1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 99.2beta8 (1.46)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>5.3.2.3 General Stereographic Map</TITLE>
<META NAME="description" CONTENT="5.3.2.3 General Stereographic Map">
<META NAME="keywords" CONTENT="GMT_Docs">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<META NAME="Generator" CONTENT="LaTeX2HTML v99.2beta8">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="GMT_Docs.css">
<LINK REL="previous" HREF="node51.html">
<LINK REL="up" HREF="node49.html">
<LINK REL="next" HREF="node53.html">
</HEAD>
<BODY bgcolor="#ffffff">
<!--Navigation Panel-->
<A NAME="tex2html1731"
HREF="node53.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next.gif"></A>
<A NAME="tex2html1725"
HREF="node49.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up.gif"></A>
<A NAME="tex2html1721"
HREF="node51.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="prev.gif"></A>
<A NAME="tex2html1727"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents" SRC="contents.gif"></A>
<A NAME="tex2html1729"
HREF="node149.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index" SRC="index.gif"></A>
<BR>
<B> Next:</B> <A NAME="tex2html1732"
HREF="node53.html">5.3.3 Orthographic Projection (-Jg</A>
<B> Up:</B> <A NAME="tex2html1726"
HREF="node49.html">5.3.2 Stereographic Equal-Angle Projection</A>
<B> Previous:</B> <A NAME="tex2html1722"
HREF="node51.html">5.3.2.2 Rectangular Stereographic Map</A>
  <B> <A NAME="tex2html1728"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html1730"
HREF="node149.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H3><A NAME="SECTION001332300000000000000"></A>
<A NAME="7098"></A>
<BR>
5.3.2.3 General Stereographic Map
</H3>
<P>
In terms of usage this projection is identical to the Lambert
azimuthal equal-area projection. Thus, one can make both
rectangular and hemispheric maps. Our example shows Australia
using a projection pole at 130E/30<IMG
WIDTH="11" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img61.gif"
ALT="$^{o}$">S. The command used was
<P>
<P>
<BR>
<P>
<BR CLEAR="ALL">
<HR>
<BR>
<PRE>
#!/bin/sh
# $Id: GMT_stereographic_general.sh,v 1.1 2001/03/21 04:10:21 pwessel Exp $
#
gmtset DEGREE_FORMAT 1 OBLIQUE_ANOTATION 0
pscoast -R100/-40/160/-10r -JS130/-30/4i -B30g10/15g15 -Dl -A500 -G0 -P \
> GMT_stereographic_general.ps
</PRE>
<P>
<BR>
<BR>
<P>
<BR CLEAR="ALL">
<HR>
<P>
<P></P>
<DIV ALIGN="CENTER"><A NAME="fig:GMT_stereographic_general"></A><A NAME="7165"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 5.14:</STRONG>
General
stereographic conformal projection with rectangular borders.</CAPTION>
<TR><TD><IMG
WIDTH="551" HEIGHT="359" BORDER="0"
SRC="img76.gif"
ALT="\begin{figure}\centering\epsfig{figure=eps/GMT_stereographic_general.eps}\end{figure}"></TD></TR>
</TABLE>
</DIV><P></P>
<P>
By choosing 0<IMG
WIDTH="11" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img61.gif"
ALT="$^{o}$">/0<IMG
WIDTH="11" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img61.gif"
ALT="$^{o}$">as the pole, we obtain the conformal
stereonet presented next to its equal-area cousin in the Section <A HREF="node48.html#sec:lamb">5.3.1</A> on
the Lambert azimuthal equal-area projection (Figure <A HREF="node48.html#fig:GMT_stereonets">5.11</A>).
<P>
<A NAME="7141"></A>
<A NAME="7158"></A>
<A NAME="7159"></A>
<P>
<BR><HR>
<ADDRESS>
Paul Wessel
2001-04-18
</ADDRESS>
</BODY>
</HTML>
|