1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
|
// Gmsh - Copyright (C) 1997-2021 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// issues on https://gitlab.onelab.info/gmsh/gmsh/issues.
#include "SBoundingBox3d.h"
#include "MVertex.h"
struct HilbertSort {
// The code for generating table transgc
// from: http://graphics.stanford.edu/~seander/bithacks.html.
int transgc[8][3][8];
int tsb1mod3[8];
int maxDepth;
int Limit;
SBoundingBox3d bbox;
void ComputeGrayCode(int n);
int Split(MVertex **vertices, int arraysize, int GrayCode0, int GrayCode1,
double BoundingBoxXmin, double BoundingBoxXmax,
double BoundingBoxYmin, double BoundingBoxYmax,
double BoundingBoxZmin, double BoundingBoxZmax);
void Sort(MVertex **vertices, int arraysize, int e, int d,
double BoundingBoxXmin, double BoundingBoxXmax,
double BoundingBoxYmin, double BoundingBoxYmax,
double BoundingBoxZmin, double BoundingBoxZmax, int depth);
HilbertSort(int m = 0, int l = 2) : maxDepth(m), Limit(l)
{
ComputeGrayCode(3);
}
void MultiscaleSortHilbert(MVertex **vertices, int arraysize, int threshold,
double ratio, int *depth)
{
int middle;
middle = 0;
if(arraysize >= threshold) {
(*depth)++;
middle = (int)(arraysize * ratio);
MultiscaleSortHilbert(vertices, middle, threshold, ratio, depth);
}
Sort(&(vertices[middle]), arraysize - middle, 0, 0, bbox.min().x(),
bbox.max().x(), bbox.min().y(), bbox.max().y(), bbox.min().z(),
bbox.max().z(), 0);
}
void Apply(std::vector<MVertex *> &v)
{
for(size_t i = 0; i < v.size(); i++) {
MVertex *pv = v[i];
bbox += SPoint3(pv->x(), pv->y(), pv->z());
}
bbox *= 1.01;
MVertex **pv = &v[0];
int depth;
MultiscaleSortHilbert(pv, (int)v.size(), 10, 0.125, &depth);
}
};
void HilbertSort::ComputeGrayCode(int n)
{
int gc[8], N, mask, travel_bit;
int e, d, f, k, g;
int v, c;
int i;
N = (n == 2) ? 4 : 8;
mask = (n == 2) ? 3 : 7;
// Generate the Gray code sequence.
for(i = 0; i < N; i++) { gc[i] = i ^ (i >> 1); }
for(e = 0; e < N; e++) {
for(d = 0; d < n; d++) {
// Calculate the end point (f).
f = e ^ (1 << d); // Toggle the d-th bit of 'e'.
// travel_bit = 2**p, the bit we want to travel.
travel_bit = e ^ f;
for(i = 0; i < N; i++) {
// // Rotate gc[i] left by (p + 1) % n bits.
k = gc[i] * (travel_bit * 2);
g = ((k | (k / N)) & mask);
// Calculate the permuted Gray code by xor with the start point (e).
transgc[e][d][i] = (g ^ e);
}
// assert(transgc[e][d][0] == e);
// assert(transgc[e][d][N - 1] == f);
} // d
} // e
// Count the consecutive '1' bits (trailing) on the right.
tsb1mod3[0] = 0;
for(i = 1; i < N; i++) {
v = ~i; // Count the 0s.
v = (v ^ (v - 1)) >> 1; // Set v's trailing 0s to 1s and zero rest
for(c = 0; v; c++) { v >>= 1; }
tsb1mod3[i] = c % n;
}
}
int HilbertSort::Split(MVertex **vertices, int arraysize, int GrayCode0,
int GrayCode1, double BoundingBoxXmin,
double BoundingBoxXmax, double BoundingBoxYmin,
double BoundingBoxYmax, double BoundingBoxZmin,
double BoundingBoxZmax)
{
MVertex *swapvert;
int axis, d;
double split;
int i, j;
// Find the current splitting axis. 'axis' is a value 0, or 1, or 2, which
// correspoding to x-, or y- or z-axis.
axis = (GrayCode0 ^ GrayCode1) >> 1;
// Calulate the split position along the axis.
if(axis == 0) { split = 0.5 * (BoundingBoxXmin + BoundingBoxXmax); }
else if(axis == 1) {
split = 0.5 * (BoundingBoxYmin + BoundingBoxYmax);
}
else { // == 2
split = 0.5 * (BoundingBoxZmin + BoundingBoxZmax);
}
// Find the direction (+1 or -1) of the axis. If 'd' is +1, the direction
// of the axis is to the positive of the axis, otherwise, it is -1.
d = ((GrayCode0 & (1 << axis)) == 0) ? 1 : -1;
// Partition the vertices into left- and right-arrays such that left points
// have Hilbert indices lower than the right points.
i = 0;
j = arraysize - 1;
// Partition the vertices into left- and right-arrays.
if(d > 0) {
do {
for(; i < arraysize; i++) {
if(vertices[i]->point()[axis] >= split) break;
}
for(; j >= 0; j--) {
if(vertices[j]->point()[axis] < split) break;
}
// Is the partition finished?
if(i >= (j + 1)) break;
// Swap i-th and j-th vertices.
