File: orthogonalBasis.cpp

package info (click to toggle)
gmsh 4.8.4%2Bds2-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 87,812 kB
  • sloc: cpp: 378,014; ansic: 99,669; yacc: 7,216; python: 6,680; java: 3,486; lisp: 659; lex: 621; perl: 571; makefile: 470; sh: 440; xml: 415; javascript: 113; pascal: 35; modula3: 32
file content (205 lines) | stat: -rw-r--r-- 5,758 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
// Gmsh - Copyright (C) 1997-2021 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// issues on https://gitlab.onelab.info/gmsh/gmsh/issues.
//
// Contributed by Amaury Johnen

#include <cmath>
#include <vector>
#include <algorithm>
#include "orthogonalBasis.h"
#include "FuncSpaceData.h"
#include "Numeric.h"

orthogonalBasis::orthogonalBasis(const FuncSpaceData &_data)
  : _type(_data.getType()), _order(_data.getSpaceOrder())
{
}

void orthogonalBasis::f(double u, double v, double w, double *sf) const
{
  static double sf0[100];
  static double sf1[100];
  int k = 0;
  switch(_type) {
  case TYPE_LIN: LegendrePolynomials::f(_order, u, sf); return;
  case TYPE_TRI:
    if(u >= 1.) {
      for(int k = 0; k <= _order; ++k) { sf[k] = k + 1; }
      for(int k = _order; k < (_order + 1) * (_order + 2) / 2; ++k) {
        sf[k] = 0;
      }
      return;
    }
    LegendrePolynomials::f(_order, 2 * v / (1 - u) - 1, sf0);
    for(int i = 0; i <= _order; ++i) {
      JacobiPolynomials::f(_order - i, 2 * i + 1, 0, 2 * u - 1, sf1);
      double coeff = pow_int(1 - u, i);
      for(int j = 0; j <= _order - i; ++j) { sf1[j] *= coeff; }
      for(int j = 0; j <= _order - i; ++j) { sf[k++] = sf0[i] * sf1[j]; }
    }
    return;
  case TYPE_QUA:
    LegendrePolynomials::f(_order, u, sf0);
    LegendrePolynomials::f(_order, v, sf1);
    for(int i = 0; i <= _order; ++i) {
      for(int j = 0; j <= _order; ++j) { sf[k++] = sf0[i] * sf1[j]; }
    }
    return;
  }
}

void orthogonalBasis::integralfSquared(double *val) const
{
  int k = 0;
  switch(_type) {
  case TYPE_LIN:
    for(int i = 0; i <= _order; ++i) { val[i] = 2. / (1 + 2 * i); }
    return;
  case TYPE_TRI:
    for(int i = 0; i <= _order; ++i) {
      for(int j = 0; j <= _order - i; ++j) {
        val[k++] = .5 / (1 + i + j) / (1 + 2 * i);
      }
    }
    return;
  case TYPE_QUA:
    for(int i = 0; i <= _order; ++i) {
      for(int j = 0; j <= _order; ++j) {
        val[k++] = 4. / (1 + 2 * i) / (1 + 2 * j);
      }
    }
  }
}

namespace LegendrePolynomials {
  void f(int n, double u, double *val)
  {
    val[0] = 1;

    for(int i = 0; i < n; i++) {
      double a1i = i + 1;
      double a3i = 2. * i + 1;
      double a4i = i;

      val[i + 1] = a3i * u * val[i];
      if(i > 0) val[i + 1] -= a4i * val[i - 1];
      val[i + 1] /= a1i;
    }
  }

  void fc(int n, double u, double *val)
  {
    f(n, u, val);
    for(int i = 2; i < n + 1; ++i) {
      if(i % 2)
        val[i] -= u;
      else
        val[i] -= 1;
    }
  }

  void df(int n, double u, double *val)
  {
    // Indeterminate form for u == -1 and u == 1
    if((u == 1.) || (u == -1.)) {
      for(int k = 0; k <= n; k++) val[k] = 0.5 * k * (k + 1);
      if((u == -1.) && (n >= 2))
        for(int k = 2; k <= n; k += 2) val[k] = -val[k];
      return;
    }

    // Now general case

    // Values of the Legendre polynomials
    std::vector<double> tmp(n + 1);
    f(n, u, &(tmp[0]));

    // First value of the derivative
    val[0] = 0;
    double g2 = (1. - u * u);

    // Values of the derivative for orders > 1 computed from the values of the
    // polynomials
    for(int i = 1; i <= n; i++) {
      double g1 = -u * i;
      double g0 = (double)i;
      val[i] = (g1 * tmp[i] + g0 * tmp[i - 1]) / g2;
    }
  }
} // namespace LegendrePolynomials

namespace JacobiPolynomials {
  void f(int n, double alpha, double beta, double u, double *val)
  {
    const double alphaPlusBeta = alpha + beta;
    const double a2MinusB2 = alpha * alpha - beta * beta;
    val[0] = 1.;
    if(n >= 1)
      val[1] = 0.5 * (2. * (alpha + 1.) + (alphaPlusBeta + 2.) * (u - 1.));

    for(int i = 1; i < n; i++) {
      double ii = (double)i;
      double twoI = 2. * ii;

      double a1i =
        2. * (ii + 1.) * (ii + alphaPlusBeta + 1.) * (twoI + alphaPlusBeta);
      double a2i = (twoI + alphaPlusBeta + 1.) * (a2MinusB2);
      double a3i = Pochhammer(twoI + alphaPlusBeta, 3);
      double a4i =
        2. * (ii + alpha) * (ii + beta) * (twoI + alphaPlusBeta + 2.);

      val[i + 1] = ((a2i + a3i * u) * val[i] - a4i * val[i - 1]) / a1i;
    }
  }

  void df(int n, double alpha, double beta, double u, double *val)
  {
    const double alphaPlusBeta = alpha + beta;

    // Indeterminate form for u == -1 and u == 1
    // TODO: Extend to non-integer alpha & beta?
    if((u == 1.) || (u == -1.)) {
      // alpha or beta in formula, depending on u
      int coeff = (u == 1.) ? (int)alpha : (int)beta;

      // Compute factorial
      const int fMax = std::max(n, 1) + coeff;
      std::vector<double> fact(fMax + 1);
      fact[0] = 1.;
      for(int i = 1; i <= fMax; i++) fact[i] = i * fact[i - 1];

      // Compute formula (with appropriate sign at even orders for u == -1)
      val[0] = 0.;
      for(int k = 1; k <= n; k++)
        val[k] = 0.5 * (k + alphaPlusBeta + 1) * fact[k + coeff] /
                 (fact[coeff + 1] * fact[k - 1]);
      if((u == -1.) && (n >= 2))
        for(int k = 2; k <= n; k += 2) val[k] = -val[k];

      return;
    }

    // Now general case

    // Values of the Jacobi polynomials
    std::vector<double> tmp(n + 1);
    f(n, alpha, beta, u, &(tmp[0]));

    // First 2 values of the derivatives
    val[0] = 0;
    if(n >= 1) val[1] = 0.5 * (alphaPlusBeta + 2.);

    // Values of the derivative for orders > 1 computed from the values of the
    // polynomials
    for(int i = 2; i <= n; i++) {
      double ii = (double)i;
      double aa = (2. * ii + alphaPlusBeta);
      double g2 = aa * (1. - u * u);
      double g1 = ii * (alpha - beta - aa * u);
      double g0 = 2. * (ii + alpha) * (ii + beta);
      val[i] = (g1 * tmp[i] + g0 * tmp[i - 1]) / g2;
    }
  }
} // namespace JacobiPolynomials