1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
// Gmsh - Copyright (C) 1997-2021 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// issues on https://gitlab.onelab.info/gmsh/gmsh/issues.
#ifndef NUMERIC_H
#define NUMERIC_H
#include <cmath>
#include <vector>
#include "SPoint2.h"
#include "SPoint3.h"
#include "SVector3.h"
template <class scalar> class fullVector;
template <class T> inline double myhypot(const T &a, const T &b)
{
return std::sqrt(a * a + b * b);
}
template <class T> inline double hypotenuse(T const &a, T const &b, T const &c)
{
return std::sqrt(a * a + b * b + c * c);
}
template <typename T> inline int gmsh_sign(T const &value)
{
return (T(0) < value) - (value < T(0));
}
struct mean_plane {
double plan[3][3];
double a, b, c, d;
double x, y, z;
};
inline double pow_int(const double &a, const int &n)
{
if(n < 0) return pow_int(1 / a, -n);
switch(n) {
case 0: return 1.0;
case 1: return a;
case 2: return a * a;
case 3: return a * a * a;
case 4: {
const double a2 = a * a;
return a2 * a2;
}
case 5: {
const double a2 = a * a;
return a2 * a2 * a;
}
case 6: {
const double a3 = a * a * a;
return a3 * a3;
}
case 7: {
const double a3 = a * a * a;
return a3 * a3 * a;
}
case 8: {
const double a2 = a * a;
const double a4 = a2 * a2;
return a4 * a4;
}
case 9: {
const double a3 = a * a * a;
return a3 * a3 * a3;
}
case 10: {
const double a2 = a * a;
const double a4 = a2 * a2;
return a4 * a4 * a2;
}
default: return pow_int(a, n - 10) * pow_int(a, 10);
}
}
inline double pow_int(const double &a, const double &d)
{
// Round double !
int n = static_cast<int>(d + .5);
return pow_int(a, n);
}
double myatan2(double a, double b);
double myasin(double a);
double myacos(double a);
inline double crossProd(double a[3], double b[3], int i)
{
int i1 = (i + 1) % 3;
int i2 = (i + 2) % 3;
return a[i1] * b[i2] - a[i2] * b[i1];
}
inline double scalProd(double a[3], double b[3])
{
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}
inline void prodve(double a[3], double b[3], double c[3])
{
c[2] = a[0] * b[1] - a[1] * b[0];
c[1] = -a[0] * b[2] + a[2] * b[0];
c[0] = a[1] * b[2] - a[2] * b[1];
}
inline double prosca(double const a[3], double const b[3])
{
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}
void matvec(double mat[3][3], double vec[3], double res[3]);
void matmat(double mat1[3][3], double mat2[3][3], double res[3][3]);
inline double norm3(double a[3])
{
return sqrt(a[0] * a[0] + a[1] * a[1] + a[2] * a[2]);
}
inline double norme(double a[3])
{
const double mod = norm3(a);
if(mod != 0.0) {
const double one_over_mod = 1. / mod;
a[0] *= one_over_mod;
a[1] *= one_over_mod;
a[2] *= one_over_mod;
}
return mod;
}
double norm2(double a[3][3]);
void normal3points(double x0, double y0, double z0, double x1, double y1,
double z1, double x2, double y2, double z2, double n[3]);
void normal2points(double x0, double y0, double z0, double x1, double y1,
double z1, double n[3]);
int sys2x2(double mat[2][2], double b[2], double res[2]);
int sys3x3(double mat[3][3], double b[3], double res[3], double *det);
int sys3x3_with_tol(double mat[3][3], double b[3], double res[3], double *det);
double det2x2(double mat[2][2]);
double det2x3(double mat[2][3]);
double det3x3(double mat[3][3]);
double trace3x3(double mat[3][3]);
double trace2(double mat[3][3]);
double inv3x3(double mat[3][3], double inv[3][3]);
double inv2x2(double mat[2][2], double inv[2][2]);
double angle_02pi(double A3);
double angle_plan(double v[3], double p1[3], double p2[3], double n[3]);
double triangle_area(double p0[3], double p1[3], double p2[3]);
double triangle_area2d(double p0[2], double p1[2], double p2[2]);
