1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
// Gmsh - Copyright (C) 1997-2021 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// issues on https://gitlab.onelab.info/gmsh/gmsh/issues.
//
// Contributed by Matti Pellikka <matti.pellikka@microsoft.com>.
#include <stdlib.h>
#include <string>
#include <iostream>
#include <sstream>
#include "GmshGlobal.h"
#include "GmshConfig.h"
#include "GModel.h"
#include "Chain.h"
#include "fullMatrix.h"
#include "HomologyPostProcessing.h"
#if defined(HAVE_KBIPACK)
StringXNumber HomologyPostProcessingOptions_Number[] = {
{GMSH_FULLRC, "ApplyBoundaryOperatorToResults", nullptr, 0}};
StringXString HomologyPostProcessingOptions_String[] = {
{GMSH_FULLRC, "TransformationMatrix", nullptr, "1, 0; 0, 1"},
{GMSH_FULLRC, "PhysicalGroupsOfOperatedChains", nullptr, "1, 2"},
{GMSH_FULLRC, "PhysicalGroupsOfOperatedChains2", nullptr, ""},
{GMSH_FULLRC, "PhysicalGroupsToTraceResults", nullptr, ""},
{GMSH_FULLRC, "PhysicalGroupsToProjectResults", nullptr, ""},
{GMSH_FULLRC, "NameForResultChains", nullptr, "c"},
};
extern "C" {
GMSH_Plugin *GMSH_RegisterHomologyPostProcessingPlugin()
{
return new GMSH_HomologyPostProcessingPlugin();
}
}
std::string GMSH_HomologyPostProcessingPlugin::getHelp() const
{
return "Plugin(HomologyPostProcessing) operates on representative "
"basis chains of homology and cohomology spaces. Functionality:\n\n"
"1. (co)homology basis transformation:\n "
"'TransformationMatrix': Integer matrix of the transformation.\n "
"'PhysicalGroupsOfOperatedChains': (Co)chains of a (co)homology space "
"basis to be transformed.\n "
"Results a new (co)chain basis that is an integer cobination of the "
"given basis. \n\n"
"2. Make basis representations of a homology space and a cohomology "
"space "
"compatible: \n"
"'PhysicalGroupsOfOperatedChains': Chains of a homology space basis.\n"
"'PhysicalGroupsOfOperatedChains2': Cochains of a cohomology space "
"basis.\n"
"Results a new basis for the homology space such that the incidence "
"matrix of the new basis and the basis of the cohomology space is the "
"identity matrix.\n\n"
"Options:\n"
"'PhysicalGroupsToTraceResults': Trace the resulting (co)chains to "
"the given physical groups.\n"
"'PhysicalGroupsToProjectResults': Project the resulting (co)chains "
"to the complement of the given physical groups.\n"
"'NameForResultChains': Post-processing view name prefix for the "
"results.\n"
"'ApplyBoundaryOperatorToResults': Apply boundary operator to the "
"resulting chains.\n";
}
int GMSH_HomologyPostProcessingPlugin::getNbOptions() const
{
return sizeof(HomologyPostProcessingOptions_Number) / sizeof(StringXNumber);
}
StringXNumber *GMSH_HomologyPostProcessingPlugin::getOption(int iopt)
{
return &HomologyPostProcessingOptions_Number[iopt];
}
int GMSH_HomologyPostProcessingPlugin::getNbOptionsStr() const
{
return sizeof(HomologyPostProcessingOptions_String) / sizeof(StringXString);
}
StringXString *GMSH_HomologyPostProcessingPlugin::getOptionStr(int iopt)
{
return &HomologyPostProcessingOptions_String[iopt];
}
bool GMSH_HomologyPostProcessingPlugin::parseStringOpt(
int stringOpt, std::vector<int> &intList)
{
std::string list = HomologyPostProcessingOptions_String[stringOpt].def;
intList.clear();
int n;
char a;
std::istringstream ss(list);
while(ss >> n) {
intList.push_back(n);
if(ss >> a) {
if(a != ',') {
Msg::Error("Unexpected character \'%c\' while parsing \'%s\'", a,
HomologyPostProcessingOptions_String[stringOpt].str);
return false;
}
}
}
return true;
}
int GMSH_HomologyPostProcessingPlugin::detIntegerMatrix(
std::vector<int> &matrix)
{
int n = sqrt((double)matrix.size());
fullMatrix<double> m(n, n);
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++) m(i, j) = matrix.at(i * n + j);
return m.determinant();
}
bool GMSH_HomologyPostProcessingPlugin::invertIntegerMatrix(
std::vector<int> &matrix)
{
int n = sqrt((double)matrix.size());
fullMatrix<double> m(n, n);
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++) m(i, j) = matrix.at(i * n + j);
if(!m.invertInPlace()) {
Msg::Error("Matrix is not unimodular");
return false;
}
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++) matrix.at(i * n + j) = m(i, j);
return true;
}
PView *GMSH_HomologyPostProcessingPlugin::execute(PView *v)
{
std::string matrixString = HomologyPostProcessingOptions_String[0].def;
std::string opString1 = HomologyPostProcessingOptions_String[1].def;
std::string opString2 = HomologyPostProcessingOptions_String[2].def;
std::string cname = HomologyPostProcessingOptions_String[5].def;
std::string traceString = HomologyPostProcessingOptions_String[3].def;
std::string projectString = HomologyPostProcessingOptions_String[4].def;
int bd = (int)HomologyPostProcessingOptions_Number[0].def;
