1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 99.2beta8 (1.46)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>5. GMT Projections</TITLE>
<META NAME="description" CONTENT="5. GMT Projections">
<META NAME="keywords" CONTENT="GMT_Docs">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<META NAME="Generator" CONTENT="LaTeX2HTML v99.2beta8">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="GMT_Docs.css">
<LINK REL="next" HREF="node73.html">
<LINK REL="previous" HREF="node15.html">
<LINK REL="up" HREF="GMT_Docs.html">
<LINK REL="next" HREF="node35.html">
</HEAD>
<BODY bgcolor="#ffffff">
<!--Navigation Panel-->
<A NAME="tex2html1426"
HREF="node35.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next.gif"></A>
<A NAME="tex2html1420"
HREF="GMT_Docs.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up.gif"></A>
<A NAME="tex2html1414"
HREF="node33.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="prev.gif"></A>
<A NAME="tex2html1422"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents" SRC="contents.gif"></A>
<A NAME="tex2html1424"
HREF="node149.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index" SRC="index.gif"></A>
<BR>
<B> Next:</B> <A NAME="tex2html1427"
HREF="node35.html">5.1 Non-map Projections</A>
<B> Up:</B> <A NAME="tex2html1421"
HREF="GMT_Docs.html">The Generic Mapping Tools</A>
<B> Previous:</B> <A NAME="tex2html1415"
HREF="node33.html">4.18 Binary table i/o</A>
  <B> <A NAME="tex2html1423"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html1425"
HREF="node149.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H1><A NAME="SECTION001300000000000000000">
5. </A><A NAME="tex2html289"
HREF="http://www.soest.hawaii.edu/gmt"><B>GMT</B></A> Projections
</H1>
<P>
<A NAME="tex2html290"
HREF="http://www.soest.hawaii.edu/gmt"><B>GMT</B></A> programs that read position data will need to know how
to convert the input coordinates to positions on the map.
This is achieved by selecting one of several projections.
The purpose of this section is to summarize the properties
of map projections available in <A NAME="tex2html291"
HREF="http://www.soest.hawaii.edu/gmt"><B>GMT</B></A>, what parameters define
them, and demonstrate how they are used to create simple
basemaps. We will mostly be using the <A NAME="tex2html292"
HREF="../pscoast.html"><I><B>pscoast</B></I></A><A NAME="5727"></A>
command and occasionally <A NAME="tex2html293"
HREF="../psxy.html"><I><B>psxy</B></I></A><A NAME="5736"></A>. (Our illustrations
may differ from yours because of different settings in our
<U>.gmtdefaults</U> file.) Note that while we will
specify dimensions in inches (by appending <B>i</B>), you may
want to use cm (<B>c</B>), meters (<B>m</B>), or points (<B>p</B>)
as unit instead (see <A NAME="tex2html294"
HREF="../gmtdefaults.html"><I><B>gmtdefaults</B></I></A><A NAME="5746"></A> man page).
<P>
<BR><HR>
<!--Table of Child-Links-->
<A NAME="CHILD_LINKS"><STRONG>Subsections</STRONG></A>
<UL>
<LI><A NAME="tex2html1428"
HREF="node35.html">5.1 Non-map Projections</A>
<UL>
<LI><A NAME="tex2html1429"
HREF="node36.html">5.1.1 Cartesian Linear Projection (<B>-Jx</B> <B>-JX</B>)</A>
<LI><A NAME="tex2html1430"
HREF="node37.html">5.1.2 Logarithmic projection</A>
<LI><A NAME="tex2html1431"
HREF="node38.html">5.1.3 Power projection</A>
<LI><A NAME="tex2html1432"
HREF="node39.html">5.1.4 Geographical linear projection</A>
<LI><A NAME="tex2html1433"
HREF="node40.html">5.1.5 Linear Projection with Polar (<IMG
