1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
// Gmsh - Copyright (C) 1997-2021 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// issues on https://gitlab.onelab.info/gmsh/gmsh/issues.
#include <stdlib.h>
#include "GmshGlobal.h"
#include "GmshConfig.h"
#include "GModel.h"
#include "OS.h"
#include "Distance.h"
#include "Context.h"
#include "Numeric.h"
#if defined(HAVE_SOLVER)
#include "dofManager.h"
#include "linearSystemCSR.h"
#include "linearSystemFull.h"
#include "linearSystemPETSc.h"
#include "distanceTerm.h"
#endif
template <class scalar> class simpleFunction;
StringXNumber DistanceOptions_Number[] = {
{GMSH_FULLRC, "PhysicalPoint", nullptr, 0.},
{GMSH_FULLRC, "PhysicalLine", nullptr, 0.},
{GMSH_FULLRC, "PhysicalSurface", nullptr, 0.},
{GMSH_FULLRC, "DistanceType", nullptr, 0},
{GMSH_FULLRC, "MinScale", nullptr, 0},
{GMSH_FULLRC, "MaxScale", nullptr, 0}};
extern "C" {
GMSH_Plugin *GMSH_RegisterDistancePlugin() { return new GMSH_DistancePlugin(); }
}
GMSH_DistancePlugin::GMSH_DistancePlugin()
{
_maxDim = 0;
_data = nullptr;
}
std::string GMSH_DistancePlugin::getHelp() const
{
return "Plugin(Distance) computes distances to entities in a mesh.\n\n"
"If `PhysicalPoint', `PhysicalLine' and `PhysicalSurface' are 0, the "
"distance is computed to all the boundaries. Otherwise the distance "
"is computed to the given physical group.\n\n"
"If `DistanceType' is 0, the plugin computes the geometrical "
"Euclidean "
"distance using the naive O(N^2) algorithm. If `DistanceType' > 0, "
"the plugin computes an approximate distance by solving a PDE with "
"a diffusion constant equal to `DistanceType' time the maximum size "
"of the bounding box of the mesh as in [Legrand et al. 2006].\n\n"
"Positive `MinScale' and `MaxScale' scale the distance function.\n\n"
"Plugin(Distance) creates one new list-based view.";
}
int GMSH_DistancePlugin::getNbOptions() const
{
return sizeof(DistanceOptions_Number) / sizeof(StringXNumber);
}
StringXNumber *GMSH_DistancePlugin::getOption(int iopt)
{
return &DistanceOptions_Number[iopt];
}
void GMSH_DistancePlugin::printView(std::vector<GEntity *> &entities,
std::map<MVertex *, double> &distanceMap)
{
double minScale = (double)DistanceOptions_Number[4].def;
double maxScale = (double)DistanceOptions_Number[5].def;
double minDist = 1.e22;
double maxDist = 0.0;
for(auto itv = distanceMap.begin(); itv != distanceMap.end(); ++itv) {
double dist = itv->second;
if(dist > maxDist) maxDist = dist;
if(dist < minDist) minDist = dist;
itv->second = dist;
}
for(std::size_t ii = 0; ii < entities.size(); ii++) {
if(entities[ii]->dim() == _maxDim) {
for(std::size_t i = 0; i < entities[ii]->getNumMeshElements(); i++) {
MElement *e = entities[ii]->getMeshElement(i);
std::size_t numNodes = e->getNumPrimaryVertices();
if(e->getNumChildren())
numNodes = e->getNumChildren() * e->getChild(0)->getNumVertices();
std::vector<double> x(numNodes), y(numNodes), z(numNodes);
std::vector<double> *out =
_data->incrementList(1, e->getType(), numNodes);
std::vector<MVertex *> nods;
if(!e->getNumChildren())
for(std::size_t i = 0; i < numNodes; i++)
nods.push_back(e->getVertex(i));
