1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
|
// Gmsh - Copyright (C) 1997-2021 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// issues on https://gitlab.onelab.info/gmsh/gmsh/issues.
#include "Numeric.h"
static void affect(double *xi, double *yi, double *zi, int i, double *xp,
double *yp, double *zp, int j)
{
xi[i] = xp[j];
yi[i] = yp[j];
zi[i] = zp[j];
}
double InterpolateIso(double *X, double *Y, double *Z, double *Val, double V,
int I1, int I2, double *XI, double *YI, double *ZI)
{
if(Val[I1] == Val[I2]) {
*XI = X[I1];
*YI = Y[I1];
*ZI = Z[I1];
return 0;
}
else {
double coef = (V - Val[I1]) / (Val[I2] - Val[I1]);
*XI = coef * (X[I2] - X[I1]) + X[I1];
*YI = coef * (Y[I2] - Y[I1]) + Y[I1];
*ZI = coef * (Z[I2] - Z[I1]) + Z[I1];
return coef;
}
}
// Compute an iso-point in a line
int IsoLine(double *X, double *Y, double *Z, double *Val, double V, double *Xp,
double *Yp, double *Zp)
{
if(Val[0] == Val[1]) return 0;
if((Val[0] >= V && Val[1] <= V) || (Val[1] >= V && Val[0] <= V)) {
InterpolateIso(X, Y, Z, Val, V, 0, 1, Xp, Yp, Zp);
return 1;
}
return 0;
}
// Compute an iso-line inside a triangle
int IsoTriangle(double *X, double *Y, double *Z, double *Val, double V,
double *Xp, double *Yp, double *Zp)
{
if(Val[0] == Val[1] && Val[0] == Val[2]) return 0;
int nb = 0;
if((Val[0] >= V && Val[1] <= V) || (Val[1] >= V && Val[0] <= V)) {
InterpolateIso(X, Y, Z, Val, V, 0, 1, &Xp[nb], &Yp[nb], &Zp[nb]);
nb++;
}
if((Val[0] >= V && Val[2] <= V) || (Val[2] >= V && Val[0] <= V)) {
InterpolateIso(X, Y, Z, Val, V, 0, 2, &Xp[nb], &Yp[nb], &Zp[nb]);
nb++;
}
if((Val[1] >= V && Val[2] <= V) || (Val[2] >= V && Val[1] <= V)) {
InterpolateIso(X, Y, Z, Val, V, 1, 2, &Xp[nb], &Yp[nb], &Zp[nb]);
nb++;
}
if(nb == 2) return 2;
return 0;
}
// Compute an iso-polygon inside a tetrahedron
int IsoSimplex(double *X, double *Y, double *Z, double *Val, double V,
double *Xp, double *Yp, double *Zp, double n[3])
{
if(Val[0] == Val[1] && Val[0] == Val[2] && Val[0] == Val[3]) return 0;
int nb = 0;
if((Val[0] >= V && Val[1] <= V) || (Val[1] >= V && Val[0] <= V)) {
InterpolateIso(X, Y, Z, Val, V, 0, 1, &Xp[nb], &Yp[nb], &Zp[nb]);
nb++;
}
if((Val[0] >= V && Val[2] <= V) || (Val[2] >= V && Val[0] <= V)) {
InterpolateIso(X, Y, Z, Val, V, 0, 2, &Xp[nb], &Yp[nb], &Zp[nb]);
nb++;
}
if((Val[0] >= V && Val[3] <= V) || (Val[3] >= V && Val[0] <= V)) {
InterpolateIso(X, Y, Z, Val, V, 0, 3, &Xp[nb], &Yp[nb], &Zp[nb]);
nb++;
}
if((Val[1] >= V && Val[2] <= V) || (Val[2] >= V && Val[1] <= V)) {
InterpolateIso(X, Y, Z, Val, V, 1, 2, &Xp[nb], &Yp[nb], &Zp[nb]);
nb++;
}
if((Val[1] >= V && Val[3] <= V) || (Val[3] >= V && Val[1] <= V)) {
InterpolateIso(X, Y, Z, Val, V, 1, 3, &Xp[nb], &Yp[nb], &Zp[nb]);
nb++;
}
if((Val[2] >= V && Val[3] <= V) || (Val[3] >= V && Val[2] <= V)) {
InterpolateIso(X, Y, Z, Val, V, 2, 3, &Xp[nb], &Yp[nb], &Zp[nb]);