WIDTH="25" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img2.gif"
ALT="$\theta , r$">)
Coordinates (<B>-Jp </B> <B>-JP</B>)</A>
</UL>
<LI><A NAME="tex2html1434"
HREF="node41.html">5.2 Conic Projections</A>
<UL>
<LI><A NAME="tex2html1435"
HREF="node42.html">5.2.1 Albers Conic Equal-Area Projection (<B>-Jb</B> <B>-JB</B>)</A>
<LI><A NAME="tex2html1436"
HREF="node43.html">5.2.2 Lambert Conic Conformal Projection (<B>-Jl</B> <B>-JL</B>)</A>
<LI><A NAME="tex2html1437"
HREF="node44.html">5.2.3 Equidistant Conic Projection (<B>-Jd</B> <B>-JD</B>)</A>
</UL>
<LI><A NAME="tex2html1438"
HREF="node45.html">5.3 Azimuthal Projections</A>
<UL>
<LI><A NAME="tex2html1439"
HREF="node46.html">5.3.1 Lambert Azimuthal Equal-Area (<B>-Ja </B> <B>-JA</B>)</A>
<UL>
<LI><A NAME="tex2html1440"
HREF="node47.html">5.3.1.1 Rectangular map</A>
<LI><A NAME="tex2html1441"
HREF="node48.html">5.3.1.2 Hemisphere map</A>
</UL>
<LI><A NAME="tex2html1442"
HREF="node49.html">5.3.2 Stereographic Equal-Angle Projection (<B>-Js</B> <B>-JS</B>)</A>
<UL>
<LI><A NAME="tex2html1443"
HREF="node50.html">5.3.2.1 Polar Stereographic Map</A>
<LI><A NAME="tex2html1444"
HREF="node51.html">5.3.2.2 Rectangular Stereographic Map</A>
<LI><A NAME="tex2html1445"
HREF="node52.html">5.3.2.3 General Stereographic Map</A>
</UL>
<LI><A NAME="tex2html1446"
HREF="node53.html">5.3.3 Orthographic Projection (<B>-Jg </B> <B>-JG</B>)</A>
<LI><A NAME="tex2html1447"
HREF="node54.html">5.3.4 Azimuthal Equidistant Projection (<B>-Je </B> <B>-JE</B>)</A>
<LI><A NAME="tex2html1448"
HREF="node55.html">5.3.5 Gnomonic Projection (<B>-Jf</B> <B>-JF</B>)</A>
</UL>
<LI><A NAME="tex2html1449"
HREF="node56.html">5.4 Cylindrical Projections</A>
<UL>
<LI><A NAME="tex2html1450"
HREF="node57.html">5.4.1 Mercator Projection (<B>-Jm</B> <B>-JM</B>)</A>
<LI><A NAME="tex2html1451"
HREF="node58.html">5.4.2 Transverse Mercator (<B>-Jt</B> <B>-JT</B>)</A>
<LI><A NAME="tex2html1452"
HREF="node59.html">5.4.3 Universal Transverse Mercator UTM (<B>-Ju</B> <B>-JU</B>)</A>
<LI><A NAME="tex2html1453"
HREF="node60.html">5.4.4 Oblique Mercator (<B>-Jo</B> <B>-JO</B>)</A>
<LI><A NAME="tex2html1454"
HREF="node61.html">5.4.5 Cassini Cylindrical Projection (<B>-Jc</B> <B>-JC</B>)</A>
<LI><A NAME="tex2html1455"
HREF="node62.html">5.4.6 Cylindrical Equidistant Projection (<B>-Jq</B> <B>-JQ</B>)</A>
<LI><A NAME="tex2html1456"
HREF="node63.html">5.4.7 General Cylindrical Projections (<B>-Jy</B> <B>-JY</B>)</A>
<LI><A NAME="tex2html1457"
HREF="node64.html">5.4.8 Miller Cylindrical Projections (<B>-Jj</B> <B>-JJ</B>)</A>
</UL>
<LI><A NAME="tex2html1458"
HREF="node65.html">5.5 Miscellaneous Projections</A>
<UL>
<LI><A NAME="tex2html1459"
HREF="node66.html">5.5.1 Hammer Projection (<B>-Jh</B> <B>-JH</B>)</A>
<LI><A NAME="tex2html1460"
HREF="node67.html">5.5.2 Mollweide Projection (<B>-Jw</B> <B>-JW</B>)</A>
<LI><A NAME="tex2html1461"
HREF="node68.html">5.5.3 Winkel Tripel Projection (<B>-Jr</B> <B>-JR</B>)</A>
<LI><A NAME="tex2html1462"
HREF="node69.html">5.5.4 Robinson Projection (<B>-Jn</B> <B>-JN</B>)</A>
<LI><A NAME="tex2html1463"
HREF="node70.html">5.5.5 Eckert IV and VI Projection (<B>-Jk</B> <B>-JK</B>)</A>
<LI><A NAME="tex2html1464"
HREF="node71.html">5.5.6 Sinusoidal Projection (<B>-Ji</B> <B>-JI</B>)</A>
<LI><A NAME="tex2html1465"
HREF="node72.html">5.5.7 Van der Grinten Projection (<B>-Jv</B> <B>-JV</B>)</A>
</UL></UL>
<!--End of Table of Child-Links-->
<BR><HR>
<ADDRESS>
Paul Wessel
2001-04-18
</ADDRESS>
</BODY>
</HTML>
|