## File: gmtmath_explain.h

package info (click to toggle)
gmt 3.3.3-3
 `123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596` ``````/*-------------------------------------------------------------------- * * The GMT-system: gmtmath_explain.h [Generated by make_gmtmath.x] * * Copyright (c) 1991-1999 by P. Wessel and W. H. F. Smith * See COPYING file for copying and redistribution conditions. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * Contact info: www.soest.hawaii.edu/gmt *--------------------------------------------------------------------*/ /* gmtmath_explain.h is automatically generated by make_gmtmath.x; * Do NOT edit manually! * */ fprintf (stderr, " ABS 1 abs (A).\n"); fprintf (stderr, " ACOS 1 acos (A).\n"); fprintf (stderr, " ACOSH 1 acosh (A).\n"); fprintf (stderr, " ADD(+) 2 A + B.\n"); fprintf (stderr, " AND 2 NaN if A and B == NaN, B if A == NaN, else A.\n"); fprintf (stderr, " ASIN 1 asin (A).\n"); fprintf (stderr, " ASINH 1 asinh (A).\n"); fprintf (stderr, " ATAN 1 atan (A).\n"); fprintf (stderr, " ATAN2 2 atan2 (A, B).\n"); fprintf (stderr, " ATANH 1 atanh (A).\n"); fprintf (stderr, " BEI 1 bei (A).\n"); fprintf (stderr, " BER 1 ber (A).\n"); fprintf (stderr, " CEIL 1 ceil (A) (smallest integer >= A).\n"); fprintf (stderr, " COS 1 cos (A) (A in radians).\n"); fprintf (stderr, " COSD 1 cos (A) (A in degrees).\n"); fprintf (stderr, " COSH 1 cosh (A).\n"); fprintf (stderr, " D2DT2 1 d^2(A)/dt^2 2nd derivative.\n"); fprintf (stderr, " D2R 1 Converts Degrees to Radians.\n"); fprintf (stderr, " DILOG 1 Dilog (A).\n"); fprintf (stderr, " DIV(/) 2 A / B.\n"); fprintf (stderr, " DDT 1 d(A)/dt 1st derivative.\n"); fprintf (stderr, " DUP 1 Places duplicate of A on the stack.\n"); fprintf (stderr, " EXCH 2 Exchanges A and B on the stack.\n"); fprintf (stderr, " EXP 1 exp (A).\n"); fprintf (stderr, " ERF 1 Error function of A.\n"); fprintf (stderr, " ERFC 1 Complimentory Error function of A.\n"); fprintf (stderr, " ERFINV 1 Inverse error function of A.\n"); fprintf (stderr, " FLOOR 1 floor (A) (greatest integer <= A).\n"); fprintf (stderr, " FMOD 2 A %% B (remainder).\n"); fprintf (stderr, " HYPOT 2 hypot (A, B).\n"); fprintf (stderr, " I0 1 Modified Bessel function of A (1st kind, order 0).\n"); fprintf (stderr, " I1 1 Modified Bessel function of A (1st kind, order 1).\n"); fprintf (stderr, " IN 2 Modified Bessel function of A (1st kind, order B).\n"); fprintf (stderr, " INV 1 1 / A.\n"); fprintf (stderr, " J0 1 Bessel function of A (1st kind, order 0).\n"); fprintf (stderr, " J1 1 Bessel function of A (1st kind, order 1).\n"); fprintf (stderr, " JN 2 Bessel function of A (1st kind, order B).\n"); fprintf (stderr, " K0 1 Modified Kelvin function of A (2nd kind, order 0).\n"); fprintf (stderr, " K1 1 Modified Bessel function of A (2nd kind, order 1).\n"); fprintf (stderr, " KN 2 Modified Bessel function of A (2nd kind, order B).\n"); fprintf (stderr, " KEI 1 kei (A).\n"); fprintf (stderr, " KER 1 ker (A).\n"); fprintf (stderr, " LOG 1 log (A) (natural log).\n"); fprintf (stderr, " LOG10 1 log10 (A).\n"); fprintf (stderr, " LOG1P 1 log (1+A) (accurate for small A).\n"); fprintf (stderr, " MAX 2 Maximum of A and B.\n"); fprintf (stderr, " MEAN 1 Mean value of A.\n"); fprintf (stderr, " MED 1 Median value of A.\n"); fprintf (stderr, " MIN 2 Minimum of A and B.\n"); fprintf (stderr, " MUL(x) 2 A * B.\n"); fprintf (stderr, " NEG 1 -A.\n"); fprintf (stderr, " NRAND 2 Normal, random values with mean A and std. deviation B.\n"); fprintf (stderr, " OR 2 NaN if A or B == NaN, else A.\n"); fprintf (stderr, " PLM 3 Associated Legendre polynomial P(-1