nb++;
}
// Remove identical nodes (this can happen if an edge belongs to the
// zero levelset). We should be doing this even for nb < 4, but it
// would slow us down even more (and we don't really care if some
// nodes in a postprocessing element are identical)
if(nb > 4) {
double xi[6], yi[6], zi[6];
affect(xi, yi, zi, 0, Xp, Yp, Zp, 0);
int ni = 1;
for(int j = 1; j < nb; j++) {
for(int i = 0; i < ni; i++) {
if(fabs(Xp[j] - xi[i]) < 1.e-12 && fabs(Yp[j] - yi[i]) < 1.e-12 &&
fabs(Zp[j] - zi[i]) < 1.e-12) {
break;
}
if(i == ni - 1) {
affect(xi, yi, zi, i + 1, Xp, Yp, Zp, j);
ni++;
}
}
}
for(int i = 0; i < ni; i++) affect(Xp, Yp, Zp, i, xi, yi, zi, i);
nb = ni;
}
if(nb < 3 || nb > 4) return 0;
// 3 possible quads at this point: (0,2,5,3), (0,1,5,4) or
// (1,2,4,3), so simply invert the 2 last vertices for having the
// quad ordered
if(nb == 4) {
double x = Xp[3], y = Yp[3], z = Zp[3];
Xp[3] = Xp[2];
Yp[3] = Yp[2];
Zp[3] = Zp[2];
Xp[2] = x;
Yp[2] = y;
Zp[2] = z;
}
// to get a nice isosurface, we should have n . grad v > 0, where n
// is the normal to the polygon and v is the unknown field we want
// to draw
double v1[3] = {Xp[2] - Xp[0], Yp[2] - Yp[0], Zp[2] - Zp[0]};
double v2[3] = {Xp[1] - Xp[0], Yp[1] - Yp[0], Zp[1] - Zp[0]};
prodve(v1, v2, n);
norme(n);
double g[3];
gradSimplex(X, Y, Z, Val, g);
if(prosca(g, n) > 0.0) {
double Xpi[6], Ypi[6], Zpi[6];
for(int i = 0; i < nb; i++) {
Xpi[i] = Xp[i];
Ypi[i] = Yp[i];
Zpi[i] = Zp[i];
}
for(int i = 0; i < nb; i++) {
Xp[i] = Xpi[nb - i - 1];
Yp[i] = Ypi[nb - i - 1];
Zp[i] = Zpi[nb - i - 1];
}
}
else {
n[0] = -n[0];
n[1] = -n[1];
n[2] = -n[2];
}
return nb;
}
// Compute the line between the two iso-points V1 and V2 in a line
int CutLine(double *X, double *Y, double *Z, double *Val, double V1, double V2,
double *Xp2, double *Yp2, double *Zp2, double *Vp2)
{
int io[2];
if(Val[0] < Val[1]) {
io[0] = 0;
io[1] = 1;
}
else {
io[0] = 1;
io[1] = 0;
}
if(Val[io[0]] > V2 || Val[io[1]] < V1) return 0;
if(V1 <= Val[io[0]] && Val[io[1]] <= V2) {
for(int i = 0; i < 2; i++) {
Vp2[i] = Val[i];
Xp2[i] = X[i];
Yp2[i] = Y[i];
Zp2[i] = Z[i];
}
return 2;
}
if(V1 <= Val[io[0]]) {
Vp2[0] = Val[io[0]];
Xp2[0] = X[io[0]];
Yp2[0] = Y[io[0]];
Zp2[0] = Z[io[0]];
}
else {
Vp2[0] = V1;
InterpolateIso(X, Y, Z, Val, V1, io[0], io[1], &Xp2[0], &Yp2[0], &Zp2[0]);
}
if(V2 >= Val[io[1]]) {
Vp2[1] = Val[io[1]];
Xp2[1] = X[io[1]];
Yp2[1] = Y[io[1]];
Zp2[1] = Z[io[1]];
}
else {
Vp2[1] = V2;
InterpolateIso(X, Y, Z, Val, V2, io[0], io[1], &Xp2[1], &Yp2[1], &Zp2[1]);
}
return 2;
}
// Compute the polygon between the two iso-lines V1 and V2 in a
// triangle
int CutTriangle(double *X, double *Y, double *Z, double *Val, double V1,
double V2, double *Xp2, double *Yp2, double *Zp2, double *Vp2)
{
// fill io so that it contains an indexing of the nodes such that
