1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
|
// Gmsh - Copyright (C) 1997-2021 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// issues on https://gitlab.onelab.info/gmsh/gmsh/issues.
#include <vector>
#include "CondNumBasis.h"
#include "GmshDefines.h"
#include "GmshMessage.h"
#include "polynomialBasis.h"
#include "pyramidalBasis.h"
#include "pointsGenerators.h"
#include "BasisFactory.h"
#include "Numeric.h"
namespace {
// Compute the determinant of a 3x3 matrix
inline double calcDet3x3(double M11, double M12, double M13, double M21,
double M22, double M23, double M31, double M32,
double M33)
{
return M11 * (M22 * M33 - M23 * M32) - M12 * (M21 * M33 - M23 * M31) +
M13 * (M21 * M32 - M22 * M31);
}
// Compute the squared Frobenius norm of the inverse of a matrix
template <bool sign>
inline double calcInvCondNum2D(double dxdX, double dxdY, double dydX,
double dydY, double dzdX, double dzdY,
double nx, double ny, double nz)
{
const double dxdXSq = dxdX * dxdX, dydXSq = dydX * dydX,
dzdXSq = dzdX * dzdX;
const double dxdYSq = dxdY * dxdY, dydYSq = dydY * dydY,
dzdYSq = dzdY * dzdY;
const double Dx = dxdXSq - dxdYSq, Dy = dydXSq - dydYSq;
const double Cx = dxdX * dxdY, Cy = dydX * dydY;
const double S1 = dzdYSq * dzdYSq;
const double S2 = (dzdXSq - Dy - Dx) * dzdYSq;
const double S3 = (Cy + Cx) * dzdX * dzdY;
const double S4 = dzdXSq * dzdXSq;
const double S5 = (Dy + Dx) * dzdXSq;
const double S6 = Cx * Cy;
const double S7 = dydXSq * dydXSq;
const double S8 = Dy * dydXSq;
const double S9 = dxdXSq * dxdXSq;
const double S10 = Dx * dxdXSq;
const double S11 = Dy * Dy;
const double S12 = Dx * Dy;
const double S13 = Dx * Dx;
const double S = 2. * (S2 + S5 + S12) + 4. * (S7 - S8 + S9 - S10) +
8. * (S3 + S6) + S1 + S4 + S11 + S13;
const double N = dxdXSq + dxdYSq + dydXSq + dydYSq + dzdXSq + dzdYSq;
const double sqrtS = (S > 0.0) ? sqrt(S) : 0.0;
const double sigma1Sq = 0.5 * (N + sqrtS), sigma2Sq = 0.5 * (N - sqrtS);
const double iCN = 2. * sqrt(sigma1Sq * sigma2Sq) / (sigma1Sq + sigma2Sq);
if(sign) {
const double lnx = dydX * dzdY - dzdX * dydY,
lny = dzdX * dxdY -
dxdX * dzdY, // Local normal from mapping gradients
lnz = dxdX * dydY - dydX * dxdY;
const double dp = lnx * nx + lny * ny +
lnz * nz; // Dot product to determine element validity
return (dp >= 0.) ? iCN : -iCN;
}
else
return iCN;
// return std::min(sqrt(sigma1Sq), sqrt(sigma2Sq)) /
// std::max(sqrt(sigma1Sq), sqrt(sigma2Sq));
}
// Compute the squared Frobenius norm of the inverse of a matrix
template <bool sign>
inline double calcInvCondNum3D(double J11, double J12, double J13, double J21,
double J22, double J23, double J31, double J32,
double J33)
{
const double D = calcDet3x3(J11, J12, J13, J21, J22, J23, J31, J32, J33);
