1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
|
// Gmsh - Copyright (C) 1997-2021 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// issues on https://gitlab.onelab.info/gmsh/gmsh/issues.
#include "Lambda2.h"
#include "Numeric.h"
StringXNumber Lambda2Options_Number[] = {
{GMSH_FULLRC, "Eigenvalue", nullptr, 2.},
{GMSH_FULLRC, "View", nullptr, -1.}};
extern "C" {
GMSH_Plugin *GMSH_RegisterLambda2Plugin() { return new GMSH_Lambda2Plugin(); }
}
std::string GMSH_Lambda2Plugin::getHelp() const
{
return "Plugin(Lambda2) computes the eigenvalues "
"Lambda(1,2,3) of the tensor (S_ik S_kj + "
"Om_ik Om_kj), where S_ij = 0.5 (ui,j + uj,i) "
"and Om_ij = 0.5 (ui,j - uj,i) are respectively "
"the symmetric and antisymmetric parts of the "
"velocity gradient tensor.\n\n"
"Vortices are well represented by regions where "
"Lambda(2) is negative.\n\n"
"If `View' contains tensor elements, the plugin "
"directly uses the tensors as the values of the "
"velocity gradient tensor; if `View' contains "
"vector elements, the plugin uses them as the "
"velocities from which to derive the velocity "
"gradient tensor.\n\n"
"If `View' < 0, the plugin is run on the current view.\n\n"
"Plugin(Lambda2) creates one new list-based view.";
}
int GMSH_Lambda2Plugin::getNbOptions() const
{
return sizeof(Lambda2Options_Number) / sizeof(StringXNumber);
}
StringXNumber *GMSH_Lambda2Plugin::getOption(int iopt)
{
return &Lambda2Options_Number[iopt];
}
static int inv3x3tran(double mat[3][3], double inv[3][3], double *det)
{
double ud;
*det = det3x3(mat);
if(*det == 0.0) return (0);
ud = 1. / (*det);
inv[0][0] = ud * (mat[1][1] * mat[2][2] - mat[1][2] * mat[2][1]);
inv[0][1] = -ud * (mat[1][0] * mat[2][2] - mat[1][2] * mat[2][0]);
inv[0][2] = ud * (mat[1][0] * mat[2][1] - mat[1][1] * mat[2][0]);
inv[1][0] = -ud * (mat[0][1] * mat[2][2] - mat[0][2] * mat[2][1]);
inv[1][1] = ud * (mat[0][0] * mat[2][2] - mat[0][2] * mat[2][0]);
inv[1][2] = -ud * (mat[0][0] * mat[2][1] - mat[0][1] * mat[2][0]);
inv[2][0] = ud * (mat[0][1] * mat[1][2] - mat[0][2] * mat[1][1]);
inv[2][1] = -ud * (mat[0][0] * mat[1][2] - mat[0][2] * mat[1][0]);
inv[2][2] = ud * (mat[0][0] * mat[1][1] - mat[0][1] * mat[1][0]);
return 1;
}
static void eigen(std::vector<double> &inList, int inNb,
std::vector<double> &outList, int *outNb, int nbTime,
int nbNod, int nbComp, int lam)
{
if(!inNb || (nbComp != 3 && nbComp != 9) || lam < 1 || lam > 3) return;
// loop on elements
int nb = inList.size() / inNb;
for(std::size_t i = 0; i < inList.size(); i += nb) {
// copy node coordinates
for(int j = 0; j < 3 * nbNod; j++) outList.push_back(inList[i + j]);
// loop on time steps
for(int j = 0; j < nbTime; j++) {
