1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
|
// Gmsh - Copyright (C) 1997-2021 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// issues on https://gitlab.onelab.info/gmsh/gmsh/issues.
#include "GmshConfig.h"
#include "GmshMessage.h"
#include "PViewDataGModel.h"
#include "MVertex.h"
#include "MElement.h"
#include "Numeric.h"
#include "StringUtils.h"
#include "OS.h"
#include "Context.h"
#include "polynomialBasis.h"
#include "pyramidalBasis.h"
#include "BasisFactory.h"
#include "CGNSCommon.h"
#include "CGNSConventions.h"
#if defined(HAVE_LIBCGNS)
namespace {
// types for high-order node transformation (CPEX0045)
typedef std::vector<fullMatrix<double> > ZoneSolutionTransfo;
typedef std::map<std::string, ZoneSolutionTransfo> Family2SolutionTransfo;
#ifdef HAVE_LIBCGNS_CPEX0045
int readSolutionInterpolation(int fileIndex, int baseIndex, int familyIndex,
int interpIndex,
ZoneSolutionTransfo &cgns2MshLag)
{
int cgnsErr;
// read solution interpolation tranformation info
char interpName[CGNS_MAX_STR_LEN];
CGNS_ENUMT(ElementType_t) cgnsType;
int order, orderTime;
CGNS_ENUMT(InterpolationType_t) interpType;
cgnsErr = cg_solution_interpolation_read(fileIndex, baseIndex, familyIndex,
interpIndex, interpName, &cgnsType,
&order, &orderTime, &interpType);
if(cgnsErr != CG_OK) return cgnsError(__FILE__, __LINE__, fileIndex);
if(interpType != ParametricLagrange) {
Msg::Error("Interpolation type %i not supported in solution CGNS reader",
interpType);
return 0;
}
if(orderTime != 0) {
Msg::Error("Non-constant time interpolation not supported in solution "
"CGNS reader");
return 0;
}
// get number of user interpolation points
int nbPt;
cgnsErr = cg_solution_lagrange_interpolation_size(cgnsType, order,
orderTime, &nbPt);
if(cgnsErr != CG_OK) return cgnsError(__FILE__, __LINE__, fileIndex);
// read user interpolation points (parametric coordinates)
std::vector<double> u(nbPt), v(nbPt), w(nbPt), t(orderTime + 1);
cgnsErr = cg_solution_interpolation_points_read(
fileIndex, baseIndex, familyIndex, interpIndex, u.data(), v.data(),
w.data(), t.data());
if(cgnsErr != CG_OK) return cgnsError(__FILE__, __LINE__, fileIndex);
// get Gmsh type from CGNS "base" type and order
const int baseMshType = cgns2MshEltType(cgnsType);
const int parentMshType = ElementType::getParentType(baseMshType);
const int mshType = ElementType::getType(parentMshType, order, false);
// get Gmsh interpolation points
const nodalBasis *basis = BasisFactory::getNodalBasis(mshType);
const fullMatrix<double> &mshPts = basis->getReferenceNodes();
if(nbPt != mshPts.size1()) {
Msg::Error("Internal error: number of interpolation points is different "
"between CGNS and Gmsh for Gmsh element %i (parent type %i)",
mshType, ElementType::getParentType(mshType));
return 0;
}
std::vector<double> uMsh(nbPt), vMsh(nbPt), wMsh(nbPt);
msh2CgnsReferenceElement(mshType, mshPts, uMsh, vMsh, wMsh);
// compute transformation matrix from monomial to CGNS Lagrange
// coefficients, i.e. the inverse transposed Vandermonde matrix of CGNS
// interpolation points in the monomial basis
fullMatrix<double> mono2CGNSLag(nbPt, nbPt);
evalMonomialBasis(mshType, u, v, w, mono2CGNSLag);
mono2CGNSLag.invertInPlace();
// evaluate CGNS Lagrange base functions at Gmsh points
fullMatrix<double> monoVal(nbPt, nbPt), lagVal(nbPt, nbPt);
evalMonomialBasis(mshType, uMsh, vMsh, wMsh, monoVal);
mono2CGNSLag.mult(monoVal, lagVal);
