File: Lambda2.cpp

package info (click to toggle)
gmsh 4.8.4%2Bds2-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 87,812 kB
  • sloc: cpp: 378,014; ansic: 99,669; yacc: 7,216; python: 6,680; java: 3,486; lisp: 659; lex: 621; perl: 571; makefile: 470; sh: 440; xml: 415; javascript: 113; pascal: 35; modula3: 32
file content (272 lines) | stat: -rw-r--r-- 9,530 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
// Gmsh - Copyright (C) 1997-2021 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// issues on https://gitlab.onelab.info/gmsh/gmsh/issues.

#include "Lambda2.h"
#include "Numeric.h"

StringXNumber Lambda2Options_Number[] = {
  {GMSH_FULLRC, "Eigenvalue", nullptr, 2.},
  {GMSH_FULLRC, "View", nullptr, -1.}};

extern "C" {
GMSH_Plugin *GMSH_RegisterLambda2Plugin() { return new GMSH_Lambda2Plugin(); }
}

std::string GMSH_Lambda2Plugin::getHelp() const
{
  return "Plugin(Lambda2) computes the eigenvalues "
         "Lambda(1,2,3) of the tensor (S_ik S_kj + "
         "Om_ik Om_kj), where S_ij = 0.5 (ui,j + uj,i) "
         "and Om_ij = 0.5 (ui,j - uj,i) are respectively "
         "the symmetric and antisymmetric parts of the "
         "velocity gradient tensor.\n\n"
         "Vortices are well represented by regions where "
         "Lambda(2) is negative.\n\n"
         "If `View' contains tensor elements, the plugin "
         "directly uses the tensors as the values of the "
         "velocity gradient tensor; if `View' contains "
         "vector elements, the plugin uses them as the "
         "velocities from which to derive the velocity "
         "gradient tensor.\n\n"
         "If `View' < 0, the plugin is run on the current view.\n\n"
         "Plugin(Lambda2) creates one new list-based view.";
}

int GMSH_Lambda2Plugin::getNbOptions() const
{
  return sizeof(Lambda2Options_Number) / sizeof(StringXNumber);
}

StringXNumber *GMSH_Lambda2Plugin::getOption(int iopt)
{
  return &Lambda2Options_Number[iopt];
}

static int inv3x3tran(double mat[3][3], double inv[3][3], double *det)
{
  double ud;

  *det = det3x3(mat);

  if(*det == 0.0) return (0);

  ud = 1. / (*det);

  inv[0][0] = ud * (mat[1][1] * mat[2][2] - mat[1][2] * mat[2][1]);
  inv[0][1] = -ud * (mat[1][0] * mat[2][2] - mat[1][2] * mat[2][0]);
  inv[0][2] = ud * (mat[1][0] * mat[2][1] - mat[1][1] * mat[2][0]);
  inv[1][0] = -ud * (mat[0][1] * mat[2][2] - mat[0][2] * mat[2][1]);
  inv[1][1] = ud * (mat[0][0] * mat[2][2] - mat[0][2] * mat[2][0]);
  inv[1][2] = -ud * (mat[0][0] * mat[2][1] - mat[0][1] * mat[2][0]);
  inv[2][0] = ud * (mat[0][1] * mat[1][2] - mat[0][2] * mat[1][1]);
  inv[2][1] = -ud * (mat[0][0] * mat[1][2] - mat[0][2] * mat[1][0]);
  inv[2][2] = ud * (mat[0][0] * mat[1][1] - mat[0][1] * mat[1][0]);
  return 1;
}

static void eigen(std::vector<double> &inList, int inNb,
                  std::vector<double> &outList, int *outNb, int nbTime,
                  int nbNod, int nbComp, int lam)
{
  if(!inNb || (nbComp != 3 && nbComp != 9) || lam < 1 || lam > 3) return;

  // loop on elements
  int nb = inList.size() / inNb;
  for(std::size_t i = 0; i < inList.size(); i += nb) {
    // copy node coordinates
    for(int j = 0; j < 3 * nbNod; j++) outList.push_back(inList[i + j]);