if(D == 0.) return 0.;
const double I11 = J22 * J33 - J23 * J32, I12 = J13 * J32 - J12 * J33,
I13 = J12 * J23 - J13 * J22, I21 = J23 * J31 - J21 * J33,
I22 = J11 * J33 - J13 * J31, I23 = J13 * J21 - J11 * J23,
I31 = J21 * J32 - J22 * J31, I32 = J12 * J31 - J11 * J32,
I33 = J11 * J22 - J12 * J21;
const double nSqJ = J11 * J11 + J12 * J12 + J13 * J13 + J21 * J21 +
J22 * J22 + J23 * J23 + J31 * J31 + J32 * J32 +
J33 * J33;
const double nSqDInvJ = I11 * I11 + I12 * I12 + I13 * I13 + I21 * I21 +
I22 * I22 + I23 * I23 + I31 * I31 + I32 * I32 +
I33 * I33;
if(sign)
return 3. * D / sqrt(nSqJ * nSqDInvJ);
else
return 3. * std::fabs(D) / sqrt(nSqJ * nSqDInvJ);
}
// Compute condition number and its gradients
// w.r.t. node positions, at one location in a 2D element
template <bool sign>
inline void calcGradInvCondNum2D(double dxdX, double dxdY, double dydX,
double dydY, double dzdX, double dzdY,
double nx, double ny, double nz, int i,
int numMapNodes,
const fullMatrix<double> &dSMat_dX,
const fullMatrix<double> &dSMat_dY,
fullMatrix<double> &IDI)
{
const double EpsDegen = 1.e-6;
bool posJac = true;
if(sign) {
const double lnx = dydX * dzdY - dzdX * dydY,
lny = dzdX * dxdY -
dxdX * dzdY, // Local normal from mapping gradients
lnz = dxdX * dydY - dydX * dxdY;
const double dp = lnx * nx + lny * ny +
lnz * nz; // Dot product to determine element validity
posJac = (dp >= 0.);
}
const double dxdXSq = dxdX * dxdX, dydXSq = dydX * dydX,
dzdXSq = dzdX * dzdX;
const double dxdYSq = dxdY * dxdY, dydYSq = dydY * dydY,
dzdYSq = dzdY * dzdY;
const double Dx = dxdXSq - dxdYSq, Dy = dydXSq - dydYSq;
const double Cx = dxdX * dxdY, Cy = dydX * dydY;
const double S1 = dzdYSq * dzdYSq;
const double S2 = (dzdXSq - Dy - Dx) * dzdYSq;
const double S3 = (Cy + Cx) * dzdX * dzdY;
const double S4 = dzdXSq * dzdXSq;
const double S5 = (Dy + Dx) * dzdXSq;
const double S6 = Cx * Cy;
const double S7 = dydXSq * dydXSq;
const double S8 = Dy * dydXSq;
const double S9 = dxdXSq * dxdXSq;
const double S10 = Dx * dxdXSq;
const double S11 = Dy * Dy;
const double S12 = Dx * Dy;
const double S13 = Dx * Dx;
const double S = 2. * (S2 + S5 + S12) + 4. * (S7 - S8 + S9 - S10) +
8. * (S3 + S6) + S1 + S4 + S11 + S13;
if(S == 0.) { // S == 0. -> Ideal element
for(int j = 0; j < 3 * numMapNodes; j++) IDI(i, j) = 0.;
IDI(i, 3 * numMapNodes) = posJac ? 1. : -1.;
return;
}
const double N = dxdXSq + dxdYSq + dydXSq + dydYSq + dzdXSq + dzdYSq;
const double sqrtS = sqrt(S), invSqrtS = 1. / sqrtS;
const double sigma1Sq = 0.5 * (N + sqrtS), sigma2Sq = 0.5 * (N - sqrtS);
const bool degen =
(sigma2Sq < EpsDegen * sigma1Sq); // Check for degenerate element
const double sum = sigma1Sq + sigma2Sq, invSum = 1. / sum;