GModel *m = GModel::current();
int n;
char a;
int cols = 0;
int col = 0;
std::vector<int> matrix;
if(matrixString != "I") {
std::istringstream ss(matrixString);
while(ss >> n) {
matrix.push_back(n);
col++;
if(ss >> a) {
if(a != ',' && a != ';') {
Msg::Error("Unexpected character \'%c\' while parsing \'%s\'", a,
HomologyPostProcessingOptions_String[0].str);
return nullptr;
}
if(a == ';') {
if(cols != 0 && cols != col) {
Msg::Error("Number of columns must match (%d != %d)", cols, col);
return nullptr;
}
cols = col;
col = 0;
}
}
}
if(cols != 0 && cols != col && col != 0) {
Msg::Error("Number of columns must match (%d != %d)", cols, col);
return nullptr;
}
if(cols == 0) cols = col;
}
int rows = 0;
if(!matrix.empty()) {
rows = matrix.size() / cols;
if((int)matrix.size() % cols != 0) {
Msg::Error(
"Number of matrix rows and columns aren't compatible (residual: %d)",
(int)matrix.size() % cols);
return nullptr;
}
}
std::vector<int> basisPhysicals;
if(!parseStringOpt(1, basisPhysicals)) return nullptr;
std::vector<int> basisPhysicals2;
if(!parseStringOpt(2, basisPhysicals2)) return nullptr;
if(matrixString != "I" && (int)basisPhysicals.size() != cols &&
basisPhysicals2.empty()) {
Msg::Error(
"Number of matrix columns and operated chains must match (%d != %d)",
cols, basisPhysicals.size());
return nullptr;
}
else if(matrixString == "I") {
cols = basisPhysicals.size();
rows = cols;
matrix = std::vector<int>(cols * cols, 0);
for(int i = 0; i < cols; i++) matrix.at(i * cols + i) = 1;
}
if(!basisPhysicals2.empty() &&
basisPhysicals.size() != basisPhysicals2.size()) {
Msg::Error("Number of operated chains must match (%d != %d)",
basisPhysicals.size(), basisPhysicals2.size());
return nullptr;
}
std::vector<int> tracePhysicals;
if(!parseStringOpt(3, tracePhysicals)) return nullptr;
std::vector<int> projectPhysicals;
if(!parseStringOpt(4, projectPhysicals)) return nullptr;
std::vector<Chain<int> > curBasis;
for(std::size_t i = 0; i < basisPhysicals.size(); i++) {
curBasis.push_back(Chain<int>(m, basisPhysicals.at(i)));
}
if(curBasis.empty()) {
Msg::Error("No operated chains given");
return nullptr;
}
int dim = curBasis.at(0).getDim();
std::vector<Chain<int> > curBasis2;
for(std::size_t i = 0; i < basisPhysicals2.size(); i++) {
curBasis2.push_back(Chain<int>(m, basisPhysicals2.at(i)));
}
if(!curBasis2.empty()) {
rows = curBasis2.size();
cols = curBasis.size();
matrix = std::vector<int>(rows * cols, 0);
for(int i = 0; i < rows; i++)
for(int j = 0; j < cols; j++)
matrix.at(i * cols + j) = incidence(curBasis2.at(i), curBasis.at(j));
}
if(!curBasis2.empty())
Msg::Debug("Incidence matrix: ");
else
Msg::Debug("Transformation matrix: ");
for(int i = 0; i < rows; i++)
for(int j = 0; j < cols; j++)
Msg::Debug("(%d, %d) = %d", i, j, matrix.at(i * cols + j));
std::vector<Chain<int> > newBasis(rows, Chain<int>());
if(!curBasis2.empty()) {
Msg::Info("Computing new basis %d-chains such that the incidence matrix of "
"%d-chain bases %s and %s is the indentity matrix",
dim, dim, opString1.c_str(), opString2.c_str());
int det = detIntegerMatrix(matrix);
if(det != 1 && det != -1)
Msg::Warning("Incidence matrix is not unimodular (det = %d)", det);
if(!invertIntegerMatrix(matrix)) return nullptr;
for(int i = 0; i < rows; i++)
for(int j = 0; j < cols; j++)
newBasis.at(i) += matrix.at(i * cols + j) * curBasis2.at(j);
}
else {
Msg::Info("Applying transformation matrix [%s] to %d-chains %s",
matrixString.c_str(), dim, opString1.c_str());
if(rows == cols) {
int det = detIntegerMatrix(matrix);
if(det != 1 && det != -1)
Msg::Warning("Transformation matrix is not unimodular (det = %d)", det);
}
for(int i = 0; i < rows; i++)
for(int j = 0; j < cols; j++)
newBasis.at(i) += matrix.at(i * cols + j) * curBasis.at(j);
}
if(bd) {
Msg::Info("Applying boundary operator to the result %d-chains", dim);
for(std::size_t i = 0; i < newBasis.size(); i++)
newBasis.at(i) = newBasis.at(i).getBoundary();
}
if(!tracePhysicals.empty()) {
Msg::Info("Taking trace of result %d-chains to domain %s", dim,
traceString.c_str());
for(std::size_t i = 0; i < newBasis.size(); i++)
newBasis.at(i) = newBasis.at(i).getTrace(m, tracePhysicals);
}
if(!projectPhysicals.empty()) {
Msg::Info("Taking projection of result %d-chains to the complement of the "
"domain %s",
dim, projectString.c_str());
for(std::size_t i = 0; i < newBasis.size(); i++)
newBasis.at(i) = newBasis.at(i).getProject(m, projectPhysicals);
}
if(!tracePhysicals.empty() || !projectPhysicals.empty())
ElemChain::clearVertexCache();
for(std::size_t i = 0; i < newBasis.size(); i++) {
std::string dims = convertInt(newBasis.at(i).getDim());
std::string nums = convertInt(i + 1);
newBasis.at(i).setName("C" + dims + " " + cname + nums);
newBasis.at(i).addToModel(m);
}
return nullptr;
}
#endif
|