File: grdmath.html

package info (click to toggle)
gmt-doc 3.4-1
  • links: PTS
  • area: main
  • in suites: woody
  • size: 4,756 kB
  • ctags: 1,800
  • sloc: makefile: 30
file content (294 lines) | stat: -rw-r--r-- 12,069 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
<HTML>
<HEAD>
<TITLE>grdmath</TITLE>
</HEAD>
<BODY>
<H1>grdmath</H1>
<HR>
<PRE>
<!-- Manpage converted by man2html 3.0.1 -->
       grdmath - Reverse Polish Notation calculator for grd files


</PRE>
<H2>SYNOPSIS</H2><PRE>
       <B>grdmath</B> [ <B>-I</B><I>xinc</I>[<B>m|c</B>][/<I>yinc</I>[<B>m|c</B>]]  <B>-R</B><I>west/east/south/north</I>
       <B>-V</B>]  <I>operand</I> [ <I>operand</I> ] <B>OPERATOR</B> [ <I>operand</I> ] <B>OPERATOR</B> ...
       <B>=</B> <I>outgrdfile</I>


</PRE>
<H2>DESCRIPTION</H2><PRE>
       <B>grdmath</B> will perform operations like add, subtract, multi
       ply,  and  divide  on  one  or more grd files or constants
       using Reverse Polish Notation (RPN) syntax (e.g., Hewlett-
       Packard calculator-style). Arbitrarily complicated expres
       sions may therefore be  evaluated;  the  final  result  is
       written  to  an output grd file. When two grd files are on
       the stack, each element in file A is modified by the  cor
       responding  element  in  file  B.  However, some operators
       only require one operand (see below). If no  grdfiles  are
       used  in  the  expression  then options <B>-R,</B> <B>-I</B> must be set
       (and optionally <B>-F</B>).

       <I>operand</I>
              If <I>operand</I> can be opened as a file it will be  read
              as  a grd file. If not a file, it is interpreted as
              a numerical  constant  or  a  special  symbol  (see
              below).

       <I>outgrdfile</I> is a 2-D grd file that will hold the final
       result.

       <B>OPERATORS</B>
              Choose among the following operators:
              Operator n_args Returns

