1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
// Gmsh - Copyright (C) 1997-2021 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// issues on https://gitlab.onelab.info/gmsh/gmsh/issues.
#include <cmath>
#include "BergotBasis.h"
#include "MElement.h"
#include "orthogonalBasis.h"
BergotBasis::BergotBasis(int p, bool incpl) : order(p), incomplete(incpl)
{
if(incomplete && order > 2) {
Msg::Error("Incomplete pyramids of order %i not yet implemented", order);
}
}
BergotBasis::~BergotBasis() {}
bool BergotBasis::validIJ(int i, int j) const
{
if(!incomplete) return (i <= order) && (j <= order);
if(i + j <= order) return true;
if(i + j == order + 1) return i == 1 || j == 1;
return false;
}
// Values of Bergot basis functions for coordinates (u,v,w) in the unit pyramid:
// f = L_i(uhat)*L_j(vhat)*(1-w)^max(i,j)*P_k^{2*max(i,j)+2,0}(what)
// with i,j = 0...order and k = 0...order-max(i,j)
// and (uhat,vhat,what) = (u/(1-w),v/(1-w),2*w-1) reduced coordinates in the
// unit cube [-1,1]^3
void BergotBasis::f(double u, double v, double w, double *val) const
{
// Compute Legendre polynomials at uhat
double uhat = (w == 1.) ? 0. : u / (1. - w);
std::vector<double> uFcts(order + 1);
LegendrePolynomials::f(order, uhat, &(uFcts[0]));
// Compute Legendre polynomials at vhat
double vhat = (w == 1.) ? 0. : v / (1. - w);
std::vector<double> vFcts(order + 1);
LegendrePolynomials::f(order, vhat, &(vFcts[0]));
// Compute Jacobi polynomials at what
double what = 2. * w - 1.;
std::vector<std::vector<double> > wFcts(order + 1), wGrads(order + 1);
for(int mIJ = 0; mIJ <= order; mIJ++) {
int kMax = order - mIJ;
std::vector<double> &wf = wFcts[mIJ];
wf.resize(kMax + 1);
JacobiPolynomials::f(kMax, 2. * mIJ + 2., 0., what, &(wf[0]));
}
// Recombine to find shape function values
int index = 0;
for(int i = 0; i <= order; i++) {
for(int j = 0; j <= order; j++) {
if(validIJ(i, j)) {
int mIJ = std::max(i, j);
double fact = pow(1. - w, mIJ);
std::vector<double> &wf = wFcts[mIJ];
for(int k = 0; k <= order - mIJ; k++, index++)
val[index] = uFcts[i] * vFcts[j] * wf[k] * fact;
}
}
}
}
// Derivatives of Bergot basis functions for coordinates (u,v,w) in the unit
// pyramid: dfdu =
// L'_i(uhat)*L_j(vhat)*(1-w)^(max(i,j)-1)*P_k^{2*max(i,j)+2,0}(what) dfdv =
// L_i(uhat)*L'_j(vhat)*(1-w)^(max(i,j)-1)*P_k^{2*max(i,j)+2,0}(what) dfdw =
// (1-w)^(max(i,j)-2)*P_k^{2*max(i,j)+2,0}(what)*(u*L'_i(uhat)*L_j(vhat)+v*L_i(uhat)*L'_j(vhat))
// +
// u*v*(1-w)^(max(i,j)-1)*(2*(1-w)*P'_k^{2*max(i,j)+2,0}(what)-max(i,j)*P_k^{2*max(i,j)+2,0}(what))
// with i,j = 0...order and k = 0...order-max(i,j)
// and (uhat,vhat,what) = (u/(1-w),v/(1-w),2*w-1) reduced coordinates in the
// unit cube [-1,1]^3
void BergotBasis::df(double u, double v, double w, double grads[][3]) const
{
// Compute Legendre polynomials and derivatives at uhat
double uhat = (w == 1.) ? 0. : u / (1. - w);
std::vector<double> uFcts(order + 1), uGrads(order + 1);
LegendrePolynomials::f(order, uhat, &(uFcts[0]));
LegendrePolynomials::df(order, uhat, &(uGrads[0]));
// Compute Legendre polynomials and derivatives at vhat
double vhat = (w == 1.) ? 0. : v / (1. - w);
std::vector<double> vFcts(order + 1), vGrads(order + 1);
LegendrePolynomials::f(order, vhat, &(vFcts[0]));
LegendrePolynomials::df(order, vhat, &(vGrads[0]));
// Compute Jacobi polynomials and derivatives at what
double what = 2. * w - 1.;
std::vector<std::vector<double> > wFcts(order + 1), wGrads(order + 1);
for(int mIJ = 0; mIJ <= order; mIJ++) {
int kMax = order - mIJ;
std::vector<double> &wf = wFcts[mIJ], &wg = wGrads[mIJ];
wf.resize(kMax + 1);
wg.resize(kMax + 1);
JacobiPolynomials::f(kMax, 2. * mIJ + 2., 0., what, &(wf[0]));
JacobiPolynomials::df(kMax, 2. * mIJ + 2., 0., what, &(wg[0]));
}
// Recombine to find the shape function gradients
int index = 0;
for(int i = 0; i <= order; i++) {
for(int j = 0; j <= order; j++) {
if(validIJ(i, j)) {
int mIJ = std::max(i, j);
std::vector<double> &wf = wFcts[mIJ], &wg = wGrads[mIJ];
if(mIJ == 0) { // Indeterminate form for mIJ = 0
for(int k = 0; k <= order - mIJ; k++, index++) {
grads[index][0] = 0.;
grads[index][1] = 0.;
grads[index][2] = 2. * wg[k];
}
}
else if(mIJ == 1) { // Indeterminate form for mIJ = 1
if(i == 0) {
for(int k = 0; k <= order - mIJ; k++, index++) {
grads[index][0] = 0.;
grads[index][1] = wf[k];
grads[index][2] = 2. * v * wg[k];
}
}
else if(j == 0) {
for(int k = 0; k <= order - mIJ; k++, index++) {
grads[index][0] = wf[k];
grads[index][1] = 0.;
grads[index][2] = 2. * u * wg[k];
}
}
else {
for(int k = 0; k <= order - mIJ; k++, index++) {
grads[index][0] = vhat * wf[k];
grads[index][1] = uhat * wf[k];
grads[index][2] = uhat * vhat * wf[k] + 2. * uhat * v * wg[k];
}
}
}
else { // General formula
double oMW = 1. - w;
double powM2 = pow(oMW, mIJ - 2);
double powM1 = powM2 * oMW;
for(int k = 0; k <= order - mIJ; k++, index++) {
grads[index][0] = uGrads[i] * vFcts[j] * wf[k] * powM1;
grads[index][1] = uFcts[i] * vGrads[j] * wf[k] * powM1;
grads[index][2] =
wf[k] * powM2 *
(u * uGrads[i] * vFcts[j] + v * uFcts[i] * vGrads[j]) +
uFcts[i] * vFcts[j] * powM1 * (2. * oMW * wg[k] - mIJ * wf[k]);
}
}
}
}
}
}
|