const double prod = sigma1Sq * sigma2Sq;
const double sqrtProd = sqrt(prod);
const double halfICN = sqrtProd * invSum;
IDI(i, 3 * numMapNodes) = posJac ? 2. * halfICN : -2. * halfICN;
if(degen) { // Degenerate element: special formula for gradients
const double nnXx = dzdX * ny - dydX * nz, nnXy = dxdX * nz - dzdX * nx,
nnXz = dydX * nx - dxdX * ny;
const double nnYx = dzdY * ny - dydY * nz, nnYy = dxdY * nz - dzdY * nx,
nnYz = dydY * nx - dxdY * ny;
const double fact = 2. / N;
for(int j = 0; j < numMapNodes; j++) {
const double &dPhidX = dSMat_dX(i, j);
const double &dPhidY = dSMat_dY(i, j);
IDI(i, j) = fact * (dPhidY * nnXx - dPhidX * nnYx);
IDI(i, j + numMapNodes) = fact * (dPhidY * nnXy - dPhidX * nnYy);
IDI(i, j + 2 * numMapNodes) = fact * (dPhidY * nnXz - dPhidX * nnYz);
}
return;
}
const double invSqrtProd = 1. / sqrtProd;
for(int j = 0; j < numMapNodes; j++) {
const double &dPhidX = dSMat_dX(i, j);
const double &dPhidY = dSMat_dY(i, j);
const double ddxdXSqdxj = 2. * dPhidX * dxdX,
ddxdYSqdxj = 2. * dPhidY * dxdY;
const double dDxdxj = ddxdXSqdxj - ddxdYSqdxj;
const double dCxdxj = dPhidX * dxdY + dxdX * dPhidY;
const double dS2dxj = -dDxdxj * dzdYSq;
const double dS3dxj = dCxdxj * dzdX * dzdY;
const double dS5dxj = dDxdxj * dzdXSq;
const double dS6dxj = dCxdxj * Cy;
const double dS9dxj = 2. * ddxdXSqdxj * dxdXSq;
const double dS10dxj = dDxdxj * dxdXSq + Dx * ddxdXSqdxj;
const double dS12dxj = dDxdxj * Dy;
const double dS13dxj = 2. * dDxdxj * Dx;
const double dSdxj = 2. * (dS2dxj + dS5dxj + dS12dxj) +
4. * (dS9dxj - dS10dxj) + 8. * (dS3dxj + dS6dxj) +
dS13dxj;
const double dNdxj = ddxdXSqdxj + ddxdYSqdxj;
const double dsqrtSdxj = 0.5 * dSdxj * invSqrtS;
const double dsigma1Sqdxj = 0.5 * (dNdxj + dsqrtSdxj),
dsigma2Sqdxj = 0.5 * (dNdxj - dsqrtSdxj);
const double dSumdxj = dsigma1Sqdxj + dsigma2Sqdxj;
const double dProddxj = dsigma1Sqdxj * sigma2Sq + sigma1Sq * dsigma2Sqdxj;
const double diCNdxj =
(dProddxj * sum - 2. * prod * dSumdxj) * invSum * invSum * invSqrtProd;
IDI(i, j) = posJac ? diCNdxj : -diCNdxj;
const double ddydXSqdyj = 2. * dPhidX * dydX,
ddydYSqdyj = 2. * dPhidY * dydY;
const double dDydyj = ddydXSqdyj - ddydYSqdyj;
const double dCydyj = dPhidX * dydY + dydX * dPhidY;
const double dS2dyj = -dDydyj * dzdYSq;
const double dS3dyj = dCydyj * dzdX * dzdY;
const double dS5dyj = dDydyj * dzdXSq;
const double dS6dyj = Cx * dCydyj;
const double dS7dyj = 2. * ddydXSqdyj * dydXSq;
const double dS8dyj = dDydyj * dydXSq + Dy * ddydXSqdyj;
const double dS11dyj = 2. * dDydyj * Dy;
const double dS12dyj = Dx * dDydyj;
const double dSdyj = 2. * (dS2dyj + dS5dyj + dS12dyj) +
4. * (dS7dyj - dS8dyj) + 8. * (dS3dyj + dS6dyj) +
dS11dyj;
const double dNdyj = ddydXSqdyj + ddydYSqdyj;