// transformation matrix from CGNS to Gmsh Lagrange coefficients
lagVal.transposeInPlace();
cgns2MshLag[mshType] = lagVal;
return 1;
}
#endif
int readSolutionTransfo(int fileIndex, int baseIndex,
Family2SolutionTransfo &allSolutionTransfo)
{
#ifdef HAVE_LIBCGNS_CPEX0045
int cgnsErr;
// read number of families
int nbFam;
cgnsErr = cg_nfamilies(fileIndex, baseIndex, &nbFam);
if(cgnsErr != CG_OK) return cgnsError(__FILE__, __LINE__, fileIndex);
// loop over families
for(int iFam = 1; iFam <= nbFam; iFam++) {
// read number of element interpolation transformations
int nbInterp;
cgnsErr =
cg_nsolution_interpolation_read(fileIndex, baseIndex, iFam, &nbInterp);
if(cgnsErr != CG_OK) return cgnsError(__FILE__, __LINE__, fileIndex);
if(nbInterp == 0) continue;
// read family name
char famName[CGNS_MAX_STR_LEN];
int nbFamBC, nbGeoRef;
cgnsErr = cg_family_read(fileIndex, baseIndex, iFam, famName, &nbFamBC,
&nbGeoRef);
if(cgnsErr != CG_OK) return cgnsError(__FILE__, __LINE__, fileIndex);
// read element interpolation transformations
ZoneSolutionTransfo &cgns2MshLag =
allSolutionTransfo[std::string(famName)];
cgns2MshLag.resize(MSH_MAX_NUM);
for(int iInterp = 1; iInterp <= nbInterp; iInterp++) {
int err = readSolutionInterpolation(fileIndex, baseIndex, iFam, iInterp,
cgns2MshLag);
if(err == 0) return 0;
}
}
return 1;
#else
return 1;
#endif
}
void getSolutionDataNode(
int zoneIndex, const std::vector<std::vector<MVertex *> > &vertPerZone,
std::vector<cgsize_t> solEntSet, const std::vector<double> &data,
stepData<double> *step, double &dataMin, double &dataMax)
{
// allocate data storage
const int nbNode = solEntSet.size();
step->resizeData(nbNode);
// loop over vertices to store data and update bounds (faster here than in
// finalize)
for(int iNode = 0; iNode < nbNode; iNode++) {
const cgsize_t nodeInd = solEntSet[iNode];
const int nodeNum = vertPerZone[zoneIndex][nodeInd]->getNum();
double *d = step->getData(nodeNum, true, 1);
*d = data[iNode];
step->setMin(std::min(step->getMin(), *d));
step->setMax(std::max(step->getMax(), *d));
dataMin = std::min(dataMin, *d);
dataMax = std::max(dataMax, *d);
}
}
void getSolutionDataElement(
int zoneIndex, const std::vector<std::vector<MElement *> > &eltPerZone,
std::vector<cgsize_t> solEntSet, const std::vector<double> &data,
stepData<double> *step, double &dataMin, double &dataMax)
{
// allocate data storage
const int nbElt = solEntSet.size();
step->resizeData(nbElt);
// loop over elements to store data and update bounds (faster here than in
// finalize)
for(int iElt = 0; iElt < nbElt; iElt++) {
const cgsize_t eltInd = solEntSet[iElt];
const int eltNum = eltPerZone[zoneIndex][eltInd]->getNum();
double *d = step->getData(eltNum, true, 1);
*d = data[iElt];
step->setMin(std::min(step->getMin(), *d));
step->setMax(std::max(step->getMax(), *d));
dataMin = std::min(dataMin, *d);
dataMax = std::max(dataMax, *d);
}
}
void getInterpolationMat(int parentType, int order,
const fullMatrix<double> *&coeffMat,
const fullMatrix<double> *&monoMat)
{
// get nodal basis
const int mshType = ElementType::getType(parentType, order);
const nodalBasis *basis = BasisFactory::getNodalBasis(mshType);
// try to get interpolation matrices from polynomial basis, if it fails then
// try from pyramidal basis
const polynomialBasis *fs = dynamic_cast<const polynomialBasis *>(basis);
if(fs) {
coeffMat = &(fs->coefficients);
monoMat = &(fs->monomials);
}
else {
