File: project.c

package info (click to toggle)
gmt 3.3.3-3
  • links: PTS
  • area: main
  • in suites: potato
  • size: 3,288 kB
  • ctags: 2,962
  • sloc: ansic: 50,470; sh: 1,760; makefile: 284; asm: 38
file content (913 lines) | stat: -rw-r--r-- 31,535 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
/*--------------------------------------------------------------------
 *    The GMT-system:	@(#)project.c	2.51  10/18/99
 *
 *	Copyright (c) 1991-1999 by P. Wessel and W. H. F. Smith
 *	See COPYING file for copying and redistribution conditions.
 *
 *	This program is free software; you can redistribute it and/or modify
 *	it under the terms of the GNU General Public License as published by
 *	the Free Software Foundation; version 2 of the License.
 *
 *	This program is distributed in the hope that it will be useful,
 *	but WITHOUT ANY WARRANTY; without even the implied warranty of
 *	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *	GNU General Public License for more details.
 *
 *	Contact info: www.soest.hawaii.edu/gmt
 *--------------------------------------------------------------------*/
/*
 * project.c
 * reads (x,y,[z]) data and writes some combination of (x,y,z,p,q,u,v),
 * where p,q is the distance along,across the track of the projection of (x,y),
 * and u,v are the un-transformed (x,y) coordinates of the projected position.
 * Can also create (x,y) along track.
  
   Author: 	Walter H. F. Smith
   Date:	19 April, 1988.
   Modified:	4 December 1988, to be more flexible.
   Complete rebuild 22 June, 1989 to use vector products and do more things.
   version 2.0
   		23-FEB-1998	PW: Added support for multiple files, multi-segment formats
				and binary i/o.  Old -M renamed -Q.
		03-NOV-1998	PW: Can read any number of data columns; z in -Fz refers to
				all these columns in the output.

*/

#include "gmt.h"

struct DATA {
        double  a[6];
	double *z;
	char *t;
} *p_data;

int     output_choice[7];
int	compare_distances(const void *point_1, const void *point_2);
int	do_flat_earth();
int	solve_right_spherical_triangle();
int	sphere_azim_dist();
void	oblique_setup(double plat, double plon, double *p, double clat, double clon, double *c, int c_given, int rads);
void	oblique_transform(double xlat, double xlon, double *x_t_lat, double *x_t_lon, double *p, double *c, int rads);
void	make_euler_matrix(double *p, double *e, double *theta, int rads);
void	matrix_3v(double *a, double *x, double *b);
void	matrix_2v(double *a, double *x, double *b);
void	sphere_project_setup(double alat, double alon, double *a, double blat, double blon, double *b, double *azim, double *p, double *c, int two_pts, int rads);
void	flat_project_setup(double alat, double alon, double blat, double blon, double plat, double plon, double *azim, double *e, int two_pts, BOOLEAN pole_set);
void	copy_text_from_col3 (char *line, char *z_cols);


int	output_choice[7];

main (int argc, char **argv)
{	
	int	i, j, k, n_definitions, n_outputs, n_used, n_total_read, ix, iy, n_alloc = GMT_CHUNK;
	int	nc, ne, np, nl, nw, n_files = 0, fno, n_args, n_fields, n_expected_fields, n_total_used = 0, n_z = 0, n_items;

	double	xx, yy, x_a, y_a, x_b, y_b, x_p, y_p, d_to_km, cos_theta, sin_theta;
	double	theta, d_inc = 0.0, d_along, *in, *out = (double *)NULL;
	
	double	azimuth = 0.0, l_min = 0.0, l_max = 0.0, w_min = 0.0, w_max = 0.0;
	double	a[3], b[3], x[3], xt[3], pole[3], center[3], e[9];

	BOOLEAN	check_length, check_width, convert_units, dateline, error, find_new_point, flat_earth, first = TRUE;
	BOOLEAN generate, greenwich, origin_set, pole_set, rads, sort_output, stay_within, two_points;
	BOOLEAN nofile = TRUE, done = FALSE, want_z_output = FALSE, pure_ascii, skip;
	