const double dsqrtSdyj = 0.5 * dSdyj * invSqrtS;
const double dsigma1Sqdyj = 0.5 * (dNdyj + dsqrtSdyj),
dsigma2Sqdyj = 0.5 * (dNdyj - dsqrtSdyj);
const double dSumdyj = dsigma1Sqdyj + dsigma2Sqdyj;
const double dProddyj = dsigma1Sqdyj * sigma2Sq + sigma1Sq * dsigma2Sqdyj;
const double diCNdyj =
(dProddyj * sum - 2. * prod * dSumdyj) * invSum * invSum * invSqrtProd;
IDI(i, j + numMapNodes) = posJac ? diCNdyj : -diCNdyj;
const double ddzdXSqdzj = 2. * dPhidX * dzdX,
ddzdYSqdzj = 2. * dPhidY * dzdY;
const double dS1dzj = 2. * ddzdYSqdzj * dzdYSq;
const double dS2dzj = (dzdXSq - Dy - Dx) * ddzdYSqdzj;
const double dS3dzj = (Cy + Cx) * (ddzdXSqdzj * dzdY + dzdX * ddzdYSqdzj);
const double dS4dzj = 2. * ddzdXSqdzj * dzdXSq;
const double dS5dzj = (Dy + Dx) * ddzdXSqdzj;
const double dSdzj =
2. * (dS2dzj + dS5dzj) + 8. * dS3dzj + dS1dzj + dS4dzj;
const double dNdzj = ddzdXSqdzj + ddzdYSqdzj;
const double dsqrtSdzj = 0.5 * dSdzj * invSqrtS;
const double dsigma1Sqdzj = 0.5 * (dNdzj + dsqrtSdzj),
dsigma2Sqdzj = 0.5 * (dNdzj - dsqrtSdzj);
const double dSumdzj = dsigma1Sqdzj + dsigma2Sqdzj;
const double dProddzj = dsigma1Sqdzj * sigma2Sq + sigma1Sq * dsigma2Sqdzj;
const double diCNdzj =
(dProddzj * sum - 2. * prod * dSumdzj) * invSum * invSum * invSqrtProd;
IDI(i, j + 2 * numMapNodes) = posJac ? diCNdzj : -diCNdzj;
}
}
// Compute condition number and its gradients
// w.r.t. node positions, at one location in a 3D element
template <bool sign>
inline void calcGradInvCondNum3D(
double dxdX, double dxdY, double dxdZ, double dydX, double dydY,
double dydZ, double dzdX, double dzdY, double dzdZ, int i, int numMapNodes,
const fullMatrix<double> &dSMat_dX, const fullMatrix<double> &dSMat_dY,
const fullMatrix<double> &dSMat_dZ, fullMatrix<double> &IDI)
{
const double normJSq = dxdX * dxdX + dxdY * dxdY + dxdZ * dxdZ +
dydX * dydX + dydY * dydY + dydZ * dydZ +
dzdX * dzdX + dzdY * dzdY + dzdZ * dzdZ;
const double I11 = dydY * dzdZ - dydZ * dzdY,
I12 = dxdZ * dzdY - dxdY * dzdZ,
I13 = dxdY * dydZ - dxdZ * dydY,
I21 = dydZ * dzdX - dydX * dzdZ,
I22 = dxdX * dzdZ - dxdZ * dzdX,
I23 = dxdZ * dydX - dxdX * dydZ,
I31 = dydX * dzdY - dydY * dzdX,
I32 = dxdY * dzdX - dxdX * dzdY,
I33 = dxdX * dydY - dxdY * dydX;
const double normISq = I11 * I11 + I12 * I12 + I13 * I13 + I21 * I21 +
I22 * I22 + I23 * I23 + I31 * I31 + I32 * I32 +
I33 * I33;
const double invProd = 1. / (normJSq * normISq),
invSqrtProd = sqrt(invProd);
const double D =
calcDet3x3(dxdX, dxdY, dxdZ, dydX, dydY, dydZ, dzdX, dzdY, dzdZ);
const bool reverse = (!sign && (D < 0.));
const double sICN = 3. * D * invSqrtProd;
IDI(i, 3 * numMapNodes) = reverse ? -sICN : sICN;
for(int j = 0; j < numMapNodes; j++) {