              <B>ABS</B> 1 abs (A).
              <B>ACOS</B> 1 acos (A).
              <B>ACOSH</B> 1 acosh (A).
              <B>ADD(+)</B> 2 A + B.
              <B>AND</B> 2 NaN if A and B == NaN, B if A == NaN, else A.
              <B>ASIN</B> 1 asin (A).
              <B>ASINH</B> 1 asinh (A).
              <B>ATAN</B> 1 atan (A).
              <B>ATAN2</B> 2 atan2 (A, B).
              <B>ATANH</B> 1 atanh (A).
              <B>BEI</B> 1 bei (A).
              <B>BER</B> 1 ber (A).
              <B>CDIST</B>  2  Cartesian distance between grid nodes and
              stack x,y.
              <B>CEIL</B> 1 ceil (A) (smallest integer &gt;= A).
              <B>CHIDIST</B> 2 Chi-squared-distribution P(chi2,nn), with
              chi2 = A and n = B.
              <B>COS</B> 1 cos (A) (A in radians).
              <B>COSD</B> 1 cos (A) (A in degrees).
              <B>D2DX2</B> 1 d^2(A)/dx^2 2nd derivative.
              <B>D2DY2</B> 1 d^2(A)/dy^2 2nd derivative.
              <B>D2R</B> 1 Converts Degrees to Radians.
              <B>DDX</B> 1 d(A)/dx 1st derivative.
              <B>DDY</B> 1 d(A)/dy 1st derivative.
              <B>DILOG</B> 1 Dilog (A).
              <B>DIV(/)</B> 2 A / B.
              <B>DUP</B> 1 Places duplicate of A on the stack.
              <B>ERF</B> 1 Error function of A.
              <B>ERFC</B> 1 Complimentory Error function of A.
              <B>ERFINV</B> 1 Inverse error function of A.
              <B>EQ</B> 2 1 if A == B, else 0.
              <B>EXCH</B> 2 Exchanges A and B on the stack.
              <B>EXP</B> 1 exp (A).
              <B>EXTREMA</B> 1 Local Extrema: +2/-2 is max/min, +1/-1 is
              saddle with max/min in x, 0 elsewhere.
              <B>FDIST</B> 4 F-distribution Q(s1,s2,n1,n2), with s1 = A,
              s2 = B, n1 = C, and n2 = D.
              <B>FLOOR</B> 1 floor (A) (greatest integer &lt;= A).
              <B>FMOD</B> 2 A % B (remainder).
              <B>GDIST</B>  2  Great  distance (in degrees) between grid
              nodes and stack lon,lat.
              <B>GE</B> 2 1 if A &gt;= B, else 0.
              <B>GT</B> 2 1 if A &gt; B, else 0.
              <B>HYPOT</B> 2 hypot (A, B).
              <B>I0</B> 1 Modified Bessel function of A (1st kind, order
              0).
              <B>I1</B> 1 Modified Bessel function of A (1st kind, order
              1).
              <B>IN</B> 2 Modified Bessel function of A (1st kind, order
              B).
              <B>INV</B> 1 1 / A.
              <B>ISNAN</B> 1 1 if A == NaN, else 0.
              <B>J0</B> 1 Bessel function of A (1st kind, order 0).
              <B>J1</B> 1 Bessel function of A (1st kind, order 1).
              <B>JN</B> 2 Bessel function of A (1st kind, order B).
              <B>K0</B> 1 Modified Kelvin function of A (2nd kind, order
              0).
              <B>K1</B> 1 Modified Bessel function of A (2nd kind, order
              1).
              <B>KN</B> 2 Modified Bessel function of A (2nd kind, order
              B).
              <B>KEI</B> 1 kei (A).
              <B>KER</B> 1 ker (A).
              <B>LE</B> 2 1 if A &lt;= B, else 0.
              <B>LMSSCL</B> 1 LMS scale estimate (LMS STD) of A.
              <B>LOG</B> 1 log (A) (natural log).
              <B>LOG10</B> 1 log10 (A).
              <B>LOG1P</B> 1 log (1+A) (accurate for small A).
              <B>LOWER</B> 1 The lowest (minimum) value of A.
              <B>LT</B> 2 1 if A &lt; B, else 0.
              <B>MAD</B> 1 Median Absolute Deviation (L1 STD) of A.
              <B>MED</B> 1 Median value of A.
              <B>MIN</B> 2 Minimum of A and B.
              <B>MODE</B> 1 Mode value (LMS) of A.
              <B>MUL(x)</B> 2 A * B.
              <B>NAN</B> 2 NaN if A == B, else A.
              <B>NEG</B> 1 -A.
              <B>NRAND</B> 2 Normal, random values with mean A and  std.
              deviation B.
              <B>OR</B> 2 NaN if A or B == NaN, else A.
              <B>PLM</B>  3  Associated  Legendre  polynomial P(-1&lt;A<+1)
              degree B order C.
              <B>POP</B> 1 Delete top element from the stack.
              <B>POW(^)</B> 2 A ^ B.
              <B>R2</B> 2 R2 = A^2 + B^2.
              <B>R2D</B> 1 Convert Radians to Degrees.
              <B>RAND</B> 2 Uniform random values between A and B.
              <B>RINT</B> 1 rint (A) (nearest integer).
              <B>SIGN</B> 1 sign (+1 or -1) of A.
              <B>SIN</B> 1 sin (A) (A in radians).
              <B>SIND</B> 1 sin (A) (A in degrees).
              <B>SINH</B> 1 sinh (A).
              <B>SQRT</B> 1 sqrt (A).
              <B>STD</B> 1 Standard deviation of A.
              <B>STEP</B> 1 Heaviside step function: H(A).
              <B>STEPX</B> 1 Heaviside step function in x: H(x-A).
              <B>STEPY</B> 1 Heaviside step function in y: H(y-A).
              <B>SUB(-)</B> 2 A - B.
              <B>TAN</B> 1 tan (A) (A in radians).
              <B>TAND</B> 1 tan (A) (A in degrees).
              <B>TANH</B> 1 tanh (A).
              <B>TDIST</B> 2 Student's t-distribution A(t,n), with  t  =
              A, and n = B).'
              <B>UPPER</B> 1 The highest (maximum) value of A.
              <B>XOR</B> 2 B if A == NaN, else A.
              <B>Y0</B> 1 Bessel function of A (2nd kind, order 0).
              <B>Y1</B> 1 Bessel function of A (2nd kind, order 1).
              <B>YLM</B>  2  Re  and  Im  normalized  surface  harmonics
              (degree A, order B).
              <B>YN</B> 2 Bessel function of A (2nd kind, order B).

       <B>SYMBOLS</B>
              The following symbols have special meaning:

              <B>PI</B> 3.1415926...
              <B>E</B>  2.7182818...
              <B>X</B>  Grid with x-coordinates
              <B>Y</B>  Grid with y-coordinates


</PRE>
<H2>OPTIONS</H2><PRE>
       <B>-I</B>     <I>x</I><B>_</B><I>inc</I> [and optionally <I>y</I><B>_</B><I>inc</I>] is the  grid  spacing.
              Append  <B>m</B> to indicate minutes or <B>c</B> to indicate sec
              onds.
              interest. To specify boundaries in degrees and min
              utes [and  seconds],  use  the  dd:mm[:ss]  format.
              Append  <B>r</B> if lower left and upper right map coordi
              nates are given instead of wesn.

       <B>-F</B>     Select pixel registration. [Default is grid  regis
              tration].

