steps (if `what' == "steps")
* of all views (`how' == "all"), all visible views (`how' == "visible") or
* all views having the same name (`how' == "name"). Remove original views if
* `remove' is set. */
GMSH_API void gmshViewCombine(const char * what,
const char * how,
const int remove,
const int copyOptions,
int * ierr);
/* Probe the view `tag' for its `value' at point (`x', `y', `z'). Return only
* the value at step `step' is `step' is positive. Return only values with
* `numComp' if `numComp' is positive. Return the gradient of the `value' if
* `gradient' is set. Probes with a geometrical tolerance (in the reference
* unit cube) of `tolerance' if `tolerance' is not zero. Return the result
* from the element described by its coordinates if `xElementCoord',
* `yElementCoord' and `zElementCoord' are provided. */
GMSH_API void gmshViewProbe(const int tag,
const double x,
const double y,
const double z,
double ** value, size_t * value_n,
const int step,
const int numComp,
const int gradient,
const double tolerance,
double * xElemCoord, size_t xElemCoord_n,
double * yElemCoord, size_t yElemCoord_n,
double * zElemCoord, size_t zElemCoord_n,
int * ierr);
/* Write the view to a file `fileName'. The export format is determined by the
* file extension. Append to the file if `append' is set. */
GMSH_API void gmshViewWrite(const int tag,
const char * fileName,
const int append,
int * ierr);
/* Set the global visibility of the view `tag' per window to `value', where
* `windowIndex' identifies the window in the window list. */
GMSH_API void gmshViewSetVisibilityPerWindow(const int tag,
const int value,
const int windowIndex,
int * ierr);
/* Set the numerical option `option' to the value `value' for plugin `name'. */
GMSH_API void gmshPluginSetNumber(const char * name,
const char * option,
const double value,
int * ierr);
/* Set the string option `option' to the value `value' for plugin `name'. */
GMSH_API void gmshPluginSetString(const char * name,
const char * option,
const char * value,
int * ierr);
/* Run the plugin `name'. */
GMSH_API void gmshPluginRun(const char * name,
int * ierr);
/* Draw all the OpenGL scenes. */
GMSH_API void gmshGraphicsDraw(int * ierr);
/* Create the FLTK graphical user interface. Can only be called in the main
* thread. */
GMSH_API void gmshFltkInitialize(int * ierr);
/* Wait at most `time' seconds for user interface events and return. If `time'
* < 0, wait indefinitely. First automatically create the user interface if it
* has not yet been initialized. Can only be called in the main thread. */
GMSH_API void gmshFltkWait(const double time,
int * ierr);
/* Update the user interface (potentially creating new widgets and windows).
* First automatically create the user interface if it has not yet been
* initialized. Can only be called in the main thread: use `awake("update")'
* to trigger an update of the user interface from another thread. */
GMSH_API void gmshFltkUpdate(int * ierr);
/* Awake the main user interface thread and process pending events, and
* optionally perform an action (currently the only `action' allowed is
* "update"). */
GMSH_API void gmshFltkAwake(const char * action,
int * ierr);
/* Block the current thread until it can safely modify the user interface. */
GMSH_API void gmshFltkLock(int * ierr);
/* Release the lock that was set using lock. */
GMSH_API void gmshFltkUnlock(int * ierr);
/* Run the event loop of the graphical user interface, i.e. repeatedly call
* `wait()'. First automatically create the user interface if it has not yet
* been initialized. Can only be called in the main thread. */
GMSH_API void gmshFltkRun(int * ierr);
/* Check if the user interface is available (e.g. to detect if it has been
* closed). */
GMSH_API int gmshFltkIsAvailable(int * ierr);
/* Select entities in the user interface. If `dim' is >= 0, return only the
* entities of the specified dimension (e.g. points if `dim' == 0). */
GMSH_API int gmshFltkSelectEntities(int ** dimTags, size_t * dimTags_n,
const int dim,
int * ierr);
/* Select elements in the user interface. */
GMSH_API int gmshFltkSelectElements(size_t ** elementTags, size_t * elementTags_n,
int * ierr);
/* Select views in the user interface. */
GMSH_API int gmshFltkSelectViews(int ** viewTags, size_t * viewTags_n,
int * ierr);
/* Split the current window horizontally (if `how' = "h") or vertically (if
* `how' = "v"), using ratio `ratio'. If `how' = "u", restore a single window. */
GMSH_API void gmshFltkSplitCurrentWindow(const char * how,
const double ratio,
int * ierr);
/* Set the current window by speficying its index (starting at 0) in the list
* of all windows. When new windows are created by splits, new windows are
* appended at the end of the list. */
GMSH_API void gmshFltkSetCurrentWindow(const int windowIndex,
int * ierr);
/* Set one or more parameters in the ONELAB database, encoded in `format'. */
GMSH_API void gmshOnelabSet(const char * data,
const char * format,
int * ierr);
/* Get all the parameters (or a single one if `name' is specified) from the
* ONELAB database, encoded in `format'. */
GMSH_API void gmshOnelabGet(char ** data,
const char * name,
const char * format,
int * ierr);
/* Set the value of the number parameter `name' in the ONELAB database. Create
* the parameter if it does not exist; update the value if the parameter
* exists. */
GMSH_API void gmshOnelabSetNumber(const char * name,
double * value, size_t value_n,
int * ierr);
/* Set the value of the string parameter `name' in the ONELAB database. Create
* the parameter if it does not exist; update the value if the parameter
* exists. */
GMSH_API void gmshOnelabSetString(const char * name,
char ** value, size_t value_n,
int * ierr);
/* Get the value of the number parameter `name' from the ONELAB database.
* Return an empty vector if the parameter does not exist. */
GMSH_API void gmshOnelabGetNumber(const char * name,
double ** value, size_t * value_n,
int * ierr);
/* Get the value of the string parameter `name' from the ONELAB database.
* Return an empty vector if the parameter does not exist. */
GMSH_API void gmshOnelabGetString(const char * name,
char *** value, size_t * value_n,
int * ierr);
/* Clear the ONELAB database, or remove a single parameter if `name' is given. */
GMSH_API void gmshOnelabClear(const char * name,
int * ierr);
/* Run a ONELAB client. If `name' is provided, create a new ONELAB client with
* name `name' and executes `command'. If not, try to run a client that might
* be linked to the processed input files. */
GMSH_API void gmshOnelabRun(const char * name,
const char * command,
int * ierr);
/* Write a `message'. `level' can be "info", "warning" or "error". */
GMSH_API void gmshLoggerWrite(const char * message,
const char * level,
int * ierr);
/* Start logging messages. */
GMSH_API void gmshLoggerStart(int * ierr);
/* Get logged messages. */
GMSH_API void gmshLoggerGet(char *** log, size_t * log_n,
int * ierr);
/* Stop logging messages. */
GMSH_API void gmshLoggerStop(int * ierr);
/* Return wall clock time. */
GMSH_API double gmshLoggerGetWallTime(int * ierr);
/* Return CPU time. */
GMSH_API double gmshLoggerGetCpuTime(int * ierr);
/* Return last error message, if any. */
GMSH_API void gmshLoggerGetLastError(char ** error,
int * ierr);
#endif
|