	FILE *fp = NULL;
	
	char	modifier, record_str[BUFSIZ], heading[7][64], txt_a[32], txt_b[32];
	
	argc = GMT_begin (argc, argv);

	check_length = check_width = dateline = error = find_new_point = flat_earth = generate = greenwich = FALSE;
	pole_set = sort_output = stay_within = two_points = convert_units = FALSE;
	rads = TRUE;
	x_a = x_b = x_p = y_a = y_b = y_p = 0.0;
	n_definitions = 0;
	n_outputs = 0;
	j = 1;
	for (i = 0; i < 7; i++) output_choice[i] = 0;

	for (i = 1; i < argc; i++) {
		if (argv[i][0] == '-') {
			switch (argv[i][1]) {
			
		
				/* Common parameters */
			
				case 'H':
				case 'V':
				case ':':
				case '\0':
					error += GMT_get_common_args (argv[i], 0, 0, 0, 0);
					break;
				
				/* Supplemental parameters */
				
				case 'b':
					error += GMT_io_selection (&argv[i][2]);
					break;
				case 'F':
					for (j = 2, k = 0; argv[i][j]; j++, k++) {
						switch (argv[i][j]) {
							case 'z':	/* Special flag, can mean any number of z columns */
								output_choice[k] = -1;
								want_z_output = TRUE;
								break;
							case 'x':
								output_choice[k] = 0;
								break;
							case 'y':
								output_choice[k] = 1;
								break;
							case 'p':
								output_choice[k] = 2;
								break;
							case 'q':
								output_choice[k] = 3;
								break;
							case 'r':
								output_choice[k] = 4;
								find_new_point = TRUE;
								break;
							case 's':
								output_choice[k] = 5;
								find_new_point = TRUE;
								break;
							default:
								fprintf (stderr, "%s: GMT SYNTAX ERROR -F option:  Unrecognized choice %c\n", GMT_program, argv[i][j]);
								error = TRUE;
						}
						n_outputs++;
					}
					break;
				case 'A':
					azimuth = atof(&argv[i][2]);
					n_definitions++;
					break;
				case 'C':
					nc = sscanf(&argv[i][2], "%[^/]/%s", txt_a, txt_b);
					x_a = GMT_ddmmss_to_degree (txt_a);
					y_a = GMT_ddmmss_to_degree (txt_b);
					origin_set = TRUE;
					break;
				case 'D':
					modifier = argv[i][2];
					if (modifier == 'D' || modifier == 'd') {
						dateline = TRUE;
					}
					else if (modifier == 'g' || modifier == 'G') {
						greenwich = TRUE;
					}
					else if (modifier) {
						fprintf (stderr, "%s: GMT SYNTAX ERROR -D option:  Unrecognized modifier %c\n", GMT_program, modifier);
						error = TRUE;
					}
					break;
				case 'E':
					ne = sscanf(&argv[i][2], "%[^/]/%s", txt_a, txt_b);
					x_b = GMT_ddmmss_to_degree (txt_a);
					y_b = GMT_ddmmss_to_degree (txt_b);
					two_points = TRUE;
					n_definitions++;
					break;
				case 'G':
					generate = TRUE;
					d_inc = atof(&argv[i][2]);
					break;
				case 'L':
					check_length = TRUE;
					modifier = argv[i][2]; 
					if (modifier == 'W' || modifier == 'w') {
						stay_within = TRUE;
					}
					else {
						nl = sscanf(&argv[i][2], "%lf/%lf", &l_min, &l_max);
					}
					break;
				case 'M':
					GMT_multisegment (&argv[i][2]);
					break;
				case 'Q':
					convert_units = TRUE;
					break;
				case 'N':
					flat_earth = TRUE;
					break;
				case 'S':
					sort_output = TRUE;
					break;
				case 'T':
					np = sscanf(&argv[i][2], "%[^/]/%s", txt_a, txt_b);
					x_p = GMT_ddmmss_to_degree (txt_a);
					y_p = GMT_ddmmss_to_degree (txt_b);
					pole_set = TRUE;
					n_definitions++;
					break;
				case 'W':
					nw = sscanf(&argv[i][2], "%lf/%lf", &w_min, &w_max);
					check_width = TRUE;
					break;
				default:
					error = TRUE;
					GMT_default_error (argv[i][1]);
					break;
			}
		}
		else
			n_files++;
	}
	