       <B>-V</B>     Selects  verbose  mode,  which  will  send progress
              reports to stderr [Default runs "silently"].


</PRE>
<H2>BEWARE</H2><PRE>
       The operator <B>GDIST</B> calculates spherical distances  bewteen
       the  (lon,  lat) point on the stack and all node positions
       in the grid. The grid domain and the (lon, lat) point  are
       expected to be in degrees. The operator <B>YLM</B> calculates the
       fully normalized spherical  harmonics  for  degree  L  and
       order M for all positions in the grid, which is assumed to
       be in degrees.  <B>YLM</B> returns two grids, the  Real  (cosine)
       and  Imaginary  (sine)  component of the complex spherical
       harmonic. Use the <B>POP</B> operator (and <B>EXCH</B>) to  get  rid  of
       one  of  them.  The operator <B>PLM</B> calculates the associated
       Legendre polynomial of degree L and order M, and its argu
       ment is the cosine of the colatitude which must satisfy -1
       &lt;= x &lt;= +1. Unlike <B>YLM</B>, <B>PLM</B> is not normalized.
       All the derivatives are based on  central  finite  differ
       ences, with natural boundary conditions.


</PRE>
<H2>EXAMPLES</H2><PRE>
       To take log10 of the average of 2 files, use
               grdmath  file1.grd  file2.grd  <B>ADD</B> 0.5 <B>MUL</B> <B>LOG10</B> <B>=</B>
       file3.grd

       Given the file ages.grd,  which  holds  seafloor  ages  in
       m.y.,  use  the  relation  depth(in m) = 2500 + 350 * sqrt
       (age) to estimate normal seafloor depths:
               grdmath  ages.grd  <B>SQRT</B>  350  <B>MUL</B>   2500   <B>ADD</B>   <B>=</B>
       depths.grd

       To  find the angle a (in degrees) of the largest principal
       stress from the stress tensor given  by  the  three  files
       s_xx.grd  s_yy.grd,  and  s_xy.grd  from  the relation tan
       (2*a) = 2 * s_xy / (s_xx - s_yy), try
               grdmath 2 s_xy.grd <B>MUL</B> s_xx.grd s_yy.grd  <B>SUB</B>  <B>DIV</B>
       <B>ATAN2</B> 2 <B>DIV</B> <B>=</B> direction.grd

       To  calculate  the  fully normalized spherical harmonic of
       degree 8 and order 4 on a 1 by 1 degree world  map,  using
       the  real  amplitude  0.4 and the imaginary amplitude 1.1,
       try
               grdmath <B>-R</B>0/360/-90/90 <B>-I</B>1 8 4 <B>YML</B>  1.1  <B>MUL</B>  <B>EXCH</B>
       0.4 <B>MUL</B> <B>ADD</B> = harm.grd
       mGal in the file faa.grd, try
               grdmath faa.grd <B>DUP</B> <B>EXTREMA</B> 2 <B>EQ</B> <B>MUL</B>  <B>DUP</B>  100  <B>GT</B>
       <B>NAN</B> <B>MUL</B> = z.grd
               grd2xyz z.grd <B>-S</B> &gt; max.xyz


</PRE>
<H2>BUGS</H2><PRE>
       Files that has the same name as some operators, e.g., ADD,
       SIGN, =, etc. cannot be read and must not  be  present  in
       the  current  directory.  Piping of files are not allowed.
       The stack  limit  is  hard-wired  to  50.   All  functions
       expecting  a  positive  radius  (e.g., log, kei, etc.) are
       passed the absolute value of their argument.


</PRE>
<H2>REFERENCES</H2><PRE>
       Abramowitz, M., and I. A. Stegun, 1964, <I>Handbook</I> <I>of</I> <I>Mathe</I>
       <I>matical</I>  <I>Functions</I>,  Applied  Mathematics Series, vol. 55,
       Dover, New York.
       Press, W. H., S. A. Teukolsky, W.  T.  Vetterling,  B.  P.
       Flannery,  1992, <I>Numerical</I> <I>Recipes</I>, 2nd edition, Cambridge
       Univ., New York.


</PRE>
<H2>SEE ALSO</H2><PRE>
       <I>gmt</I>(l), <I><A HREF="gmtmath.html">gmtmath</A></I>(l),  <I><A HREF="grd2xyz.html">grd2xyz</A></I>(l),  <I><A HREF="grdedit.html">grdedit</A></I>(l),  <I><A HREF="grdinfo.html">grdinfo</A></I>(l),
       <I><A HREF="xyz2grd.html">xyz2grd</A></I>(l)




























</PRE>
<HR>
<ADDRESS>
Man(1) output converted with
<a href="http://www.oac.uci.edu/indiv/ehood/man2html.html">man2html</a>
</ADDRESS>
</BODY>
</HTML>
<body bgcolor="#ffffff">