else
for(int i = 0; i < e->getNumChildren(); i++)
for(std::size_t j = 0; j < e->getChild(i)->getNumVertices(); j++)
nods.push_back(e->getChild(i)->getVertex(j));
for(std::size_t nod = 0; nod < numNodes; nod++)
out->push_back((nods[nod])->x());
for(std::size_t nod = 0; nod < numNodes; nod++)
out->push_back((nods[nod])->y());
for(std::size_t nod = 0; nod < numNodes; nod++)
out->push_back((nods[nod])->z());
std::vector<double> dist;
for(std::size_t j = 0; j < numNodes; j++) {
MVertex *v = nods[j];
auto it = distanceMap.find(v);
dist.push_back(it->second);
}
for(std::size_t i = 0; i < dist.size(); i++) {
if(minScale > 0 && maxScale > 0 && maxDist != minDist)
dist[i] = minScale + ((dist[i] - minDist) / (maxDist - minDist)) *
(maxScale - minScale);
else if(minScale > 0)
dist[i] = minScale + dist[i];
out->push_back(dist[i]);
}
}
}
}
}
PView *GMSH_DistancePlugin::execute(PView *v)
{
int id_point = (int)DistanceOptions_Number[0].def;
int id_line = (int)DistanceOptions_Number[1].def;
int id_face = (int)DistanceOptions_Number[2].def;
double type = (double)DistanceOptions_Number[3].def;
GModel *m = GModel::current();
int totNumNodes = m->getNumMeshVertices();
if(!totNumNodes) {
Msg::Error("Plugin(Distance) needs a mesh");
return v;
}
PView *view = new PView();
_data = getDataList(view);
_maxDim = m->getMeshDim();
std::vector<GEntity *> entities;
m->getEntities(entities);
std::vector<SPoint3> pts(totNumNodes);
std::vector<double> distances(totNumNodes, 1.e22);
std::vector<MVertex *> pt2Vertex(totNumNodes);
std::map<MVertex *, double> distanceMap;
std::size_t k = 0;
for(std::size_t i = 0; i < entities.size(); i++) {
GEntity *ge = entities[i];
for(std::size_t j = 0; j < ge->mesh_vertices.size(); j++) {
MVertex *v = ge->mesh_vertices[j];
pts[k] = SPoint3(v->x(), v->y(), v->z());
pt2Vertex[k] = v;
distanceMap.insert(std::make_pair(v, 0.0));
k++;
}
}
if(type <= 0.0) { // Compute geometrical distance to mesh boundaries
bool existEntity = false;
for(std::size_t i = 0; i < entities.size(); i++) {
GEntity *g2 = entities[i];
int gDim = g2->dim();
bool computeForEntity = false;
if(!id_point && !id_line && !id_face && gDim == _maxDim - 1) {
computeForEntity = true;
}
else {
std::vector<int> phys = g2->getPhysicalEntities();
for(std::size_t k = 0; k < phys.size(); k++) {
if((phys[k] == id_point && gDim == 0) ||
(phys[k] == id_line && gDim == 1) ||
(phys[k] == id_face && gDim == 2)) {
computeForEntity = true;
break;
}
}
}
if(computeForEntity) {
existEntity = true;
for(std::size_t k = 0; k < g2->getNumMeshElements(); k++) {
std::vector<double> iDistances;
std::vector<SPoint3> iClosePts;
std::vector<double> iDistancesE;
MElement *e = g2->getMeshElement(k);
MVertex *v1 = e->getVertex(0);
MVertex *v2 = e->getVertex(1);
SPoint3 p1(v1->x(), v1->y(), v1->z());
SPoint3 p2(v2->x(), v2->y(), v2->z());
if(e->getType() == TYPE_LIN) {
signedDistancesPointsLine(iDistances, iClosePts, pts, p1, p2);
}
else if(e->getType() == TYPE_TRI) {
MVertex *v3 = e->getVertex(2);
SPoint3 p3(v3->x(), v3->y(), v3->z());
signedDistancesPointsTriangle(iDistances, iClosePts, pts, p1, p2,
p3);
}
