File: CVTRemesh.cpp

package info (click to toggle)
gmsh 4.8.4%2Bds2-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 87,812 kB
  • sloc: cpp: 378,014; ansic: 99,669; yacc: 7,216; python: 6,680; java: 3,486; lisp: 659; lex: 621; perl: 571; makefile: 470; sh: 440; xml: 415; javascript: 113; pascal: 35; modula3: 32
file content (310 lines) | stat: -rw-r--r-- 9,718 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
// Gmsh - Copyright (C) 1997-2014 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// issues on https://gitlab.onelab.info/gmsh/gmsh/issues.

#include "GmshConfig.h"

#if defined(HAVE_REVOROPT)

#include "CVTRemesh.h"

#include "Revoropt/Mesh/builder_def.hpp"
#include "Revoropt/Mesh/sampling_def.hpp"
#include "Revoropt/Mesh/normals_def.hpp"

#include "Revoropt/RVD/rvd.hpp"
#include "Revoropt/RVD/rdt.hpp"

#include "Revoropt/CVT/minimizer.hpp"

#include "Revoropt/Solver/alglib_lbfgs.hpp"

#include "GModel.h"
#include "MTriangle.h"
#include "discreteFace.h"

#include <vector>
#include <iostream>

StringXNumber CVTRemeshOptions_Number[] = {
  {GMSH_FULLRC, "Sites", nullptr, 20000.},
  {GMSH_FULLRC, "Iterations", nullptr, 20.},
  {GMSH_FULLRC, "Anisotropy", nullptr, 0.03},
  {GMSH_FULLRC, "Variable density", nullptr, 0.3},
  {GMSH_FULLRC, "Feature sensitivity", nullptr, 5.},
  {GMSH_FULLRC, "Normal computation radius", nullptr, 0.005}};

extern "C" {
GMSH_Plugin *GMSH_RegisterCVTRemeshPlugin()
{
  return new GMSH_CVTRemeshPlugin();
}
}

std::string GMSH_CVTRemeshPlugin::getHelp() const
{
  return "Plugin(CVTRemesh) triangulates an input geometry using"
         "centroïdal Voronoï tesselations. The STL mesh of the geometry"
         "is generated and randomly sampled. An objective function derived"
         "from centroïdal Voronoï tesselations is then defined on the"
         "generated sampling, and optimized through LBFGS to obtain a"
         "regular sampling of the surface. The triangulation is extracted"
         "as the restricted Delaunay triangulation of the samples and the"
         "STL mesh.\n\n"
         "If `View' < 0, the plugin is run on the current view.\n\n"
         "Plugin(CVTRemesh) creates one new view.";
}

int GMSH_CVTRemeshPlugin::getNbOptions() const
{
  return sizeof(CVTRemeshOptions_Number) / sizeof(StringXNumber);
}

StringXNumber *GMSH_CVTRemeshPlugin::getOption(int iopt)
{
  return &CVTRemeshOptions_Number[iopt];
}

// solver callback
class SolverCallback {
public:
  template <typename Data> void operator()(Data *data)
  {
    // Output current iteration data
    Msg::Info("[CVTRemesh] : iteration %d, objective function value is %f",
              data->k, data->fx);
  }
};

PView *GMSH_CVTRemeshPlugin::execute(PView *v)
{
  // TODO normalization

  GModel *m = GModel::current();

  std::vector<double> vertices;
  std::vector<unsigned int> faces;

  unsigned int offset = 0;
  for(GModel::fiter it = m->firstFace(); it != m->lastFace(); ++it) {
    (*it)->buildSTLTriangulation();
    for(std::size_t i = 0; i < (*it)->stl_vertices_uv.size(); ++i) {
      GPoint p = (*it)->point((*it)->stl_vertices_uv[i]);
      vertices.push_back(p.x());
      vertices.push_back(p.y());
      vertices.push_back(p.z());
    }
    for(std::size_t i = 0; i < (*it)->stl_triangles.size(); ++i) {
      faces.push_back((*it)->stl_triangles[i] + offset);
    }
    offset += (*it)->stl_vertices_uv.size();
  }