const double &dPhidX = dSMat_dX(i, j);
const double &dPhidY = dSMat_dY(i, j);
const double &dPhidZ = dSMat_dZ(i, j);
const double dNormJSqdxj =
2. * (dPhidX * dxdX + dPhidY * dxdY + dPhidZ * dxdZ);
const double dNormISqdxj = 2. * ((dPhidZ * dzdY - dPhidY * dzdZ) * I12 +
(dPhidY * dydZ - dPhidZ * dydY) * I13 +
(dPhidX * dzdZ - dPhidZ * dzdX) * I22 +
(dPhidZ * dydX - dPhidX * dydZ) * I23 +
(dPhidY * dzdX - dPhidX * dzdY) * I32 +
(dPhidX * dydY - dPhidY * dydX) * I33);
const double dProddxj = dNormJSqdxj * normISq + dNormISqdxj * normJSq;
const double dDdxj = dPhidX * dydY * dzdZ + dzdX * dPhidY * dydZ +
dydX * dzdY * dPhidZ - dzdX * dydY * dPhidZ -
dPhidX * dzdY * dydZ - dydX * dPhidY * dzdZ;
const double dsICNdxj =
3. * (dDdxj * invSqrtProd - 0.5 * D * dProddxj * invProd * invSqrtProd);
IDI(i, j) = reverse ? -dsICNdxj : dsICNdxj;
const double dNormJSqdyj =
2. * (dPhidX * dydX + dPhidY * dydY + dPhidZ * dydZ);
const double dNormISqdyj = 2. * ((dPhidY * dzdZ - dPhidZ * dzdY) * I11 +
(dxdY * dPhidZ - dxdZ * dPhidY) * I13 +
(dPhidZ * dzdX - dPhidX * dzdZ) * I21 +
(dxdZ * dPhidX - dxdX * dPhidZ) * I23 +
(dPhidX * dzdY - dPhidY * dzdX) * I31 +
(dxdX * dPhidY - dxdY * dPhidX) * I33);
const double dProddyj = dNormJSqdyj * normISq + dNormISqdyj * normJSq;
const double dDdyj = dxdX * dPhidY * dzdZ + dzdX * dxdY * dPhidZ +
dPhidX * dzdY * dxdZ - dzdX * dPhidY * dxdZ -
dxdX * dzdY * dPhidZ - dPhidX * dxdY * dzdZ;
const double dsICNdyj =
3. * (dDdyj * invSqrtProd - 0.5 * D * dProddyj * invProd * invSqrtProd);
IDI(i, j + numMapNodes) = reverse ? -dsICNdyj : dsICNdyj;
const double dNormJSqdzj =
2. * (dPhidX * dzdX + dPhidY * dzdY + dPhidZ * dzdZ);
const double dNormISqdzj = 2. * ((dydY * dPhidZ - dydZ * dPhidY) * I11 +
(dxdZ * dPhidY - dxdY * dPhidZ) * I12 +
(dydZ * dPhidX - dydX * dPhidZ) * I21 +
(dxdX * dPhidZ - dxdZ * dPhidX) * I22 +
(dydX * dPhidY - dydY * dPhidX) * I31 +
(dxdY * dPhidX - dxdX * dPhidY) * I32);
const double dProddzj = dNormJSqdzj * normISq + dNormISqdzj * normJSq;
const double dDdzj = dxdX * dydY * dPhidZ + dPhidX * dxdY * dydZ +
dydX * dPhidY * dxdZ - dPhidX * dydY * dxdZ -
dxdX * dPhidY * dydZ - dydX * dxdY * dPhidZ;
const double dsICNdzj =
3. * (dDdzj * invSqrtProd - 0.5 * D * dProddzj * invProd * invSqrtProd);
IDI(i, j + 2 * numMapNodes) = reverse ? -dsICNdzj : dsICNdzj;
}
}
} // namespace
CondNumBasis::CondNumBasis(int tag, int cnOrder)
: _tag(tag), _dim(ElementType::getDimension(tag)),
_condNumOrder(cnOrder >= 0 ? cnOrder : condNumOrder(tag))
{
if(ElementType::getParentType(tag) == TYPE_TRIH) {
_nCondNumNodes = 1;
_nMapNodes = 4;
_nPrimMapNodes = 4;
return;
}
const int parentType = ElementType::getParentType(tag);
FuncSpaceData data =
parentType == TYPE_PYR ?