	if (argc == 1 || GMT_quick) {
		fprintf (stderr, "project %s - project data onto line or great circle, generate track, or translate coordiantes\n\n", GMT_VERSION);
		fprintf(stderr,"usage:	project [files] -C<ox>/<oy> [-A<azimuth>] [-D<d_or_g>] [-E<bx>/<by>]\n");
		fprintf(stderr,"\t[-F<flags>] [-G<dist>] [-H[<nrec>]] [-L[w][<l_min>/<l_max>]] [-M[<flag>]] [-N] [-Q] [-S]\n");
		fprintf(stderr,"\t[-T<px>/<py>] [-V] [-W<w_min>/<w_max>] [-:] [-bi[s][<n>]] [-bo[s]]\n\n");
		
		if (GMT_quick) exit (EXIT_FAILURE);

		fprintf(stderr,"\tproject will read stdin or file, and does not want input if -G option.\n");
		fprintf(stderr,"\tThe projection may be defined in (only) one of three ways:\n");
		fprintf(stderr,"\t  (1) by a center -C and an azimuth -A,\n");
		fprintf(stderr,"\t  (2) by a center -C and end point of the path -E,\n");
		fprintf(stderr,"\t  (3) by a center -C and a roTation pole position -T.\n");
		fprintf(stderr,"\t  In a spherical projection [default], all cases place the central meridian\n");
		fprintf(stderr,"\t  of the transformed coordinates (p,q) through -C (p = 0 at -C).  The equator\n");
		fprintf(stderr,"\t  of the (p,q) system (line q = 0) passes through -C and makes an angle\n");
		fprintf(stderr,"\t  <azimuth> with North (case 1), or passes through -E (case 2), or is\n");
		fprintf(stderr,"\t  determined by the pole -T (case 3).  In (3), point -C need not be on equator.\n");
		fprintf(stderr,"\t  In a cartesian [-N option] projection, p = q = 0 at -O in all cases;\n");
		fprintf(stderr,"\t  (1) and (2) orient the p axis, while (3) orients the q axis.\n\n");
		fprintf(stderr,"\t-C<ox>/<oy> sets the location of the center.\n");
		fprintf (stderr, "\n\tOPTIONS:\n");
		fprintf(stderr,"\t-A<azimuth> sets the option (1) Azimuth, (degrees CW from North).\n");
		fprintf(stderr,"\t-D will force the location of the Discontinuity in the r coordinate;\n");
		fprintf(stderr,"\t  -Dd (dateline) means [-180 < r < 180], -Dg (greenwich) means [0 < r < 360].\n");
		fprintf(stderr,"\t  The default does not check; in spherical case this usually results in [-180,180].\n");
		fprintf(stderr,"\t-E<bx>/<by> sets the option (2) location of end point E.\n");
		fprintf(stderr,"\t-Fflags: Indicate what output you want as one or more of xyzpqrs in any order;\n");
		fprintf(stderr,"\t  where x,y,[z] refer to input data locations and optional values,\n");
		fprintf(stderr,"\t  p,q are the coordinates of x,y in the projection's coordinate system,\n");
		fprintf(stderr,"\t  r,s is the projected position of x,y (taking q = 0) in the (x,y) coordinate system.\n");
		fprintf(stderr,"\t  p,q may be scaled from degrees into kilometers by the -Q option.  See -L, -Q, -W.\n");
		fprintf(stderr,"\t  Note z refers to all input data columns beyond the required x,y\n");
		fprintf(stderr,"\t  [Default is all fields, i.e. -Fxyzpqrs]\n");
		fprintf(stderr,"\t-G means Generate (r,s,p) points along profile every <dist> units. (No input data used.)\n");
		fprintf(stderr,"\t   If E given, will generate from C to E; else must give -L<l_min>/<l_max> for length.\n");
		GMT_explain_option ('H');
		fprintf(stderr,"\t-L Check the Length along the projected track and use only certain points.\n");
		fprintf(stderr,"\t  -Lw will use only those points Within the span from C to E (Must have set -E).\n");
		fprintf(stderr,"\t  -L<l_min>/<l_max> will only use points whose p is [l_min <= p <= l_max].\n");
		fprintf(stderr,"\t  Default uses all points.  Note p = 0 at C and increases toward E in azim direction.\n");
		GMT_explain_option ('M');
		fprintf(stderr,"\t-N means Flat_earth; a cartesian projection is made.  Default is spherical.\n");
		fprintf(stderr,"\t-Q means convert to Map units, so x,y,r,s are degrees,\n");
		fprintf(stderr,"\t  while p,q,dist,l_min,l_max,w_min,w_max are km.\n");
		fprintf(stderr,"\t  If not set, then p,q,dist,l_min,l_max,w_min,w_max are assumed to be in same units as x,y,r,s.\n");
		fprintf(stderr,"\t-S means the output should be Sorted into increasing p value.\n");
		fprintf(stderr,"\t-T<px>/<py> sets the option (3) location of the roTation pole to the projection.\n");
		GMT_explain_option ('V');
		fprintf(stderr,"\t-W Check the width across the projected track and use only certain points.\n");
		fprintf(stderr,"\t  This will use only those points whose q is [w_min <= q <= w_max].\n");
		fprintf(stderr,"\t  Note that q is positive to your LEFT as you walk from C toward E in azim direction.\n");
		GMT_explain_option (':');
		GMT_explain_option ('i');
		GMT_explain_option ('n');
		fprintf(stderr,"\t  Default is 2 input columns (x, y)\n");
		GMT_explain_option ('o');
		GMT_explain_option ('.');
		exit (EXIT_FAILURE);
	}
	