double *x = &inList[i];
double *y = &inList[i + nbNod];
double *z = &inList[i + 2 * nbNod];
double GradVel[3][3];
if(nbComp == 9) {
// val is the velocity gradient tensor: we assume that it is
// constant per element
double *v = &inList[i + 3 * nbNod + nbNod * nbComp * j + nbComp * 0];
GradVel[0][0] = v[0];
GradVel[0][1] = v[1];
GradVel[0][2] = v[2];
GradVel[1][0] = v[3];
GradVel[1][1] = v[4];
GradVel[1][2] = v[5];
GradVel[2][0] = v[6];
GradVel[2][1] = v[7];
GradVel[2][2] = v[8];
}
else if(nbComp == 3) {
// FIXME: the following could be greatly simplified and
// generalized by using the classes in shapeFunctions.h
// val contains the velocities: compute the gradient tensor
// from them
const int MAX_NOD = 4;
double val[3][MAX_NOD];
for(int k = 0; k < nbNod; k++) {
double *v = &inList[i + 3 * nbNod + nbNod * nbComp * j + nbComp * k];
for(int l = 0; l < 3; l++) { val[l][k] = v[l]; }
}
// compute gradient of shape functions
double GradPhi_x[MAX_NOD][3];
double GradPhi_ksi[MAX_NOD][3];
double dx_dksi[3][3];
double dksi_dx[3][3];
double det;
if(nbNod == 3) { // triangles
double a[3], b[3], cross[3];
a[0] = x[1] - x[0];
a[1] = y[1] - y[0];
a[2] = z[1] - z[0];
b[0] = x[2] - x[0];
b[1] = y[2] - y[0];
b[2] = z[2] - z[0];
prodve(a, b, cross);
dx_dksi[0][0] = x[1] - x[0];
dx_dksi[0][1] = x[2] - x[0];
dx_dksi[0][2] = cross[0];
dx_dksi[1][0] = y[1] - y[0];
dx_dksi[1][1] = y[2] - y[0];
dx_dksi[1][2] = cross[1];
dx_dksi[2][0] = z[1] - z[0];
dx_dksi[2][1] = z[2] - z[0];
dx_dksi[2][2] = cross[2];
inv3x3tran(dx_dksi, dksi_dx, &det);
GradPhi_ksi[0][0] = -1;
GradPhi_ksi[0][1] = -1;
GradPhi_ksi[0][2] = 0;
GradPhi_ksi[1][0] = 1;
GradPhi_ksi[1][1] = 0;
GradPhi_ksi[1][2] = 0;
GradPhi_ksi[2][0] = 0;
GradPhi_ksi[2][1] = 1;
GradPhi_ksi[2][2] = 0;
}
else if(nbNod == 4) { // tetrahedra
dx_dksi[0][0] = x[1] - x[0];
dx_dksi[0][1] = x[2] - x[0];
dx_dksi[0][2] = x[3] - x[0];
dx_dksi[1][0] = y[1] - y[0];
dx_dksi[1][1] = y[2] - y[0];
dx_dksi[1][2] = y[3] - y[0];
dx_dksi[2][0] = z[1] - z[0];
dx_dksi[2][1] = z[2] - z[0];
dx_dksi[2][2] = z[3] - z[0];
inv3x3tran(dx_dksi, dksi_dx, &det);
GradPhi_ksi[0][0] = -1;
GradPhi_ksi[0][1] = -1;
GradPhi_ksi[0][2] = -1;
GradPhi_ksi[1][0] = 1;
GradPhi_ksi[1][1] = 0;
GradPhi_ksi[1][2] = 0;
GradPhi_ksi[2][0] = 0;
GradPhi_ksi[2][1] = 1;
GradPhi_ksi[2][2] = 0;
GradPhi_ksi[3][0] = 0;
GradPhi_ksi[3][1] = 0;
GradPhi_ksi[3][2] = 1;
}
else {
Msg::Error("Lambda2 not ready for this type of element");
return;
}
for(int k = 0; k < nbNod; k++) {
for(int l = 0; l < 3; l++) {
GradPhi_x[k][l] = 0.0;
for(int m = 0; m < 3; m++) {
GradPhi_x[k][l] += GradPhi_ksi[k][m] * dksi_dx[l][m];
}
}
}
// compute gradient of velocities
