File: JacobianBasis.cpp

package info (click to toggle)
gmsh 4.8.4%2Bds2-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 87,812 kB
  • sloc: cpp: 378,014; ansic: 99,669; yacc: 7,216; python: 6,680; java: 3,486; lisp: 659; lex: 621; perl: 571; makefile: 470; sh: 440; xml: 415; javascript: 113; pascal: 35; modula3: 32
file content (860 lines) | stat: -rw-r--r-- 34,385 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
// Gmsh - Copyright (C) 1997-2021 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// issues on https://gitlab.onelab.info/gmsh/gmsh/issues.

#include "JacobianBasis.h"
#include "pointsGenerators.h"
#include "nodalBasis.h"
#include "BasisFactory.h"
#include "Numeric.h"
#include <cmath>

namespace {

  template <class T>
  void calcMapFromIdealElement(int type, T &dSVec_dX, T &dSVec_dY, T &dSVec_dZ)
  {
    // 2D scaling
    switch(type) {
    case TYPE_QUA:
    case TYPE_HEX:
    case TYPE_PYR: { // Quad, hex, pyramid -> square with side of length 1
      dSVec_dX.scale(2.);
      dSVec_dY.scale(2.);
      break;
    }
    default: { // Tri, tet, prism: equilateral tri with side of length 1
      static const double cTri[2] = {-1. / std::sqrt(3.), 2. / std::sqrt(3.)};
      dSVec_dY.scale(cTri[1]);
      dSVec_dY.axpy(dSVec_dX, cTri[0]);
      break;
    }
    }

    // 3D scaling
    switch(type) {
    case TYPE_HEX:
    case TYPE_PRI: { // Hex, prism -> side of length 1 in z
      dSVec_dZ.scale(2.);
      break;
    }
    case TYPE_PYR: { // Pyramid -> height sqrt(2.)/2
      static const double cPyr = sqrt(2.);
      dSVec_dZ.scale(cPyr);
      break;
    }
    case TYPE_TET: { // Tet: take into account (x, y) scaling to obtain regular
                     // tet
      static const double cTet[3] = {-3. / 2 / std::sqrt(6.),
                                     -1. / 2 / std::sqrt(2.), std::sqrt(1.5)};
      dSVec_dZ.scale(cTet[2]);
      dSVec_dZ.axpy(dSVec_dX, cTet[0]);
      dSVec_dZ.axpy(dSVec_dY, cTet[1]);
      break;
    }
    }
  }

  // Compute the determinant of a 3x3 matrix
  inline double calcDet3D(double M11, double M12, double M13, double M21,
                          double M22, double M23, double M31, double M32,
                          double M33)
  {
    return M11 * (M22 * M33 - M23 * M32) - M12 * (M21 * M33 - M23 * M31) +
           M13 * (M21 * M32 - M22 * M31);
  }

  // Compute (signed) Jacobian determinant, and its partial derivative w.r.t.
  // nodes coordinates, at sampling point 'i' of a 1D element (for which columns
  // 2 and 3 of the Jacobian matrix are constant).
  inline void calcJDJ1D(double dxdX, double dxdY, double dxdZ, double dydX,
                        double dydY, double dydZ, double dzdX, double dzdY,
                        double dzdZ, int i, int numMapNodes,
                        const fullMatrix<double> &dShapeMat_dX,
                        fullMatrix<double> &JDJ)
  {
    for(int j = 0; j < numMapNodes; j++) {
      const double &dPhidX = dShapeMat_dX(i, j);
      JDJ(i, j) = dPhidX * (dydY * dzdZ - dzdY * dydZ);
      JDJ(i, j + numMapNodes) = dPhidX * (dzdY * dxdZ - dxdY * dzdZ);
      JDJ(i, j + 2 * numMapNodes) = dPhidX * (dxdY * dydZ - dydY * dxdZ);
    }
    JDJ(i, 3 * numMapNodes) =
      calcDet3D(dxdX, dxdY, dxdZ, dydX, dydY, dydZ, dzdX, dzdY, dzdZ);
  }

  // Compute (signed) Jacobian determinant, and its partial derivative w.r.t.
  // nodes coordinates, at sampling point 'i' of a 2D element (for which column
  // 3 of the Jacobian matrix is constant).
  inline void calcJDJ2D(double dxdX, double dxdY, double dxdZ, double dydX,
                        double dydY, double dydZ, double dzdX, double dzdY,
                        double dzdZ, int i, int numMapNodes,
                        const fullMatrix<double> &dShapeMat_dX,
                        const fullMatrix<double> &dShapeMat_dY,
                        fullMatrix<double> &JDJ)
  {
    for(int j = 0; j < numMapNodes; j++) {
      const double &dPhidX = dShapeMat_dX(i, j);
      const double &dPhidY = dShapeMat_dY(i, j);
      JDJ(i, j) = dPhidX * (dydY * dzdZ - dzdY * dydZ) +
                  dPhidY * (dzdX * dydZ - dydX * dzdZ);
      JDJ(i, j + numMapNodes) = dPhidX * (dzdY * dxdZ - dxdY * dzdZ) +
                                dPhidY * (dxdX * dzdZ - dzdX * dxdZ);
      JDJ(i, j + 2 * numMapNodes) = dPhidX * (dxdY * dydZ - dydY * dxdZ) +
                                    dPhidY * (dydX * dxdZ - dxdX * dydZ);
    }
    JDJ(i, 3 * numMapNodes) =
      calcDet3D(dxdX, dxdY, dxdZ, dydX, dydY, dydZ, dzdX, dzdY, dzdZ);
  }