swapvert = vertices[i];
vertices[i] = vertices[j];
vertices[j] = swapvert;
// Continue patitioning the array;
} while(true);
}
else {
do {
for(; i < arraysize; i++) {
if(vertices[i]->point()[axis] <= split) break;
}
for(; j >= 0; j--) {
if(vertices[j]->point()[axis] > split) break;
}
// Is the partition finished?
if(i >= (j + 1)) break;
// Swap i-th and j-th vertices.
swapvert = vertices[i];
vertices[i] = vertices[j];
vertices[j] = swapvert;
// Continue patitioning the array;
} while(true);
}
return i;
}
// The sorting code is inspired by Tetgen 1.5
void HilbertSort::Sort(MVertex **vertices, int arraysize, int e, int d,
double BoundingBoxXmin, double BoundingBoxXmax,
double BoundingBoxYmin, double BoundingBoxYmax,
double BoundingBoxZmin, double BoundingBoxZmax,
int depth)
{
double x1, x2, y1, y2, z1, z2;
int p[9], w, e_w, d_w, k, ei, di;
int n = 3, mask = 7;
p[0] = 0;
p[8] = arraysize;
p[4] = Split(vertices, p[8], transgc[e][d][3], transgc[e][d][4],
BoundingBoxXmin, BoundingBoxXmax, BoundingBoxYmin,
BoundingBoxYmax, BoundingBoxZmin, BoundingBoxZmax);
p[2] = Split(vertices, p[4], transgc[e][d][1], transgc[e][d][2],
BoundingBoxXmin, BoundingBoxXmax, BoundingBoxYmin,
BoundingBoxYmax, BoundingBoxZmin, BoundingBoxZmax);
p[1] = Split(vertices, p[2], transgc[e][d][0], transgc[e][d][1],
BoundingBoxXmin, BoundingBoxXmax, BoundingBoxYmin,
BoundingBoxYmax, BoundingBoxZmin, BoundingBoxZmax);
p[3] =
Split(&(vertices[p[2]]), p[4] - p[2], transgc[e][d][2], transgc[e][d][3],
BoundingBoxXmin, BoundingBoxXmax, BoundingBoxYmin, BoundingBoxYmax,
BoundingBoxZmin, BoundingBoxZmax) +
p[2];
p[6] =
Split(&(vertices[p[4]]), p[8] - p[4], transgc[e][d][5], transgc[e][d][6],
BoundingBoxXmin, BoundingBoxXmax, BoundingBoxYmin, BoundingBoxYmax,
BoundingBoxZmin, BoundingBoxZmax) +
p[4];
p[5] =
Split(&(vertices[p[4]]), p[6] - p[4], transgc[e][d][4], transgc[e][d][5],
BoundingBoxXmin, BoundingBoxXmax, BoundingBoxYmin, BoundingBoxYmax,
BoundingBoxZmin, BoundingBoxZmax) +
p[4];
p[7] =
Split(&(vertices[p[6]]), p[8] - p[6], transgc[e][d][6], transgc[e][d][7],
BoundingBoxXmin, BoundingBoxXmax, BoundingBoxYmin, BoundingBoxYmax,
BoundingBoxZmin, BoundingBoxZmax) +
p[6];
if(maxDepth > 0) {
if((depth + 1) == maxDepth) { return; }
}
// Recursively sort the points in sub-boxes.
for(w = 0; w < 8; w++) {
if((p[w + 1] - p[w]) > Limit) {
if(w == 0) { e_w = 0; }
else {
k = 2 * ((w - 1) / 2);
e_w = k ^ (k >> 1);
}
k = e_w;
e_w = ((k << (d + 1)) & mask) | ((k >> (n - d - 1)) & mask);
ei = e ^ e_w;
if(w == 0) { d_w = 0; }
else {
d_w = ((w % 2) == 0) ? tsb1mod3[w - 1] : tsb1mod3[w];
}
di = (d + d_w + 1) % n;
if(transgc[e][d][w] & 1) {
x1 = 0.5 * (BoundingBoxXmin + BoundingBoxXmax);
x2 = BoundingBoxXmax;
}
else {
x1 = BoundingBoxXmin;
x2 = 0.5 * (BoundingBoxXmin + BoundingBoxXmax);
}
if(transgc[e][d][w] & 2) { // y-axis
y1 = 0.5 * (BoundingBoxYmin + BoundingBoxYmax);
y2 = BoundingBoxYmax;
}
else {
y1 = BoundingBoxYmin;
y2 = 0.5 * (BoundingBoxYmin + BoundingBoxYmax);
}
if(transgc[e][d][w] & 4) { // z-axis
z1 = 0.5 * (BoundingBoxZmin + BoundingBoxZmax);
z2 = BoundingBoxZmax;
}
else {
z1 = BoundingBoxZmin;
z2 = 0.5 * (BoundingBoxZmin + BoundingBoxZmax);
}
Sort(&(vertices[p[w]]), p[w + 1] - p[w], ei, di, x1, x2, y1, y2, z1, z2,
depth + 1);
}
}
}
void SortHilbert(std::vector<MVertex *> &v)
{
HilbertSort h(1000);
// HilbertSort h;
h.Apply(v);
}
|