1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
|
// Gmsh - Copyright (C) 1997-2021 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// issues on https://gitlab.onelab.info/gmsh/gmsh/issues.
#include "Crack.h"
#include "GModel.h"
#include "discreteEdge.h"
#include "discreteFace.h"
#include "MElement.h"
#include "MLine.h"
#include "MTriangle.h"
#include "MQuadrangle.h"
#include "MEdge.h"
#include "Context.h"
StringXNumber CrackOptions_Number[] = {
{GMSH_FULLRC, "Dimension", nullptr, 1.},
{GMSH_FULLRC, "PhysicalGroup", nullptr, 1.},
{GMSH_FULLRC, "OpenBoundaryPhysicalGroup", nullptr, 0.},
{GMSH_FULLRC, "NormalX", nullptr, 0.},
{GMSH_FULLRC, "NormalY", nullptr, 0.},
{GMSH_FULLRC, "NormalZ", nullptr, 1.}};
extern "C" {
GMSH_Plugin *GMSH_RegisterCrackPlugin() { return new GMSH_CrackPlugin(); }
}
std::string GMSH_CrackPlugin::getHelp() const
{
return "Plugin(Crack) creates a crack around the physical "
"group `PhysicalGroup' of dimension `Dimension' (1 or 2), "
"embedded in a mesh of dimension `Dimension' + 1. "
"The plugin duplicates the nodes and the elements on "
"the crack and stores them in a new discrete curve "
"(`Dimension' = 1) or surface (`Dimension' = 2). The "
"elements touching the crack on the ``negative'' side "
"are modified to use the newly generated nodes."
"If `OpenBoundaryPhysicalGroup' is given (> 0), its "
"nodes are duplicated and the crack will be left "
"open on that (part of the) boundary. Otherwise, the "
"lips of the crack are sealed, i.e., its nodes are "
"not duplicated. For 1D cracks, `NormalX', `NormalY' and "
"`NormalZ' provide the reference normal of the surface "
"in which the crack is supposed to be embedded.";
}
int GMSH_CrackPlugin::getNbOptions() const
{
return sizeof(CrackOptions_Number) / sizeof(StringXNumber);
}
StringXNumber *GMSH_CrackPlugin::getOption(int iopt)
{
return &CrackOptions_Number[iopt];
}
class EdgeData {
public:
EdgeData(MEdge e) : edge(e) {}
MEdge edge;
std::vector<MVertex *> data;
};
struct MEdgeDataLessThan
: public std::binary_function<EdgeData, EdgeData, bool> {
bool operator()(const EdgeData &e1, const EdgeData &e2) const
{
if(e1.edge.getMinVertex() < e2.edge.getMinVertex()) return true;
if(e1.edge.getMinVertex() > e2.edge.getMinVertex()) return false;
if(e1.edge.getMaxVertex() < e2.edge.getMaxVertex()) return true;
return false;
}
};
PView *GMSH_CrackPlugin::execute(PView *view)
{
int dim = (int)CrackOptions_Number[0].def;
int physical = (int)CrackOptions_Number[1].def;
int open = (int)CrackOptions_Number[2].def;
SVector3 normal1d(CrackOptions_Number[3].def, CrackOptions_Number[4].def,
CrackOptions_Number[5].def);
if(dim != 1 && dim != 2) {
Msg::Error("Crack dimension should be 1 or 2");
return view;
}
GModel *m = GModel::current();
std::map<int, std::vector<GEntity *> > groups[4];
m->getPhysicalGroups(groups);
std::vector<GEntity *> entities = groups[dim][physical];
if(entities.empty()) {
Msg::Error("Physical group %d (dimension %d) is empty", physical, dim);
return view;
}
std::vector<GEntity *> openEntities;
if(open > 0) {
openEntities = groups[dim - 1][open];
if(openEntities.empty()) {
Msg::Error("Open boundary physical group %d (dimension %d) is empty",
open, dim - 1);
return view;
}
}
std::set<GEntity *> crackEntities;
