1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
// Gmsh - Copyright (C) 1997-2021 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// issues on https://gitlab.onelab.info/gmsh/gmsh/issues.
#include "MakeSimplex.h"
StringXNumber MakeSimplexOptions_Number[] = {
{GMSH_FULLRC, "View", nullptr, -1.}};
extern "C" {
GMSH_Plugin *GMSH_RegisterMakeSimplexPlugin()
{
return new GMSH_MakeSimplexPlugin();
}
}
std::string GMSH_MakeSimplexPlugin::getHelp() const
{
return "Plugin(MakeSimplex) decomposes all non-simplectic "
"elements (quadrangles, prisms, hexahedra, pyramids) in the "
"view `View' into simplices (triangles, tetrahedra).\n\n"
"If `View' < 0, the plugin is run on the current view.\n\n"
"Plugin(MakeSimplex) is executed in-place.";
}
int GMSH_MakeSimplexPlugin::getNbOptions() const
{
return sizeof(MakeSimplexOptions_Number) / sizeof(StringXNumber);
}
StringXNumber *GMSH_MakeSimplexPlugin::getOption(int iopt)
{
return &MakeSimplexOptions_Number[iopt];
}
static void decomposeList(PViewDataList *data, int nbNod, int nbComp,
std::vector<double> &listIn, int *nbIn,
std::vector<double> &listOut, int *nbOut)
{
if(!(*nbIn)) return;
double xNew[4], yNew[4], zNew[4];
double *valNew = new double[data->getNumTimeSteps() * nbComp * nbNod];
MakeSimplex dec(nbNod, nbComp, data->getNumTimeSteps());
int nb = listIn.size() / (*nbIn);
for(std::size_t i = 0; i < listIn.size(); i += nb) {
double *x = &listIn[i];
double *y = &listIn[i + nbNod];
double *z = &listIn[i + 2 * nbNod];
double *val = &listIn[i + 3 * nbNod];
for(int j = 0; j < dec.numSimplices(); j++) {
dec.decompose(j, x, y, z, val, xNew, yNew, zNew, valNew);
for(int k = 0; k < dec.numSimplexNodes(); k++) listOut.push_back(xNew[k]);
for(int k = 0; k < dec.numSimplexNodes(); k++) listOut.push_back(yNew[k]);
for(int k = 0; k < dec.numSimplexNodes(); k++) listOut.push_back(zNew[k]);
for(int k = 0;
k < dec.numSimplexNodes() * data->getNumTimeSteps() * nbComp; k++)
listOut.push_back(valNew[k]);
(*nbOut)++;
}
}
delete[] valNew;
listIn.clear();
*nbIn = 0;
}
PView *GMSH_MakeSimplexPlugin::execute(PView *v)
{
int iView = (int)MakeSimplexOptions_Number[0].def;
PView *v1 = getView(iView, v);
if(!v1) return v;
PViewDataList *data1 = getDataList(v1);
if(!data1) return v;
// quads
decomposeList(data1, 4, 1, data1->SQ, &data1->NbSQ, data1->ST, &data1->NbST);
decomposeList(data1, 4, 3, data1->VQ, &data1->NbVQ, data1->VT, &data1->NbVT);
decomposeList(data1, 4, 9, data1->TQ, &data1->NbTQ, data1->TT, &data1->NbTT);
// hexas
decomposeList(data1, 8, 1, data1->SH, &data1->NbSH, data1->SS, &data1->NbSS);
decomposeList(data1, 8, 3, data1->VH, &data1->NbVH, data1->VS, &data1->NbVS);
decomposeList(data1, 8, 9, data1->TH, &data1->NbTH, data1->TS, &data1->NbTS);
// prisms
decomposeList(data1, 6, 1, data1->SI, &data1->NbSI, data1->SS, &data1->NbSS);
decomposeList(data1, 6, 3, data1->VI, &data1->NbVI, data1->VS, &data1->NbVS);
decomposeList(data1, 6, 9, data1->TI, &data1->NbTI, data1->TS, &data1->NbTS);
// pyramids
decomposeList(data1, 5, 1, data1->SY, &data1->NbSY, data1->SS, &data1->NbSS);
decomposeList(data1, 5, 3, data1->VY, &data1->NbVY, data1->VS, &data1->NbVS);
decomposeList(data1, 5, 9, data1->TY, &data1->NbTY, data1->TS, &data1->NbTS);
data1->finalize();
v1->setChanged(true);
return v1;
}
// Utility class
MakeSimplex::MakeSimplex(int numNodes, int numComponents, int numTimeSteps)
: _numNodes(numNodes), _numComponents(numComponents),
_numTimeSteps(numTimeSteps)
{
;
}
int MakeSimplex::numSimplices()
{
switch(_numNodes) {
case 4: return 2; // quad -> 2 tris
case 5: return 2; // pyramid -> 2 tets
case 6: return 3; // prism -> 3 tets
case 8: return 6; // hexa -> 6 tets
}
return 0;
}
int MakeSimplex::numSimplexNodes()
{
if(_numNodes == 4)
return 3; // quad -> tris
else
return 4; // all others -> tets
}
void MakeSimplex::reorder(int map[4], int n, double *x, double *y, double *z,
double *val, double *xn, double *yn, double *zn,
double *valn)
{
for(int i = 0; i < n; i++) {
xn[i] = x[map[i]];
yn[i] = y[map[i]];
zn[i] = z[map[i]];
}
int map2[4] = {map[0], map[1], map[2], map[3]};
for(int ts = 0; ts < _numTimeSteps; ts++)
for(int i = 0; i < n; i++) {
for(int j = 0; j < _numComponents; j++)
valn[ts * n * _numComponents + i * _numComponents + j] =
val[ts * _numNodes * _numComponents + map2[i] * _numComponents + j];
}
}
void MakeSimplex::decompose(int num, double *x, double *y, double *z,
double *val, double *xn, double *yn, double *zn,
double *valn)
{
int quadTri[2][4] = {{0, 1, 2, -1}, {0, 2, 3, -1}};
int hexaTet[6][4] = {{0, 1, 3, 7}, {0, 4, 1, 7}, {1, 4, 5, 7},
{1, 2, 3, 7}, {1, 6, 2, 7}, {1, 5, 6, 7}};
int prisTet[3][4] = {{0, 1, 2, 4}, {0, 2, 4, 5}, {0, 3, 4, 5}};
int pyraTet[2][4] = {{0, 1, 3, 4}, {1, 2, 3, 4}};
if(num < 0 || num > numSimplices() - 1) {
Msg::Error("Invalid decomposition");
num = 0;
}
switch(_numNodes) {
case 4: reorder(quadTri[num], 3, x, y, z, val, xn, yn, zn, valn); break;
case 8: reorder(hexaTet[num], 4, x, y, z, val, xn, yn, zn, valn); break;
case 6: reorder(prisTet[num], 4, x, y, z, val, xn, yn, zn, valn); break;
case 5: reorder(pyraTet[num], 4, x, y, z, val, xn, yn, zn, valn); break;
}
}
|