const pyramidalBasis *fs = dynamic_cast<const pyramidalBasis *>(basis);
if(fs) {
coeffMat = &(fs->coefficients);
monoMat = &(fs->monomials);
}
else {
coeffMat = nullptr;
monoMat = nullptr;
}
}
}
void getSolutionDataElementNode(
int zoneIndex, int order, const ZoneSolutionTransfo *zoneSolTransfo,
const std::vector<std::vector<MElement *> > &eltPerZone,
std::vector<cgsize_t> solEntSet, const std::vector<double> &data,
stepData<double> *step, double &dataMin, double &dataMax,
std::vector<std::pair<int, int> > &ordersByParentType)
{
// allocate data storage
const int nbElt = solEntSet.size();
step->resizeData(nbElt);
// loop over elements
int iStartEltData = 0;
std::vector<bool> hasInterpolMat(100, false);
for(int iElt = 0; iElt < nbElt; iElt++) {
// get element type
const cgsize_t eltInd = solEntSet[iElt];
MElement *me = eltPerZone[zoneIndex][eltInd];
const int eltNum = me->getNum();
const int parentMshType = me->getType();
const int orderGeo = me->getPolynomialOrder();
ordersByParentType[parentMshType] = std::make_pair(orderGeo, order);
int mshType = ElementType::getType(parentMshType, order, false);
const int nbEltNode = ElementType::getNumVertices(mshType);
// element node transformation if specified (CPEX0045)
const fullMatrix<double> *transfoMat = nullptr;
if((mshType != MSH_PNT) && (zoneSolTransfo != nullptr) &&
(zoneSolTransfo->size() > 0)) {
transfoMat = &((*zoneSolTransfo)[mshType]);
}
// values at element nodes for data read (source) and step data (dest.)
double *eltData = const_cast<double *>(&(data[iStartEltData]));
double *stepData = step->getData(eltNum, true, nbEltNode);
// compute values at element nodes in step data
if(transfoMat == nullptr) {
// no basis specified: just reorder values from CGNS to Gmsh ordering
const std::vector<int> &cgns2Msh = cgns2MshNodeIndex(mshType);
for(int i = 0; i < nbEltNode; i++) stepData[cgns2Msh[i]] = eltData[i];
}
else {
// transform from specified basis to Gmsh Lagrangian basis
const fullVector<double> dataVec(eltData, nbEltNode);
fullVector<double> stepDataVec(stepData, nbEltNode);
transfoMat->mult(dataVec, stepDataVec);
}
// update bounds (faster here than in finalize)
for(int iEltNode = 0; iEltNode < nbEltNode; iEltNode++) {
const double &val = stepData[iEltNode];
step->setMin(std::min(step->getMin(), val));
step->setMax(std::max(step->getMax(), val));
dataMin = std::min(dataMin, val);
dataMax = std::max(dataMax, val);
}
iStartEltData += nbEltNode;
}
}
int getEntInZone(int fileIndex, int baseIndex, int zoneIndex,
int zoneSolIndex, bool isStructured, int dim,
const cgsize_t *zoneEntSize, cgsize_t *solReadRange,
std::vector<cgsize_t> &solEntSet)
{
// compute range and number of values to read in solution
cgsize_t nbVal = 0;
if(isStructured) {
for(int i = 0; i < dim; i++) {
solReadRange[i] = 1;
solReadRange[i + dim] = zoneEntSize[i];
}
if(dim == 2)
nbVal = StructuredIndexing<2>::nbEntInRange(solReadRange);
else if(dim == 3)
nbVal = StructuredIndexing<3>::nbEntInRange(solReadRange);
}
else {
solReadRange[0] = 1;
solReadRange[1] = zoneEntSize[0];
nbVal = UnstructuredIndexing::nbEntInRange(solReadRange);
}
// fill set of entities
solEntSet.resize(nbVal);
for(cgsize_t i = 0; i < nbVal; i++) solEntSet[i] = i;
return 1;
}
int getEntInPtSet(int fileIndex, int baseIndex, int zoneIndex,
int zoneSolIndex, bool isStructured, int dim,
CGNS_ENUMT(PointSetType_t) ptSetType, cgsize_t ptSetSize,
const cgsize_t *zoneEntSize, cgsize_t *solReadRange,