    // loop on time steps
    for(int j = 0; j < nbTime; j++) {
      double *x = &inList[i];
      double *y = &inList[i + nbNod];
      double *z = &inList[i + 2 * nbNod];

      double GradVel[3][3];

      if(nbComp == 9) {
        // val is the velocity gradient tensor: we assume that it is
        // constant per element
        double *v = &inList[i + 3 * nbNod + nbNod * nbComp * j + nbComp * 0];
        GradVel[0][0] = v[0];
        GradVel[0][1] = v[1];
        GradVel[0][2] = v[2];
        GradVel[1][0] = v[3];
        GradVel[1][1] = v[4];
        GradVel[1][2] = v[5];
        GradVel[2][0] = v[6];
        GradVel[2][1] = v[7];
        GradVel[2][2] = v[8];
      }
      else if(nbComp == 3) {
        // FIXME: the following could be greatly simplified and
        // generalized by using the classes in shapeFunctions.h

        // val contains the velocities: compute the gradient tensor
        // from them
        const int MAX_NOD = 4;
        double val[3][MAX_NOD];
        for(int k = 0; k < nbNod; k++) {
          double *v = &inList[i + 3 * nbNod + nbNod * nbComp * j + nbComp * k];
          for(int l = 0; l < 3; l++) { val[l][k] = v[l]; }
        }
        // compute gradient of shape functions
        double GradPhi_x[MAX_NOD][3];
        double GradPhi_ksi[MAX_NOD][3];
        double dx_dksi[3][3];
        double dksi_dx[3][3];
        double det;
        if(nbNod == 3) { // triangles
          double a[3], b[3], cross[3];
          a[0] = x[1] - x[0];
          a[1] = y[1] - y[0];
          a[2] = z[1] - z[0];
          b[0] = x[2] - x[0];
          b[1] = y[2] - y[0];
          b[2] = z[2] - z[0];
          prodve(a, b, cross);
          dx_dksi[0][0] = x[1] - x[0];
          dx_dksi[0][1] = x[2] - x[0];
          dx_dksi[0][2] = cross[0];
          dx_dksi[1][0] = y[1] - y[0];
          dx_dksi[1][1] = y[2] - y[0];
          dx_dksi[1][2] = cross[1];
          dx_dksi[2][0] = z[1] - z[0];
          dx_dksi[2][1] = z[2] - z[0];
          dx_dksi[2][2] = cross[2];
          inv3x3tran(dx_dksi, dksi_dx, &det);
          GradPhi_ksi[0][0] = -1;
          GradPhi_ksi[0][1] = -1;
          GradPhi_ksi[0][2] = 0;
          GradPhi_ksi[1][0] = 1;
          GradPhi_ksi[1][1] = 0;
          GradPhi_ksi[1][2] = 0;
          GradPhi_ksi[2][0] = 0;
          GradPhi_ksi[2][1] = 1;
          GradPhi_ksi[2][2] = 0;
        }
        else if(nbNod == 4) { // tetrahedra
          dx_dksi[0][0] = x[1] - x[0];
          dx_dksi[0][1] = x[2] - x[0];
          dx_dksi[0][2] = x[3] - x[0];
          dx_dksi[1][0] = y[1] - y[0];
          dx_dksi[1][1] = y[2] - y[0];
          dx_dksi[1][2] = y[3] - y[0];
          dx_dksi[2][0] = z[1] - z[0];
          dx_dksi[2][1] = z[2] - z[0];
          dx_dksi[2][2] = z[3] - z[0];
          inv3x3tran(dx_dksi, dksi_dx, &det);
          GradPhi_ksi[0][0] = -1;
          GradPhi_ksi[0][1] = -1;
          GradPhi_ksi[0][2] = -1;
          GradPhi_ksi[1][0] = 1;
          GradPhi_ksi[1][1] = 0;
          GradPhi_ksi[1][2] = 0;
          GradPhi_ksi[2][0] = 0;
          GradPhi_ksi[2][1] = 1;
          GradPhi_ksi[2][2] = 0;
          GradPhi_ksi[3][0] = 0;
          GradPhi_ksi[3][1] = 0;
          GradPhi_ksi[3][2] = 1;
        }
        else {
          Msg::Error("Lambda2 not ready for this type of element");
          return;
        }
        for(int k = 0; k < nbNod; k++) {
          for(int l = 0; l < 3; l++) {
            GradPhi_x[k][l] = 0.0;
            for(int m = 0; m < 3; m++) {
              GradPhi_x[k][l] += GradPhi_ksi[k][m] * dksi_dx[l][m];
            }
          }
        }
        // compute gradient of velocities
        for(int k = 0; k < 3; k++) {
          for(int l = 0; l < 3; l++) {
            GradVel[k][l] = 0.0;
            for(int m = 0; m < nbNod; m++) {
              GradVel[k][l] += val[k][m] * GradPhi_x[m][l];
            }
          }
        }
      }
      else
        for(int k = 0; k < 3; k++)
          for(int l = 0; l < 3; l++) GradVel[k][l] = 0.0;