FuncSpaceData(parentType, true, 1, _condNumOrder - 1, false) :
FuncSpaceData(parentType, _condNumOrder, false);
fullMatrix<double> lagPoints; // Sampling points
gmshGeneratePoints(data, lagPoints);
_nCondNumNodes = lagPoints.size1();
_nMapNodes = BasisFactory::getNodalBasis(tag)->getNumShapeFunctions();
// Store shape function gradients of mapping at condition number nodes
_gradBasis = BasisFactory::getGradientBasis(tag, data);
// Compute shape function gradients of primary mapping at barycenter,
// in order to compute normal to straight element
const int primMapType = ElementType::getType(parentType, 1, false);
const nodalBasis *primMapBasis = BasisFactory::getNodalBasis(primMapType);
_nPrimMapNodes = primMapBasis->getNumShapeFunctions();
double xBar = 0., yBar = 0., zBar = 0.;
double barycenter[3] = {0., 0., 0.};
for(int i = 0; i < _nPrimMapNodes; i++) {
for(int j = 0; j < primMapBasis->points.size2(); ++j) {
barycenter[j] += primMapBasis->points(i, j);
}
}
barycenter[0] /= _nPrimMapNodes;
barycenter[1] /= _nPrimMapNodes;
barycenter[2] /= _nPrimMapNodes;
double(*barDPsi)[3] = new double[_nPrimMapNodes][3];
primMapBasis->df(xBar, yBar, zBar, barDPsi);
// TODO: Make primGradShape from ideal element
dPrimBaryShape_dX.resize(_nPrimMapNodes);
dPrimBaryShape_dY.resize(_nPrimMapNodes);
dPrimBaryShape_dZ.resize(_nPrimMapNodes);
for(int j = 0; j < _nPrimMapNodes; j++) {
dPrimBaryShape_dX(j) = barDPsi[j][0];
dPrimBaryShape_dY(j) = barDPsi[j][1];
dPrimBaryShape_dZ(j) = barDPsi[j][2];
}
delete[] barDPsi;
}
int CondNumBasis::condNumOrder(int tag)
{
const int parentType = ElementType::getParentType(tag);
const int order = ElementType::getOrder(tag);
return condNumOrder(parentType, order);
}
int CondNumBasis::condNumOrder(int parentType, int order)
{
switch(parentType) {
case TYPE_PNT: return 0;
case TYPE_LIN: return order - 1;
case TYPE_TRI: return (order == 1) ? 0 : order;
case TYPE_QUA: return order;
case TYPE_TET: return (order == 1) ? 0 : order;
case TYPE_PRI: return order;
case TYPE_HEX: return order;
case TYPE_PYR: return order;
case TYPE_TRIH: return 0;
default:
Msg::Error("Unknown element type %d, return order 0", parentType);
return 0;
}
}
// Calculate the inverse condition number in Frobenius norm for one element,
// with normal vectors to straight element for regularization. Evaluation points
// depend on the given matrices for shape function gradients.
