1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
|
// Gmsh - Copyright (C) 1997-2021 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// issues on https://gitlab.onelab.info/gmsh/gmsh/issues.
#include "PViewData.h"
#include "adaptiveData.h"
#include "Numeric.h"
#include "GmshMessage.h"
#include "OctreePost.h"
#include "fullMatrix.h"
std::map<std::string, interpolationMatrices> PViewData::_interpolationSchemes;
PViewData::PViewData()
: _dirty(true), _fileIndex(0), _octree(nullptr), _adaptive(nullptr)
{
}
PViewData::~PViewData()
{
if(_adaptive) delete _adaptive;
for(auto it = _interpolation.begin(); it != _interpolation.end(); it++)
for(std::size_t i = 0; i < it->second.size(); i++) delete it->second[i];
if(_octree) delete _octree;
}
bool PViewData::finalize(bool computeMinMax,
const std::string &interpolationScheme)
{
_dirty = false;
return true;
}
void PViewData::initAdaptiveData(int step, int level, double tol)
{
if(!_adaptive) {
Msg::Debug("Initializing adaptive data %p interp size=%d", this,
_interpolation.size());
_adaptive = new adaptiveData(this);
_adaptive->changeResolution(step, level, tol);
}
}
void PViewData::initAdaptiveDataLight(int step, int level, double tol)
{
if(!_adaptive) {
Msg::Debug("Initializing adaptive data %p interp size=%d", this,
_interpolation.size());
// _outData in adaptive.h is only used for visualization of adapted views in
// the GMSH GUI. In some cases (export of adapted views under pvtu format,
// use of GMSH as external lib), this object is not needed so avoid its
// allocation in order to limit memory consumption
bool outDataInit = false;
_adaptive = new adaptiveData(this, outDataInit);
}
}
void PViewData::saveAdaptedViewForVTK(const std::string &guifileName,
int useDefaultName, int step, int level,
double tol, int npart, bool isBinary)
{
if(_adaptive) {
// _adaptiveData has already been allocated from the adaptive view panel of
// the GUI for instance.
_adaptive->changeResolutionForVTK(step, level, tol, npart, isBinary,
guifileName, useDefaultName);
}
else {
initAdaptiveDataLight(step, level, tol);
_adaptive->changeResolutionForVTK(step, level, tol, npart, isBinary,
guifileName, useDefaultName);
destroyAdaptiveData();
}
}
void PViewData::destroyAdaptiveData()
{
if(_adaptive) delete _adaptive;
_adaptive = nullptr;
}
bool PViewData::empty()
{
return (!getNumElements() && !getNumStrings2D() && !getNumStrings3D());
}
bool PViewData::skipElement(int step, int ent, int ele, bool checkVisibility,
int samplingRate)
{
if(samplingRate <= 1) return false;
return ele % samplingRate;
}
void PViewData::getScalarValue(int step, int ent, int ele, int nod, double &val,
int tensorRep, int forceNumComponents,
int componentMap[9])
{
int numComp = getNumComponents(step, ent, ele);
if(forceNumComponents && componentMap) {
std::vector<double> d(forceNumComponents);
for(int i = 0; i < forceNumComponents; i++) {
int comp = componentMap[i];
if(comp >= 0 && comp < numComp)
getValue(step, ent, ele, nod, comp, d[i]);
else
d[i] = 0.;
}
val = ComputeScalarRep(forceNumComponents, &d[0], tensorRep);
}
else if(numComp == 1) {
getValue(step, ent, ele, nod, 0, val);
}
else {
std::vector<double> d(numComp);
for(int comp = 0; comp < numComp; comp++)
getValue(step, ent, ele, nod, comp, d[comp]);
val = ComputeScalarRep(numComp, &d[0], tensorRep);
}
}
void PViewData::setNode(int step, int ent, int ele, int nod, double x, double y,
double z)
{
Msg::Error("Cannot change node coordinates in this view");
}
void PViewData::setValue(int step, int ent, int ele, int nod, int comp,
double val)
{
Msg::Error("Cannot change field value in this view");
}
GModel *PViewData::getModel(int step)
{
Msg::Error("Cannot get model from this view");
return nullptr;
}
GEntity *PViewData::getEntity(int step, int ent)
{
Msg::Error("Cannot get entity from this view");
return nullptr;
}
MElement *PViewData::getElement(int step, int ent, int ele)
{
Msg::Error("Cannot get element from this view");
return nullptr;
}
void PViewData::setInterpolationMatrices(int type,
const fullMatrix<double> &coefVal,
const fullMatrix<double> &expVal)
{
if(!type || _interpolation[type].size()) return;
_interpolation[type].push_back(new fullMatrix<double>(coefVal));
