1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
|
// Gmsh - Copyright (C) 1997-2021 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// issues on https://gitlab.onelab.info/gmsh/gmsh/issues.
/*
compute the hausdorff distance between two polygonal curves
in n*m time where n and m are the nb of points of the
polygonal curves
*/
#include "SVector3.h"
#include "hausdorffDistance.h"
static double intersect(SPoint3 &q, SVector3 &n, // a plane
SPoint3 &p1, SPoint3 &p2, // a segment
SPoint3 &result)
{
// n * (x-q) = 0
// x = p1 + t (p2-p1)
// n *(p1 + t (p2-p1) - q) = 0
// t = n*(q-p1) / n*(p2-p1)
const double t = dot(n, q - p1) / dot(n, p2 - p1);
result = p1 * (1. - t) + p2 * t;
return t;
}
static double projection(SPoint3 &p1, SPoint3 &p2, SPoint3 &q, SPoint3 &result)
{
// x = p1 + t (p2 - p1)
// (x - q) * (p2 - p1) = 0
// (p1 + t (p2 - p1) - q) (p2 - p1) = 0
// t = (q-p1) * (p2-p1) / (p2-p1)^2
SVector3 p21 = p2 - p1;
const double t = dot(q - p1, p21) / dot(p21, p21);
result = p1 * (1. - t) + p2 * t;
return t;
}
static SPoint3 closestPoint(SPoint3 &p1, SPoint3 &p2, SPoint3 &q)
{
double result;
const double t = projection(p1, p2, q, result);
if(t >= 0.0 && t <= 1.0) return result;
if(t < 0) return p1;
return p2;
}
double closestPoint(const std::vector<SPoint3> &P, const SPoint3 &p,
SPoint3 &result)
{
double closestDistance = 1.e22;
for(std::size_t i = 1; i < P.size(); i++) {
SPoint3 q = closestPoint(P[i - 1], P[i], p);
const double pq = p.distance(q);
if(pq < closestDistance) {
closestDistance = pq;
result = q;
}
}
return closestDistance;
}
// we test all points of P plus all points that are the intersections
// of angle bissectors of Q with P
double oneSidedHausdorffDistance(const std::vector<SPoint3> &P,
const std::vector<SPoint3> &Q, SPoint3 &p1,
SPoint3 &p2)
{
const double hausdorffDistance = 0.0;
// first test the points
for(std::size_t i = 0; i < P.size(); i++) {
SPoint3 result;
double d = closestPoint(Q, P[i], result);
if(d > hausdorffDistance) {
hausdorffDistance = d;
p1 = P[i];
p2 = result;
}
}
// compute angle bissectors intersections
std::vector<SPoint3> intersections;
for(std::size_t i = 1; i < Q.size() - 1; i++) {
SPoint3 a = Q[i - 1];
SPoint3 b = Q[i];
SPoint3 c = Q[i + 1];
SVector3 ba = b - a;
SVector3 ca = c - a;
SVector3 bissector = (ba + ca);
SVector3 n; // normal to the bissector plane
if(bissector.norm == 0) {
ba.normalize();
n = ba;
}
else {
SVector3 b = crossprod(bissector, ba);
n = crossprod(b, bissector);
n.normalize();
}
for(std::size_t i = 1; i < P.size(); i++) {
SPoint3 result;
const double t = intersect(b, n, P[i - 1], P[i], result);
if(t >= 0 && t <= 1) intersections.push_back(result);
}
}
for(std::size_t i = 0; i < intersections.size(); i++) {
SPoint3 result;
double d = closestPoint(Q, intersections[i], result);
if(d > hausdorffDistance) {
hausdorffDistance = d;
p1 = P[i];
p2 = result;
}
}
return hausdorffDistance;
}
double hausdorffDistance(const std::vector<SPoint3> &P,
const std::vector<SPoint3> &Q)
{
return std::max(oneSidedHausdorffDistance(P, Q),
oneSidedHausdorffDistance(Q, P));
}
|