std::vector<cgsize_t> &solEntSet)
{
int cgnsErr;
// read point set
std::vector<cgsize_t> ptSet;
ptSet.resize(ptSetSize);
cgnsErr = cg_sol_ptset_read(fileIndex, baseIndex, zoneIndex, zoneSolIndex,
ptSet.data());
if(cgnsErr != CG_OK) return cgnsError(__FILE__, __LINE__, fileIndex);
// get number of values and entities to read in solution
if(ptSetType == CGNS_ENUMV(PointRange)) {
if(isStructured) {
for(int i = 0; i < dim; i++) {
solReadRange[i] = 1;
solReadRange[i + dim] = ptSet[i + dim] - ptSet[i] + 1;
}
if(dim == 2) {
cgsize_t nbVal = StructuredIndexing<2>::nbEntInRange(ptSet.data());
solEntSet.resize(nbVal);
StructuredIndexing<2>::entFromRange(ptSet.data(), zoneEntSize,
solEntSet);
}
else if(dim == 3) {
cgsize_t nbVal = StructuredIndexing<3>::nbEntInRange(ptSet.data());
solEntSet.resize(nbVal);
StructuredIndexing<3>::entFromRange(ptSet.data(), zoneEntSize,
solEntSet);
}
else {
Msg::Error("Dimension %i not supported in CGNS solution reader", dim);
return false;
}
}
else {
solReadRange[0] = 1;
solReadRange[1] = ptSet[1] - ptSet[0] + 1;
cgsize_t nbVal = UnstructuredIndexing::nbEntInRange(ptSet.data());
solEntSet.resize(nbVal);
UnstructuredIndexing::entFromRange(ptSet.data(), solEntSet);
}
}
else if(ptSetType == CGNS_ENUMV(PointList)) {
solReadRange[0] = 1;
solReadRange[1] = ptSet.size();
if(isStructured) {
const cgsize_t nbVal = ptSet.size() / dim;
solEntSet.resize(nbVal);
if(dim == 2) {
StructuredIndexing<2>::entFromList(ptSet, zoneEntSize, solEntSet);
}
else if(dim == 3) {
StructuredIndexing<3>::entFromList(ptSet, zoneEntSize, solEntSet);
}
else {
Msg::Error("Dimension %i not supported in CGNS solution reader", dim);
return false;
}
}
else {
solEntSet.resize(ptSet.size());
UnstructuredIndexing::entFromList(ptSet, solEntSet);
}
}
else {
Msg::Warning("PointSetType %i not supported in CGNS solution reader",
ptSetType);
return false;
}
return 1;
}
bool readZoneSolution(const std::pair<std::string, std::string> &solFieldName,
int fileIndex, int baseIndex, int zoneIndex,
int zoneSolIndex, PViewDataGModel::DataType dataType,
const ZoneSolutionTransfo *zoneSolTransfo,
const std::vector<std::vector<MVertex *> > &vertPerZone,
const std::vector<std::vector<MElement *> > &eltPerZone,
stepData<double> *step, double &dataMin,
double &dataMax,
std::vector<std::pair<int, int> > &ordersByParentType)
{
int cgnsErr;
// check FlowSolution name
char rawSolName[CGNS_MAX_STR_LEN];
CGNS_ENUMT(GridLocation_t) location;
cgnsErr = cg_sol_info(fileIndex, baseIndex, zoneIndex, zoneSolIndex,
rawSolName, &location);
if(cgnsErr != CG_OK) return cgnsError(__FILE__, __LINE__, fileIndex);
if(std::string(rawSolName) != solFieldName.first) return true;
// get zone dimension and type
int dim;
CGNS_ENUMT(ZoneType_t) zoneType;
cgnsErr = cg_cell_dim(fileIndex, baseIndex, &dim);
if(cgnsErr != CG_OK) return cgnsError(__FILE__, __LINE__, fileIndex);
cgnsErr = cg_zone_type(fileIndex, baseIndex, zoneIndex, &zoneType);
if(cgnsErr != CG_OK) return cgnsError(__FILE__, __LINE__, fileIndex);
const bool isStructured = (zoneType == CGNS_ENUMV(Structured));
// get total number of vertices and elements in zone
char zoneName[CGNS_MAX_STR_LEN];
cgsize_t zoneSize[9];
cgnsErr = cg_zone_read(fileIndex, baseIndex, zoneIndex, zoneName, zoneSize);
if(cgnsErr != CG_OK) return cgnsError(__FILE__, __LINE__, fileIndex);
// type and total number of entities (either vertices or elements) in zone
const bool nodeOrEltData = (dataType == PViewDataGModel::NodeData);