_interpolation[type].push_back(new fullMatrix<double>(expVal));
}
void PViewData::setInterpolationMatrices(int type,
const fullMatrix<double> &coefVal,
const fullMatrix<double> &expVal,
const fullMatrix<double> &coefGeo,
const fullMatrix<double> &expGeo)
{
if(!type || _interpolation[type].size()) return;
_interpolation[type].push_back(new fullMatrix<double>(coefVal));
_interpolation[type].push_back(new fullMatrix<double>(expVal));
_interpolation[type].push_back(new fullMatrix<double>(coefGeo));
_interpolation[type].push_back(new fullMatrix<double>(expGeo));
}
int PViewData::getInterpolationMatrices(int type,
std::vector<fullMatrix<double> *> &p)
{
if(_interpolation.count(type)) {
p = _interpolation[type];
return p.size();
}
return 0;
}
bool PViewData::haveInterpolationMatrices(int type)
{
if(!type)
return !_interpolation.empty();
else
return _interpolation.count(type) ? true : false;
}
void PViewData::deleteInterpolationMatrices(int type)
{
_interpolation.erase(type);
}
void PViewData::removeInterpolationScheme(const std::string &name)
{
auto it = _interpolationSchemes.find(name);
if(it != _interpolationSchemes.end()) {
for(auto it2 = it->second.begin(); it2 != it->second.end(); it2++)
for(std::size_t i = 0; i < it2->second.size(); i++) delete it2->second[i];
_interpolationSchemes.erase(it);
}
}
void PViewData::removeAllInterpolationSchemes()
{
auto it = _interpolationSchemes.begin();
for(; it != _interpolationSchemes.end(); it++)
for(auto it2 = it->second.begin(); it2 != it->second.end(); it2++)
for(std::size_t i = 0; i < it2->second.size(); i++) delete it2->second[i];
_interpolationSchemes.clear();
std::map<std::string, interpolationMatrices>().swap(_interpolationSchemes);
}
void PViewData::addMatrixToInterpolationScheme(const std::string &name,
int type,
fullMatrix<double> &mat)
{
_interpolationSchemes[name][type].push_back(new fullMatrix<double>(mat));
}
int PViewData::getSizeInterpolationScheme()
{
return _interpolationSchemes.size();
}
void PViewData::smooth()
{
Msg::Error("Smoothing is not implemented for this type of data");
}
bool PViewData::combineTime(nameData &nd)
{
Msg::Error("Combine time is not implemented for this type of data");
return false;
}
bool PViewData::combineSpace(nameData &nd)
{
Msg::Error("Combine space is not implemented for this type of data");
return false;
}
bool PViewData::searchScalar(double x, double y, double z, double *values,
int step, double *size, int qn, double *qx,
double *qy, double *qz, bool grad, int dim)
{
if(!_octree) _octree = new OctreePost(this);
return _octree->searchScalar(x, y, z, values, step, size, qn, qx, qy, qz,
grad, dim);
}
bool PViewData::searchScalarWithTol(double x, double y, double z,
double *values, int step, double *size,
double tol, int qn, double *qx, double *qy,
double *qz, bool grad, int dim)
{
if(!_octree) _octree = new OctreePost(this);
return _octree->searchScalarWithTol(x, y, z, values, step, size, tol, qn, qx,
qy, qz, grad, dim);
}
bool PViewData::searchVector(double x, double y, double z, double *values,
int step, double *size, int qn, double *qx,
double *qy, double *qz, bool grad, int dim)
{
if(!_octree) _octree = new OctreePost(this);
return _octree->searchVector(x, y, z, values, step, size, qn, qx, qy, qz,
grad, dim);
}
bool PViewData::searchVectorWithTol(double x, double y, double z,
double *values, int step, double *size,
double tol, int qn, double *qx, double *qy,
double *qz, bool grad, int dim)
{
if(!_octree) _octree = new OctreePost(this);
return _octree->searchVectorWithTol(x, y, z, values, step, size, tol, qn, qx,
qy, qz, grad, dim);
}
bool PViewData::searchTensor(double x, double y, double z, double *values,
int step, double *size, int qn, double *qx,
double *qy, double *qz, bool grad, int dim)
{
if(!_octree) _octree = new OctreePost(this);
return _octree->searchTensor(x, y, z, values, step, size, qn, qx, qy, qz,
grad, dim);
}
bool PViewData::searchTensorWithTol(double x, double y, double z,
double *values, int step, double *size,
double tol, int qn, double *qx, double *qy,
double *qz, bool grad, int dim)
{
if(!_octree) _octree = new OctreePost(this);
return _octree->searchTensorWithTol(x, y, z, values, step, size, tol, qn, qx,
qy, qz, grad, dim);
}
|