  Revoropt::MeshBuilder<3> mesh;
  mesh.swap_vertices(vertices);
  mesh.swap_faces(faces);

  double mesh_center[3];
  double mesh_scale;
  Revoropt::normalize_mesh(&mesh, mesh_center, &mesh_scale);

  double nradius = (double)CVTRemeshOptions_Number[5].def;

  // normals
  std::vector<double> normals(3 * mesh.vertices_size());
  Revoropt::full_robust_vertex_normals(&mesh, nradius, normals.data());

  // lifted vertices
  std::vector<double> lifted_vertices(6 * mesh.vertices_size(), 0);
  for(std::size_t vertex = 0; vertex < mesh.vertices_size(); ++vertex) {
    std::copy(mesh.vertex(vertex), mesh.vertex(vertex) + 3,
              lifted_vertices.data() + 6 * vertex);
    std::copy(normals.data() + 3 * vertex, normals.data() + 3 * vertex + 3,
              lifted_vertices.data() + 6 * vertex + 3);
  }

  // setup lifted mesh
  Revoropt::ROMeshWrapper<3, 6> lifted_mesh(lifted_vertices.data(),
                                            lifted_vertices.size() / 6, &mesh);

  // triangle weight factor
  double twfactor = (double)CVTRemeshOptions_Number[3].def;

  // face ratios
  std::vector<double> triangle_weights(lifted_mesh.faces_size());
  if(twfactor > 0) {
    for(std::size_t f = 0; f < lifted_mesh.faces_size(); ++f) {
      // vertices of the initial triangle
      const unsigned int *fverts = mesh.face(f);

      // positions
      const double *x[3];
      for(int i = 0; i < 3; ++i) { x[i] = lifted_mesh.vertex(fverts[i]); }

      // ratio
      double ratio = 1;

      // vectors
      typedef Eigen::Matrix<double, 3, 1> Vector3;

      Eigen::Map<const Vector3> v0(x[0]);
      Eigen::Map<const Vector3> v1(x[1]);
      Eigen::Map<const Vector3> v2(x[2]);

      // triangle frame
      Vector3 U = (v1 - v0);
      const double U_len = U.norm();
      if(U_len > 0) {
        U /= U_len;
        Vector3 H = (v2 - v0);
        H = H - H.dot(U) * U;
        const double H_len = H.norm();
        if(H_len > 0) {
          // we know that the triangle is not flat
          H /= H_len;

          // gradient of the barycentric weights in the triangle
          Eigen::Matrix<double, 3, 2> bar_grads;
          bar_grads(2, 0) = 0;
          bar_grads(2, 1) = 1 / H_len;

          // gradient norms of every normal component
          for(int i = 0; i < 2; ++i) {
            // reference frame for the vertex
            Eigen::Map<const Vector3> vi0(x[(i + 1) % 3]);
            Eigen::Map<const Vector3> vi1(x[(i + 2) % 3]);
            Eigen::Map<const Vector3> vi2(x[i]);

            Vector3 Ui = (vi1 - vi0);
            Ui /= Ui.norm();
            Vector3 Hi = (vi2 - vi0);
            Hi = Hi - Hi.dot(Ui) * Ui;
            const double Hi_invlen = 1 / Hi.norm();
            Hi *= Hi_invlen;
            bar_grads(i, 0) = Hi.dot(U) * Hi_invlen;
            bar_grads(i, 1) = Hi.dot(H) * Hi_invlen;
          }

          // gradient of each component of the normal
          Eigen::Map<const Vector3> n0(x[0] + 3);
          Eigen::Map<const Vector3> n1(x[1] + 3);
          Eigen::Map<const Vector3> n2(x[2] + 3);

          Eigen::Matrix<double, 3, 2> n_grads =
            Eigen::Matrix<double, 3, 2>::Zero();

          n_grads = n0 * bar_grads.row(0);
          n_grads += n1 * bar_grads.row(1);
          n_grads += n2 * bar_grads.row(2);