const cgsize_t *zoneEntSize = nodeOrEltData ? zoneSize :
isStructured ? zoneSize + dim :
zoneSize + 1;
// get solution order
int order = 1;
#ifdef HAVE_LIBCGNS_CPEX0045
int orderTime;
cgnsErr = cg_sol_interpolation_order_read(fileIndex, baseIndex, zoneIndex,
zoneSolIndex, &order, &orderTime);
#endif
// read point range if it exists, otherwise use all entities
// (vertices/elements) in zone
std::vector<cgsize_t> solEntSet;
CGNS_ENUMT(PointSetType_t) ptSetType;
cgsize_t ptSetSize;
cgsize_t solReadRange[6];
cgnsErr = cg_sol_ptset_info(fileIndex, baseIndex, zoneIndex, zoneSolIndex,
&ptSetType, &ptSetSize);
if((cgnsErr != CG_NODE_NOT_FOUND) && (cgnsErr != CG_OK)) {
return cgnsError(__FILE__, __LINE__, fileIndex);
}
if((cgnsErr == CG_NODE_NOT_FOUND) || (ptSetSize == 0)) { // no point range
int err =
getEntInZone(fileIndex, baseIndex, zoneIndex, zoneSolIndex,
isStructured, dim, zoneEntSize, solReadRange, solEntSet);
if(err == 0) return 0;
}
else { // point set is specified
int err = getEntInPtSet(fileIndex, baseIndex, zoneIndex, zoneSolIndex,
isStructured, dim, ptSetType, ptSetSize,
zoneEntSize, solReadRange, solEntSet);
if(err == 0) return 0;
}
// if ElementNodeData (CPEX0045, only unstructured), read data size from
// field (assuming no rind), otherwise use number of entities as data size
cgsize_t dataSize = 0;
cgsize_t solReadRangeMin[3] = {1, 1, 1};
cgsize_t solReadRangeMax[3] = {0, 0, 0};
if(dataType == PViewDataGModel::ElementNodeData) {
int dataDim;
cgsize_t solSize[3];
cgnsErr = cg_sol_size(fileIndex, baseIndex, zoneIndex, zoneSolIndex,
&dataDim, solSize);
if(cgnsErr != CG_OK) return cgnsError(__FILE__, __LINE__, fileIndex);
dataSize = solSize[0];
solReadRangeMax[0] = solSize[0];
}
else {
dataSize = solEntSet.size();
const int indDim = isStructured ? dim : 1;
// std::copy(solReadRange, solReadRange+indDim, solReadRangeMin);
std::copy(solReadRange + indDim, solReadRange + 2 * indDim,
solReadRangeMax);
}
// get number of fields in this FlowSolution
int nbField;
cgnsErr =
cg_nfields(fileIndex, baseIndex, zoneIndex, zoneSolIndex, &nbField);
if(cgnsErr != CG_OK) return cgnsError(__FILE__, __LINE__, fileIndex);
// get field data
for(int iField = 1; iField <= nbField; iField++) {
// field name
CGNS_ENUMT(DataType_t) cgnsDataType;
char rawFieldName[CGNS_MAX_STR_LEN];
cgnsErr = cg_field_info(fileIndex, baseIndex, zoneIndex, zoneSolIndex,
iField, &cgnsDataType, rawFieldName);
if(cgnsErr != CG_OK) return cgnsError(__FILE__, __LINE__, fileIndex);
if(std::string(rawFieldName) != solFieldName.second) continue;
// read field data
std::vector<double> data(dataSize);
cgnsErr =
cg_field_read(fileIndex, baseIndex, zoneIndex, zoneSolIndex,
rawFieldName, CGNS_ENUMV(RealDouble), solReadRangeMin,
solReadRangeMax, static_cast<void *>(data.data()));
if(cgnsErr != CG_OK) return cgnsError(__FILE__, __LINE__, fileIndex);
// scan through data to populate step (possibly converting from custom
// nodal set) and compute min/max (faster here than in finalize)
if(dataType == PViewDataGModel::NodeData) {
getSolutionDataNode(zoneIndex, vertPerZone, solEntSet, data, step,
dataMin, dataMax);
}
else if(dataType == PViewDataGModel::ElementData) {
getSolutionDataElement(zoneIndex, eltPerZone, solEntSet, data, step,
dataMin, dataMax);
}
else if(dataType == PViewDataGModel::ElementNodeData) {
getSolutionDataElementNode(zoneIndex, order, zoneSolTransfo, eltPerZone,