  // Compute (signed) Jacobian determinant, and its partial derivative w.r.t.
  // nodes coordinates, at sampling point 'i' of a 3D element
  inline void calcJDJ3D(double dxdX, double dxdY, double dxdZ, double dydX,
                        double dydY, double dydZ, double dzdX, double dzdY,
                        double dzdZ, int i, int numMapNodes,
                        const fullMatrix<double> &dShapeMat_dX,
                        const fullMatrix<double> &dShapeMat_dY,
                        const fullMatrix<double> &dShapeMat_dZ,
                        fullMatrix<double> &JDJ)
  {
    for(int j = 0; j < numMapNodes; j++) {
      const double &dPhidX = dShapeMat_dX(i, j);
      const double &dPhidY = dShapeMat_dY(i, j);
      const double &dPhidZ = dShapeMat_dZ(i, j);
      JDJ(i, j) = dPhidX * (dydY * dzdZ - dzdY * dydZ) +
                  dPhidY * (dzdX * dydZ - dydX * dzdZ) +
                  dPhidZ * (dydX * dzdY - dzdX * dydY);
      JDJ(i, j + numMapNodes) = dPhidX * (dzdY * dxdZ - dxdY * dzdZ) +
                                dPhidY * (dxdX * dzdZ - dzdX * dxdZ) +
                                dPhidZ * (dzdX * dxdY - dxdX * dzdY);
      JDJ(i, j + 2 * numMapNodes) = dPhidX * (dxdY * dydZ - dydY * dxdZ) +
                                    dPhidY * (dydX * dxdZ - dxdX * dydZ) +
                                    dPhidZ * (dxdX * dydY - dydX * dxdY);
    }
    JDJ(i, 3 * numMapNodes) =
      calcDet3D(dxdX, dxdY, dxdZ, dydX, dydY, dydZ, dzdX, dzdY, dzdZ);
  }

} // namespace

// GradientBasis contains the information for computing the partial
// derivatives of the mapping components w.r.t. to each reference coordinate
// for a given element type.
// Those partial derivatives are the components of the Jacobian matrix,
// and the gradients are the rows of the Jacobian matrix.
GradientBasis::GradientBasis(int elementTag, FuncSpaceData fsdata)
  : _elementTag(elementTag), _data(fsdata)
{
  // Matrix dShapeMat_dX, when multiplied by Lagrange coefficients
  // (i.e. node coordinates), gives the derivative of the mapping
  // w.r.t. the first reference coordinate at some sampling points.
  // Those sampling points is determined by 'fsdata'.
  // The ordering of the sampling points is "ordered" (see pointsGenerator.cpp)
  // and is thus different from the Gmsh ordering convention. This is for being
  // able to convert Lagrange coefficients to Bezier coefficients easily.
  fullMatrix<double> samplingPoints;
  gmshGenerateOrderedPoints(fsdata, samplingPoints);
  const int numSampPnts = samplingPoints.size1();

  // Store partial derivatives of shape functions at sampling points
  fullMatrix<double> allDPsi;
  const nodalBasis *mapBasis = BasisFactory::getNodalBasis(_elementTag);
  mapBasis->df(samplingPoints, allDPsi);
  const int numMapNodes = allDPsi.size2();

  dShapeMat_dX.resize(numSampPnts, numMapNodes);
  dShapeMat_dY.resize(numSampPnts, numMapNodes);
  dShapeMat_dZ.resize(numSampPnts, numMapNodes);
  for(int i = 0; i < numSampPnts; i++) {
    for(int j = 0; j < numMapNodes; j++) {
      dShapeMat_dX(i, j) = allDPsi(3 * i + 0, j);
      dShapeMat_dY(i, j) = allDPsi(3 * i + 1, j);
      dShapeMat_dZ(i, j) = allDPsi(3 * i + 2, j);
    }
  }

  dShapeIdealMat_dX = dShapeMat_dX;
  dShapeIdealMat_dY = dShapeMat_dY;
  dShapeIdealMat_dZ = dShapeMat_dZ;
  mapFromIdealElement(_data.getType(), dShapeIdealMat_dX, dShapeIdealMat_dY,
                      dShapeIdealMat_dZ);
}

void GradientBasis::getIdealGradientsFromNodes(
  const fullMatrix<double> &nodesCoord, fullMatrix<double> *dxyzdX,
  fullMatrix<double> *dxyzdY, fullMatrix<double> *dxyzdZ) const
{
  if(dxyzdX) dShapeIdealMat_dX.mult(nodesCoord, *dxyzdX);
  if(dxyzdY) dShapeIdealMat_dY.mult(nodesCoord, *dxyzdY);
  if(dxyzdZ) dShapeIdealMat_dZ.mult(nodesCoord, *dxyzdZ);
}

void GradientBasis::getGradientsFromNodes(const fullMatrix<double> &nodesCoord,
                                          fullMatrix<double> *dxyzdX,
                                          fullMatrix<double> *dxyzdY,
                                          fullMatrix<double> *dxyzdZ) const
{
  if(dxyzdX) dShapeMat_dX.mult(nodesCoord, *dxyzdX);
  if(dxyzdY) dShapeMat_dY.mult(nodesCoord, *dxyzdY);
  if(dxyzdZ) dShapeMat_dZ.mult(nodesCoord, *dxyzdZ);
}

void GradientBasis::getAllGradientsFromNodes(
  const fullMatrix<double> &nodesCoord, fullMatrix<double> &dxyzdXYZ) const
{
  fullMatrix<double> prox;
  prox.setAsProxy(dxyzdXYZ, 0, 3);
  dShapeMat_dX.mult(nodesCoord, prox);

  prox.setAsProxy(dxyzdXYZ, 3, 3);
  dShapeMat_dY.mult(nodesCoord, prox);

  prox.setAsProxy(dxyzdXYZ, 6, 3);
  dShapeMat_dZ.mult(nodesCoord, prox);
}

void GradientBasis::getAllIdealGradientsFromNodes(
  const fullMatrix<double> &nodesCoord, fullMatrix<double> &dxyzdXYZ) const
{
  fullMatrix<double> prox;
  prox.setAsProxy(dxyzdXYZ, 0, 3);
  dShapeIdealMat_dX.mult(nodesCoord, prox);