	if ( !(origin_set && nc == 2) ) {
		fprintf (stderr, "%s: GMT SYNTAX ERROR -C option.  Correct syntax: -C<lon0>/<lat0>\n", GMT_program);
		error++;
	}
	if (two_points && ne != 2) {
		fprintf (stderr, "%s: GMT SYNTAX ERROR -E option.  Correct syntax: -E<lon1>/<lat1>\n", GMT_program);
		error++;
	}
	if (pole_set && np != 2) {
		fprintf (stderr, "%s: GMT SYNTAX ERROR -T option.  Correct syntax: -T<lonp>/<latp>\n", GMT_program);
		error++;
	}
	if (check_length && !stay_within && nl != 2) {
		fprintf (stderr, "%s: GMT SYNTAX ERROR -L option.  Correct syntax: -L[w | <min>/<max>]\n", GMT_program);
		error++;
	}
	if (check_width && (nw != 2 || w_min >= w_max)) {
		fprintf (stderr, "%s: GMT SYNTAX ERROR -L option.  Correct syntax: -L[w | <min>/<max>]\n", GMT_program);
		error++;
	}
	if (azimuth < 0.0 || azimuth >= 360.0) {
		fprintf (stderr, "%s: GMT SYNTAX ERROR -A option.  Must specify azimuth in 0-360 degree range\n", GMT_program);
		error++;
	}
	if ( n_definitions != 1) {
		fprintf (stderr, "%s: GMT SYNTAX ERROR: Specify only one of -A, -E, and -T\n", GMT_program);
		error++;
	}
	if ( two_points && (x_a == x_b) && (y_a == y_b) ) {
		fprintf (stderr, "%s: GMT SYNTAX ERROR -E option: Second point must differ from origin!\n", GMT_program);
		error++;
	}
	if ( generate && l_min == l_max && !(two_points)) {	/* We don't know how long to generate  */
		fprintf (stderr, "%s: GMT SYNTAX ERROR -G option: Must also specify -Lmin/max or use -E instead\n", GMT_program);
		error++;
	}
	if ( generate && d_inc <= 0.0) {	/* No increment given  */
		fprintf (stderr, "%s: GMT SYNTAX ERROR -G option: Must specify a positive increment\n", GMT_program);
		error++;
	}
	if (stay_within && !(two_points) ) {	/* Same problem.  */
		fprintf (stderr, "%s: GMT SYNTAX ERROR -L option: Must specify -Lmin/max or use -E instead\n", GMT_program);
		error++;
	}
	if (n_outputs > 7) {
		fprintf (stderr, "%s: GMT SYNTAX ERROR -F option: Too many output columns selected (%d)\n", GMT_program, n_outputs);
		error++;
	}
	if (GMT_io.binary[0] && gmtdefs.io_header) {
		fprintf (stderr, "%s: GMT SYNTAX ERROR.  Binary input data cannot have header -H\n", GMT_program);
		error++;
	}
        if (GMT_io.binary[0] && GMT_io.ncol[0] == 0) GMT_io.ncol[0] = 2;
        if (GMT_io.binary[0] && GMT_io.ncol[0] < 2) {
                fprintf (stderr, "%s: GMT SYNTAX ERROR.  Binary input data (-bi) must have at least 2 columns\n", GMT_program);
		error++;
	}
	if (error) exit (EXIT_FAILURE);