solEntSet, data, step, dataMin, dataMax,
ordersByParentType);
}
}
return true;
}
} // namespace
bool PViewDataGModel::readCGNS(
const std::pair<std::string, std::string> &solFieldName,
const std::string &fileName, int index, int fileIndex, int baseIndex,
const std::vector<std::vector<MVertex *> > &vertPerZone,
const std::vector<std::vector<MElement *> > &eltPerZone)
{
// create step if needed
if(_steps.empty()) {
_steps.push_back(new stepData<double>(GModel::current(), 1));
_steps.back()->setFileIndex(-1);
_steps.back()->setTime(0.);
}
// update step data
_steps.back()->fillEntities();
_steps.back()->computeBoundingBox();
_steps.back()->setFileName(fileName);
int cgnsErr;
// read high-order node transformation (CPEX0045)
Family2SolutionTransfo allSolutionTransfo;
int err = readSolutionTransfo(fileIndex, baseIndex, allSolutionTransfo);
if(err == 0) return false;
// data structure to store geometrical and solution orders by parent type
// (used to set interpolation matrices later)
static const std::pair<int, int> dumOrders(-1, -1);
std::vector<std::pair<int, int> > ordersByParentType(MSH_MAX_NUM, dumOrders);
// read number of zones
int nbZone = 0;
cgnsErr = cg_nzones(fileIndex, baseIndex, &nbZone);
if(cgnsErr != CG_OK) return cgnsError(__FILE__, __LINE__, fileIndex);
// loop over zones
for(int iZone = 1; iZone <= nbZone; iZone++) {
// read family name and retrieve solution node transformations (CPEX0045)
const ZoneSolutionTransfo *zoneSolTransfo = nullptr;
cgnsErr = cg_goto(fileIndex, baseIndex, "Zone_t", iZone, "end");
if(cgnsErr != CG_OK) err = cgnsError(__FILE__, __LINE__, fileIndex);
char famName[CGNS_MAX_STR_LEN];
cgnsErr = cg_famname_read(famName);
if(cgnsErr != CG_NODE_NOT_FOUND) {
if(cgnsErr == CG_OK) {
auto it = allSolutionTransfo.find(std::string(famName));
if(it != allSolutionTransfo.end()) zoneSolTransfo = &(it->second);
}
else
err = cgnsError(__FILE__, __LINE__, fileIndex);
}
// get number of flow solutions in zone
int nbZoneSol;
cgnsErr = cg_nsols(fileIndex, baseIndex, iZone, &nbZoneSol);
if(cgnsErr != CG_OK) return cgnsError(__FILE__, __LINE__, fileIndex);
// loop over solution fields in each zone
for(int iZoneSol = 1; iZoneSol <= nbZoneSol; iZoneSol++) {
bool ok =
readZoneSolution(solFieldName, fileIndex, baseIndex, iZone, iZoneSol,
getType(), zoneSolTransfo, vertPerZone, eltPerZone,
_steps.back(), _min, _max, ordersByParentType);
if(!ok) return false;
}
}
// set interpolation matrices if needed (only for ElementBased solutions)
for(int parentType = 0; parentType < TYPE_MAX_NUM; parentType++) {
const int &orderGeo = ordersByParentType[parentType].first;
const int &order = ordersByParentType[parentType].second;
if(orderGeo != -1) {
// element interpolation
const fullMatrix<double> *coeffMatGeo, *monoMatGeo;
getInterpolationMat(parentType, orderGeo, coeffMatGeo, monoMatGeo);
// solution interpolation
const fullMatrix<double> *coeffMatSol, *monoMatSol;
getInterpolationMat(parentType, order, coeffMatSol, monoMatSol);
// set interpolation in view
setInterpolationMatrices(parentType, *coeffMatSol, *monoMatSol,
*coeffMatGeo, *monoMatGeo);
}
}
finalize(false);
return true;
}
#else
bool PViewDataGModel::readCGNS(
const std::pair<std::string, std::string> &solFieldName,
const std::string &fileName, int index, int fileIndex, int baseIndex,
const std::vector<std::vector<MVertex *> > &vertPerZone,
const std::vector<std::vector<MElement *> > &eltPerZone)
{
return false;
}
#endif
|