  prox.setAsProxy(dxyzdXYZ, 3, 3);
  dShapeIdealMat_dY.mult(nodesCoord, prox);

  prox.setAsProxy(dxyzdXYZ, 6, 3);
  dShapeIdealMat_dZ.mult(nodesCoord, prox);
}

void GradientBasis::mapFromIdealElement(int type, fullMatrix<double> &dSMat_dX,
                                        fullMatrix<double> &dSMat_dY,
                                        fullMatrix<double> &dSMat_dZ)
{
  calcMapFromIdealElement(type, dSMat_dX, dSMat_dY, dSMat_dZ);
}

void GradientBasis::mapFromIdealElement(int type, fullVector<double> &dSVec_dX,
                                        fullVector<double> &dSVec_dY,
                                        fullVector<double> &dSVec_dZ)
{
  calcMapFromIdealElement(type, dSVec_dX, dSVec_dY, dSVec_dZ);
}

void GradientBasis::mapFromIdealElement(int type, double jac[3][3])
{
  fullMatrix<double> dxyzdX(jac[0], 1, 3), dxyzdY(jac[1], 1, 3),
    dxyzdZ(jac[2], 1, 3);
  mapFromIdealElement(type, dxyzdX, dxyzdY, dxyzdZ);
}

JacobianBasis::JacobianBasis(int elementTag, FuncSpaceData data)
  : _elementTag(elementTag), _data(data), _dim(data.getDimension())
{
  const int parentType = data.getType();
  const int primJacobianOrder = jacobianOrder(parentType, 1);

  fullMatrix<double> samplingPoints;
  gmshGeneratePoints(data, samplingPoints);
  numSamplingPnts = samplingPoints.size1();

  // Store shape function gradients of mapping at Jacobian nodes
  _gradBasis = BasisFactory::getGradientBasis(elementTag, data);

  // Compute matrix for lifting from primary Jacobian basis to Jacobian basis
  int primJacType = ElementType::getType(parentType, primJacobianOrder, false);
  const nodalBasis *primJacBasis = BasisFactory::getNodalBasis(primJacType);
  numPrimSamplingPnts = primJacBasis->getNumShapeFunctions();

  matrixPrimJac2Jac.resize(numSamplingPnts, numPrimSamplingPnts);
  primJacBasis->f(samplingPoints, matrixPrimJac2Jac);

  // Compute shape function gradients of primary mapping at barycenter, in order
  // to compute normal to straight element
  const int primMapType = ElementType::getType(parentType, 1, false);
  const nodalBasis *primMapBasis = BasisFactory::getNodalBasis(primMapType);
  numPrimMapNodes = primMapBasis->getNumShapeFunctions();

  double xBar = 0., yBar = 0., zBar = 0.;
  double barycenter[3] = {0., 0., 0.};
  for(int i = 0; i < numPrimMapNodes; i++) {
    for(int j = 0; j < primMapBasis->points.size2(); ++j) {
      barycenter[j] += primMapBasis->points(i, j);
    }
  }
  barycenter[0] /= numPrimMapNodes;
  barycenter[1] /= numPrimMapNodes;
  barycenter[2] /= numPrimMapNodes;

  double(*barDPsi)[3] = new double[numPrimMapNodes][3];
  primMapBasis->df(xBar, yBar, zBar, barDPsi);

  dPrimBaryShape_dX.resize(numPrimMapNodes);
  dPrimBaryShape_dY.resize(numPrimMapNodes);
  dPrimBaryShape_dZ.resize(numPrimMapNodes);
  for(int j = 0; j < numPrimMapNodes; j++) {
    dPrimBaryShape_dX(j) = barDPsi[j][0];
    dPrimBaryShape_dY(j) = barDPsi[j][1];
    dPrimBaryShape_dZ(j) = barDPsi[j][2];
  }

  dPrimBaryIdealShape_dX = dPrimBaryShape_dX;
  dPrimBaryIdealShape_dY = dPrimBaryShape_dY;
  dPrimBaryIdealShape_dZ = dPrimBaryShape_dZ;
  _gradBasis->mapFromIdealElement(
    dPrimBaryIdealShape_dX, dPrimBaryIdealShape_dY, dPrimBaryIdealShape_dZ);

  delete[] barDPsi;

  // Compute "fast" Jacobian evaluation matrices (at 1st order nodes +
  // barycenter)
  numSamplingPntsFast = numPrimMapNodes + 1;
  fullMatrix<double> lagPointsFast(numSamplingPntsFast, 3); // Sampling points
  lagPointsFast.copy(primMapBasis->points, 0, numPrimMapNodes, 0,
                     primMapBasis->points.size2(), 0, 0); // 1st order nodes
  lagPointsFast(numPrimMapNodes, 0) = barycenter[0]; // Last point = barycenter
  lagPointsFast(numPrimMapNodes, 1) = barycenter[1];
  lagPointsFast(numPrimMapNodes, 2) = barycenter[2];

  fullMatrix<double> allDPsiFast;
  const nodalBasis *mapBasis = BasisFactory::getNodalBasis(_elementTag);
  mapBasis->df(lagPointsFast, allDPsiFast);
  numMapNodes = mapBasis->getNumShapeFunctions();

  dFastShapeMat_dX.resize(numSamplingPntsFast, numMapNodes);
  dFastShapeMat_dY.resize(numSamplingPntsFast, numMapNodes);
  dFastShapeMat_dZ.resize(numSamplingPntsFast, numMapNodes);
  for(int i = 0; i < numSamplingPntsFast; i++) {
    for(int j = 0; j < numMapNodes; j++) {
      dFastShapeMat_dX(i, j) = allDPsiFast(3 * i + 0, j);
      dFastShapeMat_dY(i, j) = allDPsiFast(3 * i + 1, j);
      dFastShapeMat_dZ(i, j) = allDPsiFast(3 * i + 2, j);
    }
  }
}