	GMT_put_history (argc, argv);	/* Update .gmtcommands */

	if (GMT_io.binary[0] && gmtdefs.verbose) {
		char *type[2] = {"double", "single"};
		fprintf (stderr, "%s: Expects %d-column %s-precision binary data\n", GMT_program, GMT_io.ncol[0], type[GMT_io.single_precision[0]]);
	}

#ifdef SET_IO_MODE
	GMT_setmode (1);
#endif

	pure_ascii = !(GMT_io.binary[0] || GMT_io.binary[1]);

	if (n_outputs == 0 && !(generate) ) {	/* Generate default -F setting (all) */
		n_outputs = 7;
		for (i = 0; i < 2; i++) output_choice[i] = i;
		output_choice[2] = -1;
		for (i = 3; i < n_outputs; i++) output_choice[i] = i-1;
		find_new_point = TRUE;
	}

	p_data = (struct DATA *) GMT_memory (VNULL, (size_t)n_alloc, sizeof (struct DATA), GMT_program);
	
	d_to_km = 0.001 * 2.0 * M_PI * gmtdefs.ellipse[N_ELLIPSOIDS-1].eq_radius / 360.0;

	if (generate && two_points && (l_min == l_max) ) stay_within = TRUE;	/* Default generate from A to B  */

	/* Set up rotation matrix e for flat earth, or pole and center for spherical; get l_min, l_max if stay_within  */

	if (flat_earth) {
		flat_project_setup(y_a, x_a, y_b, x_b, y_p, x_p, &azimuth, e, two_points, pole_set);
		/* Azimuth is now changed to cartesian theta in radians */
		if (stay_within) {
			l_min = 0.0;
			xx = x_b - x_a;
			yy = y_b - y_a;
			l_max = d_sqrt(xx*xx + yy*yy);
			if (convert_units) l_max *= d_to_km;
		}
	}
	else {
		if (pole_set) {
			oblique_setup(y_p, x_p, pole, y_a, x_a, center, pole_set, rads);
		}
		else {
			sphere_project_setup(y_a, x_a, a, y_b, x_b, b, &azimuth, pole, center, two_points, rads);
		}
		/* Azimuth is now changed to radians  */
		if (stay_within) {
			l_min = 0.0;
			l_max = GMT_dot3v(a,b);
			l_max = d_acos(l_max) * R2D;
			if (convert_units) l_max *= d_to_km;
		}
	}

	/* Now things are initialized.  We will work in degrees for awhile, so we convert things:  */

	if (convert_units) {
		d_inc /= d_to_km;
		l_min /= d_to_km;
		l_max /= d_to_km;
		w_min /= d_to_km;
		w_max /= d_to_km;
	}

	/*  Now we are ready to work  */

	n_used = 0;
	n_total_read = 0;

	if (generate) {	/* Not input data expected, just generate track from arguments given */
		n_outputs = 3;
		output_choice[0] = 4;
		output_choice[1] = 5;
		output_choice[2] = 2;
		out = (double *) GMT_memory (VNULL, (size_t)n_outputs, sizeof (double), GMT_program);

		d_along = l_min;
		while (d_along < l_max) {
			p_data[n_used].a[2] = d_along;
			n_used++;
			d_along = l_min + n_used * d_inc;
			if (n_used == (n_alloc-1)) {
				n_alloc += GMT_CHUNK;
				p_data = (struct DATA *) GMT_memory ((void *)p_data, (size_t)n_alloc, sizeof (struct DATA), GMT_program);
			}
		}
		p_data[n_used].a[2] = l_max;
		n_used ++;

		/* We need to find r,s  */
	
		if (flat_earth) {
			sincos (azimuth, &sin_theta, &cos_theta);
			for (i = 0; i < n_used; i++) {
				p_data[i].a[4] = x_a + p_data[i].a[2] * cos_theta;
				p_data[i].a[5] = y_a + p_data[i].a[2] * sin_theta;
				while (greenwich && p_data[i].a[4] < 0.0) p_data[i].a[4] += 360.0;
				while (dateline && p_data[i].a[4] > 180.0) p_data[i].a[4] -= 360.0;
			}
		}
		else {
			xx = x_a;
			yy = y_a;
			GMT_geo_to_cart(&yy, &xx, x, rads);
			for (i = 0; i < n_used; i++) {
				theta = p_data[i].a[2];
				make_euler_matrix(pole, e, &theta, rads);
				matrix_3v(e,x,xt);
				GMT_cart_to_geo(&yy, &xx, xt, rads);
				p_data[i].a[4] = xx;
				p_data[i].a[5] = yy;
				while (greenwich && p_data[i].a[4] < 0.0) p_data[i].a[4] += 360.0;
				while (dateline && p_data[i].a[4] > 180.0) p_data[i].a[4] -= 360.0;
			}
		}
	