crackEntities.insert(entities.begin(), entities.end());
crackEntities.insert(openEntities.begin(), openEntities.end());
// get crack elements
std::vector<MElement *> crackElements;
for(std::size_t i = 0; i < entities.size(); i++)
for(std::size_t j = 0; j < entities[i]->getNumMeshElements(); j++)
crackElements.push_back(entities[i]->getMeshElement(j));
// get internal crack nodes and boundary nodes
std::set<MVertex *> crackVertices, bndVertices;
if(dim == 1) {
for(std::size_t i = 0; i < crackElements.size(); i++) {
for(std::size_t j = 0; j < crackElements[i]->getNumVertices(); j++) {
MVertex *v = crackElements[i]->getVertex(j);
crackVertices.insert(v);
}
for(std::size_t j = 0; j < crackElements[i]->getNumPrimaryVertices();
j++) {
MVertex *v = crackElements[i]->getVertex(j);
if(bndVertices.find(v) == bndVertices.end())
bndVertices.insert(v);
else
bndVertices.erase(v);
}
}
}
else {
std::set<EdgeData, MEdgeDataLessThan> bnd;
for(std::size_t i = 0; i < crackElements.size(); i++) {
for(std::size_t j = 0; j < crackElements[i]->getNumVertices(); j++) {
MVertex *v = crackElements[i]->getVertex(j);
crackVertices.insert(v);
}
for(int j = 0; j < crackElements[i]->getNumEdges(); j++) {
EdgeData ed(crackElements[i]->getEdge(j));
if(bnd.find(ed) == bnd.end()) {
crackElements[i]->getEdgeVertices(j, ed.data);
bnd.insert(ed);
}
else
bnd.erase(ed);
}
}
for(auto it = bnd.begin(); it != bnd.end(); it++)
bndVertices.insert(it->data.begin(), it->data.end());
}
// compute the boundary nodes (if any) of the "OpenBoundary" physical group if
// it's a curve
std::set<MVertex *> bndVerticesFromOpenBoundary;
for(std::size_t i = 0; i < openEntities.size(); i++) {
if(openEntities[i]->dim() < 1) continue;
for(std::size_t j = 0; j < openEntities[i]->getNumMeshElements(); j++) {
MElement *e = openEntities[i]->getMeshElement(j);
for(std::size_t k = 0; k < e->getNumPrimaryVertices(); k++) {
MVertex *v = e->getVertex(k);
if(bndVerticesFromOpenBoundary.find(v) ==
bndVerticesFromOpenBoundary.end())
bndVerticesFromOpenBoundary.insert(v);
else
bndVerticesFromOpenBoundary.erase(v);
}
}
}
if(bndVerticesFromOpenBoundary.size())
Msg::Info("%u nodes on boundary of OpenBoundaryPhysicalGroup",
bndVerticesFromOpenBoundary.size());
// get open boundary nodes and remove them from boundary nodes (if they are
// not on the "boundary of the open boundary" ;-)
for(std::size_t i = 0; i < openEntities.size(); i++) {
for(std::size_t j = 0; j < openEntities[i]->getNumMeshElements(); j++) {
MElement *e = openEntities[i]->getMeshElement(j);
for(std::size_t k = 0; k < e->getNumVertices(); k++) {
MVertex *v = e->getVertex(k);
if(bndVerticesFromOpenBoundary.find(v) ==
bndVerticesFromOpenBoundary.end())
bndVertices.erase(v);
}
}
}
for(auto it = bndVertices.begin(); it != bndVertices.end(); it++)
crackVertices.erase(*it);
// compute elements on one side of the crack
std::set<MElement *> oneside;
std::vector<GEntity *> allentities;
m->getEntities(allentities);
for(std::size_t ent = 0; ent < allentities.size(); ent++) {
if(crackEntities.find(allentities[ent]) != crackEntities.end()) continue;
for(std::size_t i = 0; i < allentities[ent]->getNumMeshElements(); i++) {
MElement *e = allentities[ent]->getMeshElement(i);
for(std::size_t j = 0; j < e->getNumVertices(); j++) {