// Computes (unit) normals to straight line element at barycenter (with norm of
// gradient as return value)
double JacobianBasis::getPrimNormals1D(const fullMatrix<double> &nodesXYZ,
                                       fullMatrix<double> &result) const
{
  fullVector<double> dxyzdXbar(3);
  for(int j = 0; j < numPrimMapNodes; j++) {
    dxyzdXbar(0) += dPrimBaryShape_dX(j) * nodesXYZ(j, 0);
    dxyzdXbar(1) += dPrimBaryShape_dX(j) * nodesXYZ(j, 1);
    dxyzdXbar(2) += dPrimBaryShape_dX(j) * nodesXYZ(j, 2);
  }

  if((fabs(dxyzdXbar(0)) >= fabs(dxyzdXbar(1)) &&
      fabs(dxyzdXbar(0)) >= fabs(dxyzdXbar(2))) ||
     (fabs(dxyzdXbar(1)) >= fabs(dxyzdXbar(0)) &&
      fabs(dxyzdXbar(1)) >= fabs(dxyzdXbar(2)))) {
    result(0, 0) = dxyzdXbar(1);
    result(0, 1) = -dxyzdXbar(0);
    result(0, 2) = 0.;
  }
  else {
    result(0, 0) = 0.;
    result(0, 1) = dxyzdXbar(2);
    result(0, 2) = -dxyzdXbar(1);
  }
  const double norm0 =
    sqrt(result(0, 0) * result(0, 0) + result(0, 1) * result(0, 1) +
         result(0, 2) * result(0, 2));
  result(0, 0) /= norm0;
  result(0, 1) /= norm0;
  result(0, 2) /= norm0;

  result(1, 2) = dxyzdXbar(0) * result(0, 1) - dxyzdXbar(1) * result(0, 0);
  result(1, 1) = -dxyzdXbar(0) * result(0, 2) + dxyzdXbar(2) * result(0, 0);
  result(1, 0) = dxyzdXbar(1) * result(0, 2) - dxyzdXbar(2) * result(0, 1);
  const double norm1 =
    sqrt(result(1, 0) * result(1, 0) + result(1, 1) * result(1, 1) +
         result(1, 2) * result(1, 2));
  result(1, 0) /= norm1;
  result(1, 1) /= norm1;
  result(1, 2) /= norm1;

  return sqrt(dxyzdXbar(0) * dxyzdXbar(0) + dxyzdXbar(1) * dxyzdXbar(1) +
              dxyzdXbar(2) * dxyzdXbar(2));
}

// Computes (unit) normal to straight surface element at barycenter (with norm
// as return value)
double JacobianBasis::getPrimNormal2D(const fullMatrix<double> &nodesXYZ,
                                      fullMatrix<double> &result,
                                      bool ideal) const
{
  const fullVector<double> &gSX =
    ideal ? dPrimBaryIdealShape_dX : dPrimBaryShape_dX;
  const fullVector<double> &gSY =
    ideal ? dPrimBaryIdealShape_dY : dPrimBaryShape_dY;
  fullMatrix<double> dxyzdX(1, 3), dxyzdY(1, 3);
  for(int j = 0; j < numPrimMapNodes; j++) {
    dxyzdX(0, 0) += gSX(j) * nodesXYZ(j, 0);
    dxyzdX(0, 1) += gSX(j) * nodesXYZ(j, 1);
    dxyzdX(0, 2) += gSX(j) * nodesXYZ(j, 2);
    dxyzdY(0, 0) += gSY(j) * nodesXYZ(j, 0);
    dxyzdY(0, 1) += gSY(j) * nodesXYZ(j, 1);
    dxyzdY(0, 2) += gSY(j) * nodesXYZ(j, 2);
  }

  result(0, 2) = dxyzdX(0, 0) * dxyzdY(0, 1) - dxyzdX(0, 1) * dxyzdY(0, 0);
  result(0, 1) = -dxyzdX(0, 0) * dxyzdY(0, 2) + dxyzdX(0, 2) * dxyzdY(0, 0);
  result(0, 0) = dxyzdX(0, 1) * dxyzdY(0, 2) - dxyzdX(0, 2) * dxyzdY(0, 1);
  double norm0 =
    sqrt(result(0, 0) * result(0, 0) + result(0, 1) * result(0, 1) +
         result(0, 2) * result(0, 2));
  const double invNorm0 = 1. / norm0;
  result(0, 0) *= invNorm0;
  result(0, 1) *= invNorm0;
  result(0, 2) *= invNorm0;

  return norm0;
}

// Returns absolute value of Jacobian of straight volume element at barycenter
double JacobianBasis::getPrimJac3D(const fullMatrix<double> &nodesXYZ,
                                   bool ideal) const
{
  const fullVector<double> &gSX =
    ideal ? dPrimBaryIdealShape_dX : dPrimBaryShape_dX;
  const fullVector<double> &gSY =
    ideal ? dPrimBaryIdealShape_dY : dPrimBaryShape_dY;
  const fullVector<double> &gSZ =
    ideal ? dPrimBaryIdealShape_dZ : dPrimBaryShape_dZ;
  fullMatrix<double> dxyzdX(1, 3), dxyzdY(1, 3), dxyzdZ(1, 3);
  for(int j = 0; j < numPrimMapNodes; j++) {
    dxyzdX(0, 0) += gSX(j) * nodesXYZ(j, 0);
    dxyzdX(0, 1) += gSX(j) * nodesXYZ(j, 1);
    dxyzdX(0, 2) += gSX(j) * nodesXYZ(j, 2);
    dxyzdY(0, 0) += gSY(j) * nodesXYZ(j, 0);
    dxyzdY(0, 1) += gSY(j) * nodesXYZ(j, 1);
    dxyzdY(0, 2) += gSY(j) * nodesXYZ(j, 2);
    dxyzdZ(0, 0) += gSZ(j) * nodesXYZ(j, 0);
    dxyzdZ(0, 1) += gSZ(j) * nodesXYZ(j, 1);
    dxyzdZ(0, 2) += gSZ(j) * nodesXYZ(j, 2);
  }
  double dJ = fabs(calcDet3D(dxyzdX(0, 0), dxyzdY(0, 0), dxyzdZ(0, 0),
                             dxyzdX(0, 1), dxyzdY(0, 1), dxyzdZ(0, 1),
                             dxyzdX(0, 2), dxyzdY(0, 2), dxyzdZ(0, 2)));
  return dJ;
}