template <bool sign>
inline void CondNumBasis::getInvCondNumGeneral(
int nCondNumNodes, const fullMatrix<double> &dSMat_dX,
const fullMatrix<double> &dSMat_dY, const fullMatrix<double> &dSMat_dZ,
const fullMatrix<double> &nodesXYZ, const fullMatrix<double> &normals,
fullVector<double> &condNum) const
{
switch(_dim) {
case 0: {
for(int i = 0; i < nCondNumNodes; i++) condNum(i) = 1.;
break;
}
case 1: {
Msg::Warning("Inverse condition number not implemented in 1D");
condNum.setAll(0.);
break;
}
case 2: {
fullMatrix<double> dxyzdX(nCondNumNodes, 3), dxyzdY(nCondNumNodes, 3);
dSMat_dX.mult(nodesXYZ, dxyzdX);
dSMat_dY.mult(nodesXYZ, dxyzdY);
for(int i = 0; i < nCondNumNodes; i++) {
const double &dxdX = dxyzdX(i, 0), &dydX = dxyzdX(i, 1),
&dzdX = dxyzdX(i, 2);
const double &dxdY = dxyzdY(i, 0), &dydY = dxyzdY(i, 1),
&dzdY = dxyzdY(i, 2);
const double &nx = normals(0, 0), &ny = normals(0, 1),
&nz = normals(0, 2);
condNum(i) =
calcInvCondNum2D<sign>(dxdX, dxdY, dydX, dydY, dzdX, dzdY, nx, ny, nz);
}
break;
}
case 3: {
if(ElementType::getParentType(_tag) == TYPE_TRIH) {
for(int i = 0; i < nCondNumNodes; i++) condNum(i) = 1.;
break;
}
fullMatrix<double> dxyzdX(nCondNumNodes, 3), dxyzdY(nCondNumNodes, 3),
dxyzdZ(nCondNumNodes, 3);
dSMat_dX.mult(nodesXYZ, dxyzdX);
dSMat_dY.mult(nodesXYZ, dxyzdY);
dSMat_dZ.mult(nodesXYZ, dxyzdZ);
for(int i = 0; i < nCondNumNodes; i++) {
const double &dxdX = dxyzdX(i, 0), &dydX = dxyzdX(i, 1),
&dzdX = dxyzdX(i, 2);
const double &dxdY = dxyzdY(i, 0), &dydY = dxyzdY(i, 1),
&dzdY = dxyzdY(i, 2);
const double &dxdZ = dxyzdZ(i, 0), &dydZ = dxyzdZ(i, 1),
&dzdZ = dxyzdZ(i, 2);
condNum(i) = calcInvCondNum3D<sign>(dxdX, dxdY, dxdZ, dydX, dydY, dydZ,
dzdX, dzdY, dzdZ);
}
break;
}
}
}
void CondNumBasis::getInvCondNumGeneral(int nCondNumNodes,
const fullMatrix<double> &dSMat_dX,
const fullMatrix<double> &dSMat_dY,
const fullMatrix<double> &dSMat_dZ,
const fullMatrix<double> &nodesXYZ,
fullVector<double> &invCond) const
{
fullMatrix<double> dumNormals;
getInvCondNumGeneral<false>(nCondNumNodes, dSMat_dX, dSMat_dY, dSMat_dZ,
nodesXYZ, dumNormals, invCond);
}
void CondNumBasis::getSignedInvCondNumGeneral(
int nCondNumNodes, const fullMatrix<double> &dSMat_dX,
const fullMatrix<double> &dSMat_dY, const fullMatrix<double> &dSMat_dZ,
const fullMatrix<double> &nodesXYZ, const fullMatrix<double> &normals,
fullVector<double> &invCond) const
{
getInvCondNumGeneral<true>(nCondNumNodes, dSMat_dX, dSMat_dY, dSMat_dZ,
nodesXYZ, normals, invCond);
}
// Calculate the inverse condition number in Frobenius norm and its gradients
// w.r.t. node position, with normal vectors to straight element for
// regularization. Evaluation points depend on the given matrices for shape
// function gradients.