if(crackVertices.find(e->getVertex(j)) != crackVertices.end()) {
// element touches the crack: find the closest crack element
SPoint3 b = e->barycenter();
double d = 1e200;
MElement *ce = nullptr;
for(std::size_t k = 0; k < crackElements.size(); k++) {
double d2 = b.distance(crackElements[k]->barycenter());
if(d2 < d) {
d = d2;
ce = crackElements[k];
}
}
SVector3 dv = SVector3(e->barycenter(), ce->barycenter());
SVector3 n;
if(dim == 1)
n = crossprod(normal1d, ce->getEdge(0).tangent());
else
n = ce->getFace(0).normal();
if(dot(n, dv) < 0) { oneside.insert(e); }
}
}
}
}
/*
FILE *fp = fopen("debug.pos", "w");
if(fp){
fprintf(fp, "View \"Ele < 0\" {\n");
for(auto it = oneside.begin(); it != oneside.end(); it++)
(*it)->writePOS(fp, false, true, false, false, false, false);
fprintf(fp, "};\n");
fclose(fp);
}
*/
// create new crack entity
// TODO: the new discrete entities do not have a consistent topology: we don't
// specify their bounding points/curves
// a) This is easy to fix if there's no OpenBoundaryPhysicalGroup and
// we crack a *single* elementary entity
// b) If there is an open boundary, we need to create a new elementary
// entity on the boundary, and correctly classify the nodes on it...
// and we also need to create boundary elements
// c) If we crack a group made of multiple elementary entities we might
// want to create multiple crackes entities, and do the same as (b)
// for all internal seams
//
// In practice, c) is not crucial - the current approach simply creates a
// single new surface/curve, which is probably fine as in solvers we won't use
// the internal seams.
GEdge *crackEdge = nullptr;
GFace *crackFace = nullptr;
if(dim == 1) {
crackEdge =
new discreteEdge(m, m->getMaxElementaryNumber(1) + 1, nullptr, nullptr);
m->add(crackEdge);
}
else {
crackFace = new discreteFace(m, m->getMaxElementaryNumber(2) + 1);
m->add(crackFace);
}
GEntity *crackEntity =
crackEdge ? (GEntity *)crackEdge : (GEntity *)crackFace;
crackEntity->physicals.push_back(physical);
// duplicate internal crack nodes
std::map<MVertex *, MVertex *> vxv;
for(auto it = crackVertices.begin(); it != crackVertices.end(); it++) {
MVertex *v = *it;
MVertex *newv = new MVertex(v->x(), v->y(), v->z(), crackEntity);
crackEntity->mesh_vertices.push_back(newv);
vxv[v] = newv;
}
// duplicate crack elements
for(std::size_t i = 0; i < crackElements.size(); i++) {
MElement *e = crackElements[i];
std::vector<MVertex *> verts;
e->getVertices(verts);
for(std::size_t j = 0; j < verts.size(); j++) {
if(vxv.count(verts[j])) verts[j] = vxv[verts[j]];
}
MElementFactory f;
MElement *newe = f.create(e->getTypeForMSH(), verts, 0, e->getPartition());
if(crackEdge && newe->getType() == TYPE_LIN)
crackEdge->lines.push_back((MLine *)newe);
else if(crackFace && newe->getType() == TYPE_TRI)
crackFace->triangles.push_back((MTriangle *)newe);
else if(crackFace && newe->getType() == TYPE_QUA)
crackFace->quadrangles.push_back((MQuadrangle *)newe);
}
// replace vertices in elements on one side of the crack
for(auto it = oneside.begin(); it != oneside.end(); it++) {
MElement *e = *it;
for(std::size_t i = 0; i < e->getNumVertices(); i++) {
if(vxv.count(e->getVertex(i))) e->setVertex(i, vxv[e->getVertex(i)]);
}
}
CTX::instance()->mesh.changed = ENT_ALL;
return view;
}
|