// Calculate (signed, possibly scaled) Jacobian for one element, with normal
// vectors to straight element for regularization. Evaluation points depend on
// the given matrices for shape function gradients.
void JacobianBasis::getJacobianGeneral(
  int nSamplingPnts, const fullMatrix<double> &dSMat_dX,
  const fullMatrix<double> &dSMat_dY, const fullMatrix<double> &dSMat_dZ,
  const fullMatrix<double> &nodesXYZ, bool idealNorm, bool scaling,
  fullVector<double> &jacobian, const fullMatrix<double> *geomNormals) const
{
  switch(_dim) {
  case 0: {
    for(int i = 0; i < nSamplingPnts; i++) jacobian(i) = 1.;
  } break;
  case 1: {
    fullMatrix<double> normals(2, 3);
    const double invScale = getPrimNormals1D(nodesXYZ, normals);
    if(geomNormals) normals.setAll(*geomNormals);
    if(scaling) {
      if(invScale == 0) {
        for(int i = 0; i < nSamplingPnts; i++) jacobian(i) = 0;
        return;
      }
      const double scale = 1. / invScale;
      // Faster to scale 1 normal than afterwards
      normals(0, 0) *= scale;
      normals(0, 1) *= scale;
      normals(0, 2) *= scale;
    }
    fullMatrix<double> dxyzdX(nSamplingPnts, 3);
    dSMat_dX.mult(nodesXYZ, dxyzdX);
    for(int i = 0; i < nSamplingPnts; i++) {
      const double &dxdX = dxyzdX(i, 0), &dydX = dxyzdX(i, 1),
                   &dzdX = dxyzdX(i, 2);
      const double &dxdY = normals(0, 0), &dydY = normals(0, 1),
                   &dzdY = normals(0, 2);
      const double &dxdZ = normals(1, 0), &dydZ = normals(1, 1),
                   &dzdZ = normals(1, 2);
      jacobian(i) =
        calcDet3D(dxdX, dxdY, dxdZ, dydX, dydY, dydZ, dzdX, dzdY, dzdZ);
    }
  } break;
  case 2: {
    fullMatrix<double> normal(1, 3);
    const double invScale = getPrimNormal2D(nodesXYZ, normal, idealNorm);
    if(geomNormals) normal.setAll(*geomNormals);
    if(scaling) {
      if(invScale == 0) {
        for(int i = 0; i < nSamplingPnts; i++) jacobian(i) = 0;
        return;
      }
      const double scale = 1. / invScale;
      // Faster to scale normal than afterwards
      normal(0, 0) *= scale;
      normal(0, 1) *= scale;
      normal(0, 2) *= scale;
    }
    fullMatrix<double> dxyzdX(nSamplingPnts, 3), dxyzdY(nSamplingPnts, 3);
    dSMat_dX.mult(nodesXYZ, dxyzdX);
    dSMat_dY.mult(nodesXYZ, dxyzdY);
    for(int i = 0; i < nSamplingPnts; i++) {
      const double &dxdX = dxyzdX(i, 0), &dydX = dxyzdX(i, 1),
                   &dzdX = dxyzdX(i, 2);
      const double &dxdY = dxyzdY(i, 0), &dydY = dxyzdY(i, 1),
                   &dzdY = dxyzdY(i, 2);
      const double &dxdZ = normal(0, 0), &dydZ = normal(0, 1),
                   &dzdZ = normal(0, 2);
      jacobian(i) =
        calcDet3D(dxdX, dxdY, dxdZ, dydX, dydY, dydZ, dzdX, dzdY, dzdZ);
    }
  } break;
  case 3: {
    fullMatrix<double> dum;
    fullMatrix<double> dxyzdX(nSamplingPnts, 3), dxyzdY(nSamplingPnts, 3),
      dxyzdZ(nSamplingPnts, 3);
    dSMat_dX.mult(nodesXYZ, dxyzdX);
    dSMat_dY.mult(nodesXYZ, dxyzdY);
    dSMat_dZ.mult(nodesXYZ, dxyzdZ);
    for(int i = 0; i < nSamplingPnts; i++) {
      const double &dxdX = dxyzdX(i, 0), &dydX = dxyzdX(i, 1),
                   &dzdX = dxyzdX(i, 2);
      const double &dxdY = dxyzdY(i, 0), &dydY = dxyzdY(i, 1),
                   &dzdY = dxyzdY(i, 2);
      const double &dxdZ = dxyzdZ(i, 0), &dydZ = dxyzdZ(i, 1),
                   &dzdZ = dxyzdZ(i, 2);
      jacobian(i) =
        calcDet3D(dxdX, dxdY, dxdZ, dydX, dydY, dydZ, dzdX, dzdY, dzdZ);
    }
    if(scaling) {
      const double scale = 1. / getPrimJac3D(nodesXYZ);
      jacobian.scale(scale);
    }
  } break;
  }
}