template <bool sign>
inline void CondNumBasis::getInvCondNumAndGradientsGeneral(
int nCondNumNodes, const fullMatrix<double> &dSMat_dX,
const fullMatrix<double> &dSMat_dY, const fullMatrix<double> &dSMat_dZ,
const fullMatrix<double> &nodesXYZ, const fullMatrix<double> &normals,
fullMatrix<double> &IDI) const
{
fullMatrix<double> JDJ(nCondNumNodes, 3 * _nMapNodes + 1);
switch(_dim) {
case 0: {
for(int i = 0; i < nCondNumNodes; i++) {
for(int j = 0; j < _nMapNodes; j++) {
IDI(i, j) = 0.;
IDI(i, j + 1 * _nMapNodes) = 0.;
IDI(i, j + 2 * _nMapNodes) = 0.;
}
IDI(i, 3 * _nMapNodes) = 1.;
}
break;
}
case 1: {
Msg::Warning("Inverse condition number not implemented in 1D");
IDI.setAll(0.);
break;
}
case 2: {
fullMatrix<double> dxyzdX(nCondNumNodes, 3), dxyzdY(nCondNumNodes, 3);
dSMat_dX.mult(nodesXYZ, dxyzdX);
dSMat_dY.mult(nodesXYZ, dxyzdY);
for(int i = 0; i < nCondNumNodes; i++) {
const double &dxdX = dxyzdX(i, 0), &dydX = dxyzdX(i, 1),
&dzdX = dxyzdX(i, 2);
const double &dxdY = dxyzdY(i, 0), &dydY = dxyzdY(i, 1),
&dzdY = dxyzdY(i, 2);
const double &nx = normals(0, 0), &ny = normals(0, 1),
&nz = normals(0, 2);
calcGradInvCondNum2D<sign>(dxdX, dxdY, dydX, dydY, dzdX, dzdY, nx, ny, nz,
i, _nMapNodes, dSMat_dX, dSMat_dY, IDI);
}
break;
}
case 3: {
if(ElementType::getParentType(_tag) == TYPE_TRIH) {
for(int i = 0; i < nCondNumNodes; i++) {
for(int j = 0; j < _nMapNodes; j++) {
IDI(i, j) = 0.;
IDI(i, j + 1 * _nMapNodes) = 0.;
IDI(i, j + 2 * _nMapNodes) = 0.;
}
IDI(i, 3 * _nMapNodes) = 1.;
}
break;
}
fullMatrix<double> dxyzdX(nCondNumNodes, 3), dxyzdY(nCondNumNodes, 3),
dxyzdZ(nCondNumNodes, 3);
dSMat_dX.mult(nodesXYZ, dxyzdX);
dSMat_dY.mult(nodesXYZ, dxyzdY);
dSMat_dZ.mult(nodesXYZ, dxyzdZ);
for(int i = 0; i < nCondNumNodes; i++) {
const double &dxdX = dxyzdX(i, 0), &dydX = dxyzdX(i, 1),
&dzdX = dxyzdX(i, 2);
const double &dxdY = dxyzdY(i, 0), &dydY = dxyzdY(i, 1),
&dzdY = dxyzdY(i, 2);
const double &dxdZ = dxyzdZ(i, 0), &dydZ = dxyzdZ(i, 1),
&dzdZ = dxyzdZ(i, 2);
calcGradInvCondNum3D<sign>(dxdX, dxdY, dxdZ, dydX, dydY, dydZ, dzdX, dzdY,
dzdZ, i, _nMapNodes, dSMat_dX, dSMat_dY,
dSMat_dZ, IDI);
}
break;
}
}
}
void CondNumBasis::getInvCondNumAndGradientsGeneral(
int nCondNumNodes, const fullMatrix<double> &dSMat_dX,
const fullMatrix<double> &dSMat_dY, const fullMatrix<double> &dSMat_dZ,
const fullMatrix<double> &nodesXYZ, fullMatrix<double> &IDI) const
{
fullMatrix<double> dumNormals;
getInvCondNumAndGradientsGeneral<false>(nCondNumNodes, dSMat_dX, dSMat_dY,
dSMat_dZ, nodesXYZ, dumNormals, IDI);
}
void CondNumBasis::getSignedInvCondNumAndGradientsGeneral(
int nCondNumNodes, const fullMatrix<double> &dSMat_dX,
const fullMatrix<double> &dSMat_dY, const fullMatrix<double> &dSMat_dZ,
const fullMatrix<double> &nodesXYZ, const fullMatrix<double> &normals,
fullMatrix<double> &IDI) const
{
getInvCondNumAndGradientsGeneral<true>(nCondNumNodes, dSMat_dX, dSMat_dY,
dSMat_dZ, nodesXYZ, normals, IDI);
}
|