for(std::size_t kk = 0; kk < pts.size(); kk++) {
if(std::abs(iDistances[kk]) < distances[kk]) {
distances[kk] = std::abs(iDistances[kk]);
MVertex *v = pt2Vertex[kk];
distanceMap[v] = distances[kk];
}
}
}
}
}
if(!existEntity) {
if(id_point) Msg::Warning("Physical Point %d does not exist", id_point);
if(id_line) Msg::Warning("Physical Line %d does not exist", id_line);
if(id_face) Msg::Warning("Physical Surface %d does not exist", id_face);
}
else {
printView(entities, distanceMap);
}
}
else { // Compute PDE for distance function
#if defined(HAVE_SOLVER)
#if defined(HAVE_PETSC)
linearSystemPETSc<double> *lsys = new linearSystemPETSc<double>;
#elif defined(HAVE_GMM)
linearSystemCSRGmm<double> *lsys = new linearSystemCSRGmm<double>;
#else
linearSystemFull<double> *lsys = new linearSystemFull<double>;
#endif
dofManager<double> *dofView = new dofManager<double>(lsys);
bool existEntity = false;
SBoundingBox3d bbox;
for(std::size_t i = 0; i < entities.size(); i++) {
GEntity *ge = entities[i];
int gDim = ge->dim();
bool fixForEntity = false;
if(!id_point && !id_line && !id_face && gDim == _maxDim - 1) {
fixForEntity = true;
}
else {
std::vector<int> phys = ge->getPhysicalEntities();
for(std::size_t k = 0; k < phys.size(); k++) {
if((phys[k] == id_point && gDim == 0) ||
(phys[k] == id_line && gDim == 1) ||
(phys[k] == id_face && gDim == 2)) {
fixForEntity = true;
break;
}
}
}
if(fixForEntity) {
existEntity = true;
for(std::size_t i = 0; i < ge->getNumMeshElements(); ++i) {
MElement *t = ge->getMeshElement(i);
for(std::size_t k = 0; k < t->getNumVertices(); k++) {
MVertex *v = t->getVertex(k);
dofView->fixVertex(v, 0, 1, 0.);
bbox += SPoint3(v->x(), v->y(), v->z());
}
}
}
}
if(!existEntity) {
if(id_point) Msg::Warning("Physical Point %d does not exist", id_point);
if(id_line) Msg::Warning("Physical Line %d does not exist", id_line);
if(id_face) Msg::Warning("Physical Surface %d does not exist", id_face);
}
else {
std::vector<MElement *> allElems;
for(std::size_t ii = 0; ii < entities.size(); ii++) {
if(entities[ii]->dim() == _maxDim) {
GEntity *ge = entities[ii];
for(std::size_t i = 0; i < ge->getNumMeshElements(); ++i) {
MElement *t = ge->getMeshElement(i);
allElems.push_back(t);
for(std::size_t k = 0; k < t->getNumVertices(); k++)
dofView->numberVertex(t->getVertex(k), 0, 1);
}
}
}
double L = norm(SVector3(bbox.max(), bbox.min()));
double mu = type * L;
simpleFunction<double> DIFF(mu * mu), ONE(1.0);
distanceTerm distance(GModel::current(), 1, &DIFF, &ONE);
for(auto it = allElems.begin(); it != allElems.end(); it++) {
SElement se((*it));
distance.addToMatrix(*dofView, &se);
}
groupOfElements gr(allElems);
distance.addToRightHandSide(*dofView, gr);
lsys->systemSolve();
for(auto itv = distanceMap.begin(); itv != distanceMap.end(); ++itv) {
MVertex *v = itv->first;
double value;
dofView->getDofValue(v, 0, 1, value);
value = std::min(0.9999, value);
double dist = -mu * log(1. - value);
itv->second = dist;
}
printView(entities, distanceMap);
}
delete lsys;
delete dofView;
#endif
}
_data->setName("distance");
_data->Time.push_back(0);
_data->setFileName("distance.pos");
_data->finalize();
return view;
}
|