// Calculate (signed, possibly scaled) Jacobian for several elements, with
// normal vectors to straight elements for regularization. Evaluation points
// depend on the given matrices for shape function gradients.  TODO: Optimize
// and test 1D & 2D
void JacobianBasis::getJacobianGeneral(
  int nSamplingPnts, const fullMatrix<double> &dSMat_dX,
  const fullMatrix<double> &dSMat_dY, const fullMatrix<double> &dSMat_dZ,
  const fullMatrix<double> &nodesX, const fullMatrix<double> &nodesY,
  const fullMatrix<double> &nodesZ, bool idealNorm, bool scaling,
  fullMatrix<double> &jacobian, const fullMatrix<double> *geomNormals) const
{
  switch(_dim) {
  case 0: {
    const int numEl = nodesX.size2();
    for(int iEl = 0; iEl < numEl; iEl++)
      for(int i = 0; i < nSamplingPnts; i++) jacobian(i, iEl) = 1.;
  } break;
  case 1: {
    const int numEl = nodesX.size2();
    fullMatrix<double> dxdX(nSamplingPnts, numEl);
    fullMatrix<double> dydX(nSamplingPnts, numEl);
    fullMatrix<double> dzdX(nSamplingPnts, numEl);
    dSMat_dX.mult(nodesX, dxdX);
    dSMat_dX.mult(nodesY, dydX);
    dSMat_dX.mult(nodesZ, dzdX);
    for(int iEl = 0; iEl < numEl; iEl++) {
      fullMatrix<double> nodesXYZ(numPrimMapNodes, 3);
      for(int i = 0; i < numPrimMapNodes; i++) {
        nodesXYZ(i, 0) = nodesX(i, iEl);
        nodesXYZ(i, 1) = nodesY(i, iEl);
        nodesXYZ(i, 2) = nodesZ(i, iEl);
      }
      fullMatrix<double> normals(2, 3);
      const double invScale = getPrimNormals1D(nodesXYZ, normals);
      if(geomNormals) normals.setAll(*geomNormals);
      if(scaling) {
        if(invScale == 0) {
          for(int i = 0; i < nSamplingPnts; i++) jacobian(i, iEl) = 0;
          continue;
        }
        const double scale = 1. / invScale;
        // Faster to scale 1 normal than afterwards
        normals(0, 0) *= scale;
        normals(0, 1) *= scale;
        normals(0, 2) *= scale;
      }
      const double &dxdY = normals(0, 0), &dydY = normals(0, 1),
                   &dzdY = normals(0, 2);
      const double &dxdZ = normals(1, 0), &dydZ = normals(1, 1),
                   &dzdZ = normals(1, 2);
      for(int i = 0; i < nSamplingPnts; i++)
        jacobian(i, iEl) = calcDet3D(dxdX(i, iEl), dxdY, dxdZ, dydX(i, iEl),
                                     dydY, dydZ, dzdX(i, iEl), dzdY, dzdZ);
    }
  } break;
  case 2: {
    const int numEl = nodesX.size2();
    fullMatrix<double> dxdX(nSamplingPnts, numEl);
    fullMatrix<double> dydX(nSamplingPnts, numEl);
    fullMatrix<double> dzdX(nSamplingPnts, numEl);
    fullMatrix<double> dxdY(nSamplingPnts, numEl);
    fullMatrix<double> dydY(nSamplingPnts, numEl);
    fullMatrix<double> dzdY(nSamplingPnts, numEl);
    dSMat_dX.mult(nodesX, dxdX);
    dSMat_dX.mult(nodesY, dydX);
    dSMat_dX.mult(nodesZ, dzdX);
    dSMat_dY.mult(nodesX, dxdY);
    dSMat_dY.mult(nodesY, dydY);
    dSMat_dY.mult(nodesZ, dzdY);
    for(int iEl = 0; iEl < numEl; iEl++) {
      fullMatrix<double> nodesXYZ(numPrimMapNodes, 3);
      for(int i = 0; i < numPrimMapNodes; i++) {
        nodesXYZ(i, 0) = nodesX(i, iEl);
        nodesXYZ(i, 1) = nodesY(i, iEl);
        nodesXYZ(i, 2) = nodesZ(i, iEl);
      }
      fullMatrix<double> normal(1, 3);
      const double invScale = getPrimNormal2D(nodesXYZ, normal, idealNorm);
      if(geomNormals) normal.setAll(*geomNormals);
      if(scaling) {
        if(invScale == 0) {
          for(int i = 0; i < nSamplingPnts; i++) jacobian(i, iEl) = 0;
          continue;
        }
        const double scale = 1. / invScale;
        // Faster to scale normal than afterwards
        normal(0, 0) *= scale;
        normal(0, 1) *= scale;
        normal(0, 2) *= scale;
      }
      const double &dxdZ = normal(0, 0), &dydZ = normal(0, 1),
                   &dzdZ = normal(0, 2);
      for(int i = 0; i < nSamplingPnts; i++)
        jacobian(i, iEl) =
          calcDet3D(dxdX(i, iEl), dxdY(i, iEl), dxdZ, dydX(i, iEl),
                    dydY(i, iEl), dydZ, dzdX(i, iEl), dzdY(i, iEl), dzdZ);
    }
  } break;
  case 3: {
    const int numEl = nodesX.size2();
    fullMatrix<double> dxdX(nSamplingPnts, numEl);
    fullMatrix<double> dydX(nSamplingPnts, numEl);
    fullMatrix<double> dzdX(nSamplingPnts, numEl);
    fullMatrix<double> dxdY(nSamplingPnts, numEl);
    fullMatrix<double> dydY(nSamplingPnts, numEl);
    fullMatrix<double> dzdY(nSamplingPnts, numEl);
    fullMatrix<double> dxdZ(nSamplingPnts, numEl);
    fullMatrix<double> dydZ(nSamplingPnts, numEl);
    fullMatrix<double> dzdZ(nSamplingPnts, numEl);
    dSMat_dX.mult(nodesX, dxdX);
    dSMat_dX.mult(nodesY, dydX);
    dSMat_dX.mult(nodesZ, dzdX);
    dSMat_dY.mult(nodesX, dxdY);
    dSMat_dY.mult(nodesY, dydY);
    dSMat_dY.mult(nodesZ, dzdY);
    dSMat_dZ.mult(nodesX, dxdZ);
    dSMat_dZ.mult(nodesY, dydZ);
    dSMat_dZ.mult(nodesZ, dzdZ);
    for(int iEl = 0; iEl < numEl; iEl++) {
      for(int i = 0; i < nSamplingPnts; i++)
        jacobian(i, iEl) = calcDet3D(dxdX(i, iEl), dxdY(i, iEl), dxdZ(i, iEl),
                                     dydX(i, iEl), dydY(i, iEl), dydZ(i, iEl),
                                     dzdX(i, iEl), dzdY(i, iEl), dzdZ(i, iEl));
      if(scaling) {
        fullMatrix<double> nodesXYZ(numPrimMapNodes, 3);
        for(int i = 0; i < numPrimMapNodes; i++) {
          nodesXYZ(i, 0) = nodesX(i, iEl);
          nodesXYZ(i, 1) = nodesY(i, iEl);
          nodesXYZ(i, 2) = nodesZ(i, iEl);
        }
        const double scale = 1. / getPrimJac3D(nodesXYZ);
        for(int i = 0; i < nSamplingPnts; i++) jacobian(i, iEl) *= scale;
      }
    }
  } break;
  }
}