void circumCenterXY(double *p1, double *p2, double *p3, double *res);
void circumCenterXYZ(double *p1, double *p2, double *p3, double *res,
double *uv = nullptr);
// operate a transformation on the 4 points of a Quad in 3D, to have an
// equivalent Quad in 2D
void planarQuad_xyz2xy(double *x, double *y, double *z, double *xn, double *yn);
// compute the radius of the circle that is tangent to the 3 edges defined by 4
// points edge_1=(x0,y0)->(x1,y1); edge_2=(x1,y1)->(x2,y2);
// edge_3=(x2,y2)->(x3,y3)
double computeInnerRadiusForQuad(double *x, double *y, int i);
char float2char(float f);
float char2float(char c);
void eigenvalue2x2(double mat[2][2], double v[2]);
void eigenvalue(double mat[3][3], double re[3]);
void FindCubicRoots(const double coeff[4], double re[3], double im[3]);
void eigsort(double d[3]);
void gradSimplex(double *x, double *y, double *z, double *v, double *grad);
double ComputeVonMises(double *val);
double ComputeScalarRep(int numComp, double *val, int tensorRep = 0);
void invert_singular_matrix3x3(double MM[3][3], double II[3][3]);
bool newton_fd(bool (*func)(fullVector<double> &, fullVector<double> &, void *),
fullVector<double> &x, void *data, double relax = 1.,
double tolx = 1.e-6);
void signedDistancePointTriangle(const SPoint3 &p1, const SPoint3 &p2,
const SPoint3 &p3, const SPoint3 &p, double &d,
SPoint3 &closePt);
void signedDistancesPointsTriangle(std::vector<double> &distances,
std::vector<SPoint3> &closePts,
const std::vector<SPoint3> &pts,
const SPoint3 &p1, const SPoint3 &p2,
const SPoint3 &p3);
void signedDistancePointLine(const SPoint3 &p1, const SPoint3 &p2,
const SPoint3 &p, double &distance,
SPoint3 &closePt);
void signedDistancesPointsLine(std::vector<double> &distances,
std::vector<SPoint3> &closePts,
const std::vector<SPoint3> &pts,
const SPoint3 &p1, const SPoint3 &p2);
void changeReferential(const int direction, const SPoint3 &p,
const SPoint3 &closePt, const SPoint3 &p1,
const SPoint3 &p2, double *xp, double *yp,
double *otherp, double *x, double *y, double *other);
int computeDistanceRatio(const double &y, const double &yp, const double &x,
const double &xp, double *distance, const double &r1,
const double &r2);
void signedDistancesPointsEllipsePoint(std::vector<double> &distances,
std::vector<double> &distancesE,
std::vector<int> &isInYarn,
std::vector<SPoint3> &closePts,
const std::vector<SPoint3> &pts,
const SPoint3 &p1, const SPoint3 &p2,
const double radius);
void signedDistancesPointsEllipseLine(
std::vector<double> &distances, std::vector<double> &distancesE,
std::vector<int> &isInYarn, std::vector<SPoint3> &closePts,
const std::vector<SPoint3> &pts, const SPoint3 &p1, const SPoint3 &p2,
const double maxA, const double minA, const double maxB, const double minB,
const int typeLevelSet);
int intersection_segments(const SPoint3 &p1, const SPoint3 &p2,
const SPoint3 &q1, const SPoint3 &q2, double x[2]);
int intersection_segments(const SPoint2 &p1, const SPoint2 &p2,
const SPoint2 &q1, const SPoint2 &q2, double x[2]);
// tools for projection onto plane
void fillMeanPlane(double res[4], double t1[3], double t2[3],
mean_plane &meanPlane);
void computeMeanPlaneSimple(const std::vector<SPoint3> &points,
mean_plane &meanPlane);
void projectPointToPlane(const SPoint3 &pt, SPoint3 &ptProj,
const mean_plane &meanPlane);
void projectPointsToPlane(const std::vector<SPoint3> &pts,
std::vector<SPoint3> &ptsProj,
const mean_plane &meanPlane);
void transformPointsIntoOrthoBasis(const std::vector<SPoint3> &ptsProj,
std::vector<SPoint3> &pointsUV,
const SPoint3 &ptCG,
const mean_plane &meanPlane);
bool catenary(double x0, double x1, double y0, double y1, double ys, int N,
double *yp);
#endif
|