		/* At this stage, all values are still in degrees.  */

		if (convert_units) {
			for (i = 0; i < n_used; i++) {
				p_data[i].a[2] *= d_to_km;
				p_data[i].a[3] *= d_to_km;
			}
		}

		/* Now output generated track */

		if (!GMT_io.binary[1]) {
			if (gmtdefs.io_header) printf("lon\tlat\tdist\n");
	
			for (i = 0; i < n_used; i++) {
				for (j = 0; j < n_outputs; j++) out[j] = p_data[i].a[output_choice[j]];
				GMT_output (GMT_stdout, n_outputs, out);
			}
		}
	}
	
	else {	/* Must read input file */

		ix = (gmtdefs.xy_toggle) ? 1 : 0;	iy = 1 - ix;		/* Set up which columns have x and y */
		n_expected_fields = (GMT_io.ncol[0]) ? GMT_io.ncol[0] : BUFSIZ;

		if (n_files > 0)
			nofile = FALSE;
		else
			n_files = 1;

		n_args = (argc > 1) ? argc : 2;

		for (fno = 1; !done && fno < n_args; fno++) {	/* Loop over input files, if any */
			if (!nofile && argv[fno][0] == '-') continue;
		
			if (nofile) {	/* Just read standard input */
				fp = GMT_stdin;
				done = TRUE;
#ifdef SET_IO_MODE
				GMT_setmode (0);
#endif
			}
			else if ((fp = GMT_fopen (argv[fno], GMT_io.r_mode)) == NULL) {
				fprintf (stderr, "%s: Cannot open file %s\n", GMT_program, argv[fno]);
				continue;
			}

			if (!nofile && gmtdefs.verbose) fprintf (stderr, "%s: Working on file %s\n", GMT_program, argv[fno]);
		
			if (gmtdefs.io_header) {
				fgets (record_str, BUFSIZ, fp);
				sscanf(record_str, "%s %s %s", heading[0], heading[1], heading[6]);
				if (! (heading[6]) ) strcpy(heading[6],"Z");
				strcpy(heading[2],"p");
				strcpy(heading[3],"q");
				strcpy(heading[4],"r");
				strcpy(heading[5],"s");
				for (i = 1; i < gmtdefs.n_header_recs; i++) fgets (record_str, BUFSIZ, fp);
			}
	
			n_fields = GMT_input (fp, &n_expected_fields, &in);
			n_z = n_expected_fields - 2;
			if (n_z == 0 && want_z_output) {
				fprintf (stderr, "%s: No data columns, cannot use z flag in -F\n", GMT_program);
				exit (EXIT_FAILURE);
			}
			n_used = 0;

			while (! (GMT_io.status & GMT_IO_EOF)) {	/* Not yet EOF */
			
				while (GMT_io.status & GMT_IO_SEGMENT_HEADER) {
					GMT_write_segmentheader (GMT_stdout, n_expected_fields);
					n_fields = GMT_input (fp, &n_expected_fields, &in);
				}

				while (! (GMT_io.status & (GMT_IO_SEGMENT_HEADER | GMT_IO_EOF))) {	/* Keep going until FALSE or = 2 segment header */
					if (GMT_io.status & GMT_IO_MISMATCH) {
						fprintf (stderr, "%s: Mismatch between actual (%d) and expected (%d) fields near line %d\n", GMT_program, n_fields, n_expected_fields, n_total_read);
						exit (EXIT_FAILURE);
					}

					xx = in[ix];
					yy = in[iy];
	
					n_total_read ++;
			
					if (flat_earth) {
						x[0] = xx - x_a;
						x[1] = yy - y_a;
						matrix_2v (e,x,xt);
					}
					else {
						oblique_transform(yy, xx, &xt[1], &xt[0], pole, center, rads);
					}

					skip = ((check_length && (xt[0] < l_min || xt[0] > l_max)) || (check_width && (xt[1] < w_min || xt[1] > w_max)));