// Calculate the (signed) Jacobian determinant (in short, J) and its partial
// derivatives w.r.t. nodes coordinates for the element defined by
// the given node positions, with given normal vectors to straight element
// for regularization of 1D and 2D elements).
// Sampling points depend on the input matrices of shape function partial
// derivatives 'dSMat_d*', and only the 'nSamplingPnts' first of them
// are computed.
// The result is written in the matrix 'JDJ' which should be of size at
// least "nSamplingPnts x (3 * numMapNodes + 1)".
// For each sampling point, a row of 'JDJ' is filled with:
// - the partial derivatives of J w.r.t. the x component of the nodes
// - the partial derivatives of J w.r.t. the y component of the nodes
// - the partial derivatives of J w.r.t. the z component of the nodes
// - J
// NB: (x, y, z) are the physical coordinates and (X, Y, Z) are the reference
// coordinates
void JacobianBasis::getSignedJacAndGradientsGeneral(
  int nSamplingPnts, const fullMatrix<double> &dSMat_dX,
  const fullMatrix<double> &dSMat_dY, const fullMatrix<double> &dSMat_dZ,
  const fullMatrix<double> &nodesXYZ, const fullMatrix<double> &normals,
  fullMatrix<double> &JDJ) const
{
  switch(_dim) {
  case 0: {
    for(int i = 0; i < nSamplingPnts; i++) {
      for(int j = 0; j < numMapNodes; j++) {
        JDJ(i, j) = 0.;
        JDJ(i, j + 1 * numMapNodes) = 0.;
        JDJ(i, j + 2 * numMapNodes) = 0.;
      }
      JDJ(i, 3 * numMapNodes) = 1.;
    }
  } break;
  case 1: {
    fullMatrix<double> dxyzdX(nSamplingPnts, 3);
    dSMat_dX.mult(nodesXYZ, dxyzdX);
    for(int i = 0; i < nSamplingPnts; i++) {
      calcJDJ1D(dxyzdX(i, 0), normals(0, 0), normals(1, 0), dxyzdX(i, 1),
                normals(0, 1), normals(1, 1), dxyzdX(i, 2), normals(0, 2),
                normals(1, 2), i, numMapNodes, dSMat_dX, JDJ);
    }
  } break;
  case 2: {
    fullMatrix<double> dxyzdX(nSamplingPnts, 3);
    fullMatrix<double> dxyzdY(nSamplingPnts, 3);
    dSMat_dX.mult(nodesXYZ, dxyzdX);
    dSMat_dY.mult(nodesXYZ, dxyzdY);
    for(int i = 0; i < nSamplingPnts; i++) {
      calcJDJ2D(dxyzdX(i, 0), dxyzdY(i, 0), normals(0, 0), dxyzdX(i, 1),
                dxyzdY(i, 1), normals(0, 1), dxyzdX(i, 2), dxyzdY(i, 2),
                normals(0, 2), i, numMapNodes, dSMat_dX, dSMat_dY, JDJ);
    }
  } break;
  case 3: {
    fullMatrix<double> dxyzdX(nSamplingPnts, 3);
    fullMatrix<double> dxyzdY(nSamplingPnts, 3);
    fullMatrix<double> dxyzdZ(nSamplingPnts, 3);
    dSMat_dX.mult(nodesXYZ, dxyzdX);
    dSMat_dY.mult(nodesXYZ, dxyzdY);
    dSMat_dZ.mult(nodesXYZ, dxyzdZ);
    for(int i = 0; i < nSamplingPnts; i++) {
      calcJDJ3D(dxyzdX(i, 0), dxyzdY(i, 0), dxyzdZ(i, 0), dxyzdX(i, 1),
                dxyzdY(i, 1), dxyzdZ(i, 1), dxyzdX(i, 2), dxyzdY(i, 2),
                dxyzdZ(i, 2), i, numMapNodes, dSMat_dX, dSMat_dY, dSMat_dZ,
                JDJ);
    }
  } break;
  }
}

void JacobianBasis::getSignedIdealJacAndGradientsGeneral(
  int nSamplingPnts, const fullMatrix<double> &dSMat_dX,
  const fullMatrix<double> &dSMat_dY, const fullMatrix<double> &dSMat_dZ,
  const fullMatrix<double> &nodesXYZ, const fullMatrix<double> &normals,
  fullMatrix<double> &JDJ) const
{
  getSignedJacAndGradientsGeneral(nSamplingPnts, dSMat_dX, dSMat_dY, dSMat_dZ,
                                  nodesXYZ, normals, JDJ);
}