// Val[io[i]] > Val[io[j]] if i > j
int io[3] = {0, 1, 2};
for(int i = 0; i < 2; i++) {
for(int j = i + 1; j < 3; j++) {
if(Val[io[i]] > Val[io[j]]) {
int iot = io[i];
io[i] = io[j];
io[j] = iot;
}
}
}
if(Val[io[0]] > V2 || Val[io[2]] < V1) return 0;
if(V1 <= Val[io[0]] && Val[io[2]] <= V2) {
for(int i = 0; i < 3; i++) {
Vp2[i] = Val[i];
Xp2[i] = X[i];
Yp2[i] = Y[i];
Zp2[i] = Z[i];
}
return 3;
}
int Np = 0, Fl = 0;
double Xp[10], Yp[10], Zp[10], Vp[10];
if(V1 <= Val[io[0]]) {
Vp[Np] = Val[io[0]];
Xp[Np] = X[io[0]];
Yp[Np] = Y[io[0]];
Zp[Np] = Z[io[0]];
Np++;
Fl = 1;
}
else if(Val[io[0]] < V1 && V1 <= Val[io[1]]) {
Vp[Np] = V1;
InterpolateIso(X, Y, Z, Val, V1, io[0], io[2], &Xp[Np], &Yp[Np], &Zp[Np]);
Np++;
Vp[Np] = V1;
InterpolateIso(X, Y, Z, Val, V1, io[0], io[1], &Xp[Np], &Yp[Np], &Zp[Np]);
Np++;
Fl = 1;
}
else {
Vp[Np] = V1;
InterpolateIso(X, Y, Z, Val, V1, io[0], io[2], &Xp[Np], &Yp[Np], &Zp[Np]);
Np++;
Vp[Np] = V1;
InterpolateIso(X, Y, Z, Val, V1, io[1], io[2], &Xp[Np], &Yp[Np], &Zp[Np]);
Np++;
Fl = 0;
}
if(V2 == Val[io[0]]) { return 0; }
else if((Val[io[0]] < V2) && (V2 < Val[io[1]])) {
Vp[Np] = V2;
InterpolateIso(X, Y, Z, Val, V2, io[0], io[1], &Xp[Np], &Yp[Np], &Zp[Np]);
Np++;
Vp[Np] = V2;
InterpolateIso(X, Y, Z, Val, V2, io[0], io[2], &Xp[Np], &Yp[Np], &Zp[Np]);
Np++;
}
else if(V2 < Val[io[2]]) {
if(Fl) {
Vp[Np] = Val[io[1]];
Xp[Np] = X[io[1]];
Yp[Np] = Y[io[1]];
Zp[Np] = Z[io[1]];
Np++;
}
Vp[Np] = V2;
InterpolateIso(X, Y, Z, Val, V2, io[1], io[2], &Xp[Np], &Yp[Np], &Zp[Np]);
Np++;
Vp[Np] = V2;
InterpolateIso(X, Y, Z, Val, V2, io[0], io[2], &Xp[Np], &Yp[Np], &Zp[Np]);
Np++;
}
else {
if(Fl) {
Vp[Np] = Val[io[1]];
Xp[Np] = X[io[1]];
Yp[Np] = Y[io[1]];
Zp[Np] = Z[io[1]];
Np++;
}
Vp[Np] = Val[io[2]];
Xp[Np] = X[io[2]];
Yp[Np] = Y[io[2]];
Zp[Np] = Z[io[2]];
Np++;
}
Vp2[0] = Vp[0];
Xp2[0] = Xp[0];
Yp2[0] = Yp[0];
Zp2[0] = Zp[0];
int Np2 = 1;
for(int i = 1; i < Np; i++) {
if((Xp[i] != Xp2[Np2 - 1]) || (Yp[i] != Yp2[Np2 - 1]) ||
(Zp[i] != Zp2[Np2 - 1])) {
Vp2[Np2] = Vp[i];
Xp2[Np2] = Xp[i];
Yp2[Np2] = Yp[i];
Zp2[Np2] = Zp[i];
Np2++;
}
}
if(Xp2[0] == Xp2[Np2 - 1] && Yp2[0] == Yp2[Np2 - 1] &&
Zp2[0] == Zp2[Np2 - 1]) {
Np2--;
}
// check and fix orientation
double in1[3] = {X[1] - X[0], Y[1] - Y[0], Z[1] - Z[0]};
double in2[3] = {X[2] - X[0], Y[2] - Y[0], Z[2] - Z[0]};
double inn[3];
prodve(in1, in2, inn);
double out1[3] = {Xp2[1] - Xp2[0], Yp2[1] - Yp2[0], Zp2[1] - Zp2[0]};
double out2[3] = {Xp2[2] - Xp2[0], Yp2[2] - Yp2[0], Zp2[2] - Zp2[0]};
double outn[3];
prodve(out1, out2, outn);
if(prosca(inn, outn) < 0.0) {
for(int i = 0; i < Np2; i++) {
Vp[i] = Vp2[Np2 - i - 1];
Xp[i] = Xp2[Np2 - i - 1];
Yp[i] = Yp2[Np2 - i - 1];
Zp[i] = Zp2[Np2 - i - 1];
}
for(int i = 0; i < Np2; i++) {
Vp2[i] = Vp[i];
Xp2[i] = Xp[i];
Yp2[i] = Yp[i];
Zp2[i] = Zp[i];
}
}
return Np2;
}
|