for(int k = 0; k < 3; k++) {
for(int l = 0; l < 3; l++) {
GradVel[k][l] = 0.0;
for(int m = 0; m < nbNod; m++) {
GradVel[k][l] += val[k][m] * GradPhi_x[m][l];
}
}
}
}
else
for(int k = 0; k < 3; k++)
for(int l = 0; l < 3; l++) GradVel[k][l] = 0.0;
// compute the sym and antisymetric parts
double sym[3][3];
double asym[3][3];
for(int m = 0; m < 3; m++) {
for(int n = 0; n < 3; n++) {
sym[m][n] = 0.5 * (GradVel[m][n] + GradVel[n][m]);
asym[m][n] = 0.5 * (GradVel[m][n] - GradVel[n][m]);
}
}
double a[3][3];
for(int m = 0; m < 3; m++) {
for(int n = 0; n < 3; n++) {
a[m][n] = 0.0;
for(int l = 0; l < 3; l++)
a[m][n] += sym[m][l] * sym[l][n] + asym[m][l] * asym[l][n];
}
}
// compute the eigenvalues
double lambda[3];
eigenvalue(a, lambda);
for(int k = 0; k < nbNod; k++) outList.push_back(lambda[lam - 1]);
}
(*outNb)++;
}
}
PView *GMSH_Lambda2Plugin::execute(PView *v)
{
int ev = (int)Lambda2Options_Number[0].def;
int iView = (int)Lambda2Options_Number[1].def;
PView *v1 = getView(iView, v);
if(!v1) return v;
PViewDataList *data1 = getDataList(v1);
if(!data1) return v;
PView *v2 = new PView();
PViewDataList *data2 = getDataList(v2);
if(!data2) return v;
// assume that the tensors contain the velocity gradient tensor
int nts = data1->getNumTimeSteps();
eigen(data1->TP, data1->NbTP, data2->SP, &data2->NbSP, nts, 1, 9, ev);
eigen(data1->TL, data1->NbTL, data2->SL, &data2->NbSL, nts, 2, 9, ev);
eigen(data1->TT, data1->NbTT, data2->ST, &data2->NbST, nts, 3, 9, ev);
eigen(data1->TQ, data1->NbTQ, data2->SQ, &data2->NbSQ, nts, 4, 9, ev);
eigen(data1->TS, data1->NbTS, data2->SS, &data2->NbSS, nts, 4, 9, ev);
eigen(data1->TH, data1->NbTH, data2->SH, &data2->NbSH, nts, 8, 9, ev);
eigen(data1->TI, data1->NbTI, data2->SI, &data2->NbSI, nts, 6, 9, ev);
eigen(data1->TY, data1->NbTY, data2->SY, &data2->NbSY, nts, 5, 9, ev);
// assume that the vectors contain the velocities
// FIXME: only implemented for tri/tet at the moment
// eigen(data1->VP, data1->NbVP, data2->SP, &data2->NbSP, nts, 1, 3, ev);
// eigen(data1->VL, data1->NbVL, data2->SL, &data2->NbSL, nts, 2, 3, ev);
eigen(data1->VT, data1->NbVT, data2->ST, &data2->NbST, nts, 3, 3, ev);
// eigen(data1->VQ, data1->NbVQ, data2->SQ, &data2->NbSQ, nts, 4, 3, ev);
eigen(data1->VS, data1->NbVS, data2->SS, &data2->NbSS, nts, 4, 3, ev);
// eigen(data1->VH, data1->NbVH, data2->SH, &data2->NbSH, nts, 8, 3, ev);
// eigen(data1->VI, data1->NbVI, data2->SI, &data2->NbSI, nts, 6, 3, ev);
// eigen(data1->VY, data1->NbVY, data2->SY, &data2->NbSY, nts, 5, 3, ev);
data2->Time = data1->Time;
data2->setName(data1->getName() + "_Lambda2");
data2->setFileName(data1->getName() + "_Lambda2.pos");
data2->finalize();
return v2;
}
|