void JacobianBasis::getMetricMinAndGradients(
  const fullMatrix<double> &nodesXYZ,
  const fullMatrix<double> &nodesXYZStraight, fullVector<double> &lambdaJ,
  fullMatrix<double> &gradLambdaJ) const
{
  // jacobian of the straight elements (only triangles for now)
  SPoint3 v0(nodesXYZ(0, 0), nodesXYZ(0, 1), nodesXYZ(0, 2));
  SPoint3 v1(nodesXYZ(1, 0), nodesXYZ(1, 1), nodesXYZ(1, 2));
  SPoint3 v2(nodesXYZ(2, 0), nodesXYZ(2, 1), nodesXYZ(2, 2));
  SPoint3 *IXYZ[3] = {&v0, &v1, &v2};
  double jaci[2][2] = {
    {IXYZ[1]->x() - IXYZ[0]->x(), IXYZ[2]->x() - IXYZ[0]->x()},
    {IXYZ[1]->y() - IXYZ[0]->y(), IXYZ[2]->y() - IXYZ[0]->y()}};
  double invJaci[2][2];
  inv2x2(jaci, invJaci);

  for(int l = 0; l < numSamplingPnts; l++) {
    double jac[2][2] = {{0., 0.}, {0., 0.}};
    for(int i = 0; i < numMapNodes; i++) {
      const double &dPhidX = _gradBasis->dShapeMat_dX(l, i);
      const double &dPhidY = _gradBasis->dShapeMat_dY(l, i);
      const double dpsidx = dPhidX * invJaci[0][0] + dPhidY * invJaci[1][0];
      const double dpsidy = dPhidX * invJaci[0][1] + dPhidY * invJaci[1][1];
      jac[0][0] += nodesXYZ(i, 0) * dpsidx;
      jac[0][1] += nodesXYZ(i, 0) * dpsidy;
      jac[1][0] += nodesXYZ(i, 1) * dpsidx;
      jac[1][1] += nodesXYZ(i, 1) * dpsidy;
    }
    const double dxdx = jac[0][0] * jac[0][0] + jac[0][1] * jac[0][1];
    const double dydy = jac[1][0] * jac[1][0] + jac[1][1] * jac[1][1];
    const double dxdy = jac[0][0] * jac[1][0] + jac[0][1] * jac[1][1];
    const double sqr = sqrt((dxdx - dydy) * (dxdx - dydy) + 4 * dxdy * dxdy);
    const double osqr = sqr > 1e-8 ? 1 / sqr : 0;
    lambdaJ(l) = 0.5 * (dxdx + dydy - sqr);
    const double axx =
      (1 - (dxdx - dydy) * osqr) * jac[0][0] - 2 * dxdy * osqr * jac[1][0];
    const double axy =
      (1 - (dxdx - dydy) * osqr) * jac[0][1] - 2 * dxdy * osqr * jac[1][1];
    const double ayx =
      -2 * dxdy * osqr * jac[0][0] + (1 - (dydy - dxdx) * osqr) * jac[1][0];
    const double ayy =
      -2 * dxdy * osqr * jac[0][1] + (1 - (dydy - dxdx) * osqr) * jac[1][1];
    const double axixi = axx * invJaci[0][0] + axy * invJaci[0][1];
    const double aetaeta = ayx * invJaci[1][0] + ayy * invJaci[1][1];
    const double aetaxi = ayx * invJaci[0][0] + ayy * invJaci[0][1];
    const double axieta = axx * invJaci[1][0] + axy * invJaci[1][1];
    for(int i = 0; i < numMapNodes; i++) {
      const double &dPhidX = _gradBasis->dShapeMat_dX(l, i);
      const double &dPhidY = _gradBasis->dShapeMat_dY(l, i);
      gradLambdaJ(l, i + 0 * numMapNodes) = axixi * dPhidX + axieta * dPhidY;
      gradLambdaJ(l, i + 1 * numMapNodes) = aetaxi * dPhidX + aetaeta * dPhidY;
    }
  }
}

int JacobianBasis::jacobianOrder(int tag)
{
  const int parentType = ElementType::getParentType(tag);
  const int order = ElementType::getOrder(tag);
  return jacobianOrder(parentType, order);
}

int JacobianBasis::jacobianOrder(int parentType, int order)
{
  switch(parentType) {
  case TYPE_PNT: return 0;
  case TYPE_LIN: return order - 1;
  case TYPE_TRI: return 2 * order - 2;
  case TYPE_QUA: return 2 * order - 1;
  case TYPE_TET: return 3 * order - 3;
  case TYPE_PRI: return 3 * order - 1;
  case TYPE_HEX: return 3 * order - 1;
  case TYPE_PYR:
    return 3 * order - 3;
    // note : for the pyramid, the jacobian space is
    // different from the space of the mapping
  default:
    Msg::Error("Unknown element type %d, return order 0", parentType);
    return 0;
  }
}

FuncSpaceData JacobianBasis::jacobianMatrixSpace(int type, int order)
{
  if(type == TYPE_PYR) {
    Msg::Error("jacobianMatrixSpace not yet implemented for pyramids");
    return FuncSpaceData(type, false, 1, 0, false);
  }
  int jacOrder = -1;
  switch(type) {
  case TYPE_PNT: jacOrder = 0; break;
  case TYPE_LIN:
  case TYPE_TRI:
  case TYPE_TET: jacOrder = order - 1; break;
  case TYPE_QUA:
  case TYPE_PRI:
  case TYPE_HEX: jacOrder = order; break;
  default:
    Msg::Error("Unknown element type %d, return default space", type);
    return FuncSpaceData();
  }
  return FuncSpaceData(type, jacOrder, false);
}