      // compute the sym and antisymetric parts
      double sym[3][3];
      double asym[3][3];
      for(int m = 0; m < 3; m++) {
        for(int n = 0; n < 3; n++) {
          sym[m][n] = 0.5 * (GradVel[m][n] + GradVel[n][m]);
          asym[m][n] = 0.5 * (GradVel[m][n] - GradVel[n][m]);
        }
      }
      double a[3][3];
      for(int m = 0; m < 3; m++) {
        for(int n = 0; n < 3; n++) {
          a[m][n] = 0.0;
          for(int l = 0; l < 3; l++)
            a[m][n] += sym[m][l] * sym[l][n] + asym[m][l] * asym[l][n];
        }
      }

      // compute the eigenvalues
      double lambda[3];
      eigenvalue(a, lambda);
      for(int k = 0; k < nbNod; k++) outList.push_back(lambda[lam - 1]);
    }

    (*outNb)++;
  }
}

PView *GMSH_Lambda2Plugin::execute(PView *v)
{
  int ev = (int)Lambda2Options_Number[0].def;
  int iView = (int)Lambda2Options_Number[1].def;

  PView *v1 = getView(iView, v);
  if(!v1) return v;

  PViewDataList *data1 = getDataList(v1);
  if(!data1) return v;

  PView *v2 = new PView();

  PViewDataList *data2 = getDataList(v2);
  if(!data2) return v;

  // assume that the tensors contain the velocity gradient tensor
  int nts = data1->getNumTimeSteps();
  eigen(data1->TP, data1->NbTP, data2->SP, &data2->NbSP, nts, 1, 9, ev);
  eigen(data1->TL, data1->NbTL, data2->SL, &data2->NbSL, nts, 2, 9, ev);
  eigen(data1->TT, data1->NbTT, data2->ST, &data2->NbST, nts, 3, 9, ev);
  eigen(data1->TQ, data1->NbTQ, data2->SQ, &data2->NbSQ, nts, 4, 9, ev);
  eigen(data1->TS, data1->NbTS, data2->SS, &data2->NbSS, nts, 4, 9, ev);
  eigen(data1->TH, data1->NbTH, data2->SH, &data2->NbSH, nts, 8, 9, ev);
  eigen(data1->TI, data1->NbTI, data2->SI, &data2->NbSI, nts, 6, 9, ev);
  eigen(data1->TY, data1->NbTY, data2->SY, &data2->NbSY, nts, 5, 9, ev);

  // assume that the vectors contain the velocities
  // FIXME: only implemented for tri/tet at the moment
  // eigen(data1->VP, data1->NbVP, data2->SP, &data2->NbSP, nts, 1, 3, ev);
  // eigen(data1->VL, data1->NbVL, data2->SL, &data2->NbSL, nts, 2, 3, ev);
  eigen(data1->VT, data1->NbVT, data2->ST, &data2->NbST, nts, 3, 3, ev);
  // eigen(data1->VQ, data1->NbVQ, data2->SQ, &data2->NbSQ, nts, 4, 3, ev);
  eigen(data1->VS, data1->NbVS, data2->SS, &data2->NbSS, nts, 4, 3, ev);
  // eigen(data1->VH, data1->NbVH, data2->SH, &data2->NbSH, nts, 8, 3, ev);
  // eigen(data1->VI, data1->NbVI, data2->SI, &data2->NbSI, nts, 6, 3, ev);
  // eigen(data1->VY, data1->NbVY, data2->SY, &data2->NbSY, nts, 5, 3, ev);

  data2->Time = data1->Time;
  data2->setName(data1->getName() + "_Lambda2");
  data2->setFileName(data1->getName() + "_Lambda2.pos");
  data2->finalize();

  return v2;
}