          // maximal gradient norm
          double g_max = n_grads.row(0).dot(n_grads.row(0));
          double g_other = n_grads.row(1).dot(n_grads.row(1));
          g_max = g_max > g_other ? g_max : g_other;
          g_other = n_grads.row(2).dot(n_grads.row(2));
          g_max = g_max > g_other ? g_max : g_other;

          if(g_max == g_max) { // prevent nan
            ratio += g_max;
          }
        }
      }
      triangle_weights[f] = pow(ratio, twfactor);
    }
  }

  // normal factor
  double nfactor = (double)CVTRemeshOptions_Number[2].def;
  ;

  // weight the normal component by the provided factor
  for(std::size_t i = 0; i < lifted_mesh.vertices_size(); ++i) {
    double *v = lifted_vertices.data() + 6 * i;
    v[3] *= nfactor;
    v[4] *= nfactor;
    v[5] *= nfactor;
  }

  // number of sites
  unsigned int nsites = (unsigned int)CVTRemeshOptions_Number[0].def;

  // lifted sites
  std::vector<double> lifted_sites(6 * nsites);
  if(twfactor > 0) {
    Revoropt::generate_random_sites<Revoropt::ROMesh<3, 6> >(
      &lifted_mesh, nsites, lifted_sites.data(), triangle_weights.data());
  }
  else {
    Revoropt::generate_random_sites<Revoropt::ROMesh<3, 6> >(
      &lifted_mesh, nsites, lifted_sites.data());
  }

  // setup the cvt minimizer
  Revoropt::CVT::DirectMinimizer<Revoropt::ROMesh<3, 6> > cvt;
  cvt.set_sites(lifted_sites.data(), nsites);
  cvt.set_mesh(&lifted_mesh);
  if(twfactor > 0) { cvt.set_triangle_weights(triangle_weights.data()); }

  // setup the callback
  SolverCallback callback;

  // number of iterations
  unsigned int niter = (unsigned int)CVTRemeshOptions_Number[1].def;
  ;
  unsigned int aniso_niter = std::min<unsigned int>(10, niter);

  // solver status
  int status = 0;

  // isotropic iterations
  if(niter > 10) {
    aniso_niter = std::max(aniso_niter, niter * 10 / 100);
    cvt.set_anisotropy(1);
    status =
      cvt.minimize<Revoropt::Solver::AlgLBFGS>(niter - aniso_niter, &callback);
  }

  // anisotropic iterations
  if(niter > 0) {
    // tangent space anisotropy
    double tanisotropy = (double)CVTRemeshOptions_Number[4].def;
    ;

    // anisotropic iterations
    cvt.set_anisotropy(tanisotropy);
    status = cvt.minimize<Revoropt::Solver::AlgLBFGS>(aniso_niter, &callback);
  }

  // rdt
  std::vector<unsigned int> rdt_triangles;
  Revoropt::RDTBuilder<Revoropt::ROMesh<3, 6> > build_rdt(rdt_triangles);
  Revoropt::RVD<Revoropt::ROMesh<3, 6> > rvd;
  rvd.set_sites(lifted_sites.data(), nsites);
  rvd.set_mesh(&lifted_mesh);
  rvd.compute(build_rdt);

  GFace *res_face = new discreteFace(m, m->getMaxElementaryNumber(2) + 1);
  m->add(res_face);

  // scale back and transfer to gmsh
  std::vector<MVertex *> m_verts(nsites);
  for(std::size_t i = 0; i < nsites; ++i) {
    m_verts[i] =
      new MVertex(lifted_sites[6 * i] * mesh_scale + mesh_center[0],
                  lifted_sites[6 * i + 1] * mesh_scale + mesh_center[1],
                  lifted_sites[6 * i + 2] * mesh_scale + mesh_center[2]);
    res_face->addMeshVertex(m_verts[i]);
  }
  for(std::size_t i = 0; i < rdt_triangles.size() / 3; ++i) {
    res_face->addTriangle(new MTriangle(m_verts[rdt_triangles[3 * i]],
                                        m_verts[rdt_triangles[3 * i + 1]],
                                        m_verts[rdt_triangles[3 * i + 2]]));
  }

  res_face->setAllElementsVisible(true);

  return v;
}

#endif