					if (skip) {
						n_fields = GMT_input (fp, &n_expected_fields, &in);
						continue;
					}

					p_data[n_used].a[0] = xx;
					p_data[n_used].a[1] = yy;
					p_data[n_used].a[2] = xt[0];
					p_data[n_used].a[3] = xt[1];
					if (n_z) {	/* Copy over z column(s) */
						if (pure_ascii) {	/* Must store all text beyond x,y columns */
							p_data[n_used].t = (char *) GMT_memory (VNULL, strlen (GMT_io.current_record), sizeof (char), GMT_program);
							copy_text_from_col3 (GMT_io.current_record, p_data[n_used].t);
						}
						else {
							p_data[n_used].z = (double *) GMT_memory (VNULL, (size_t)n_z, sizeof (double), GMT_program);
							memcpy ((void *)p_data[n_used].z, (void *)&in[2], (size_t)(n_z * sizeof(double)));
						}
					}
					n_used++;
					if (n_used == n_alloc) {
						n_alloc += GMT_CHUNK;
						p_data = (struct DATA *) GMT_memory ((void *)p_data, (size_t)n_alloc, sizeof (struct DATA), GMT_program);
					}

					n_fields = GMT_input (fp, &n_expected_fields, &in);
				}

				if (sort_output) qsort ((void *)p_data, (size_t)n_used, sizeof (struct DATA), compare_distances);

/*				Get here when all data are loaded with p,q and p is in increasing order if desired.  */

				if (find_new_point) {	/* We need to find r,s  */
	
					if (flat_earth) {
						sincos (azimuth, &sin_theta, &cos_theta);
						for (i = 0; i < n_used; i++) {
							p_data[i].a[4] = x_a + p_data[i].a[2] * cos_theta;
							p_data[i].a[5] = y_a + p_data[i].a[2] * sin_theta;
							while (greenwich && p_data[i].a[4] < 0.0) p_data[i].a[4] += 360.0;
							while (dateline && p_data[i].a[4] > 180.0) p_data[i].a[4] -= 360.0;
						}
					}
					else {
						xx = x_a;
						yy = y_a;
						GMT_geo_to_cart(&yy, &xx, x, rads);
						for (i = 0; i < n_used; i++) {
							theta = p_data[i].a[2];
							make_euler_matrix(pole, e, &theta, rads);
							matrix_3v(e,x,xt);
							GMT_cart_to_geo(&yy, &xx, xt, rads);
							p_data[i].a[4] = xx;
							p_data[i].a[5] = yy;
							while (greenwich && p_data[i].a[4] < 0.0) p_data[i].a[4] += 360.0;
							while (dateline && p_data[i].a[4] > 180.0) p_data[i].a[4] -= 360.0;
						}
					}
				}
	
				/* At this stage, all values are still in degrees.  */

				if (convert_units) {
					for (i = 0; i < n_used; i++) {
						p_data[i].a[2] *= d_to_km;
						p_data[i].a[3] *= d_to_km;
					}
				}

				/* Now output  */

				if (!GMT_io.binary[1]) {	/* First do header */
					if (first && gmtdefs.io_header) {
						for (j = 0; j < n_outputs; j++) {
							if (output_choice[j] == -1)
								printf("%s", heading[6]);
							else
								printf("%s", heading[output_choice[j]]);
							(j == (n_outputs - 1)) ? fprintf (GMT_stdout, "\n") : fprintf (GMT_stdout, "\t");
						}
						first = FALSE;
					}
				}
	
				n_items = n_outputs + ((want_z_output && n_z) ? n_z - 1 : 0);
				if (!out) out = (double *) GMT_memory (VNULL, (size_t)n_items, sizeof (double), GMT_program);

				/* Special case for pure ascii since we may pass text */

				if (n_z && pure_ascii) {
					for (i = 0; i < n_used; i++) {
						for (j = 0; j < n_outputs; j++) {
							if (output_choice[j] == -1) {	/* Output all z columns as one string */
								fprintf (GMT_stdout, "%s", p_data[i].t);
								GMT_free ((void *)p_data[i].t);
							}
							else
								fprintf (GMT_stdout, gmtdefs.d_format, p_data[i].a[output_choice[j]]);
							(j == (n_outputs - 1)) ? fprintf (GMT_stdout, "\n") : fprintf (GMT_stdout, "\t");
						}
					}
				}
				else {	/* Any other i/o combination */
					for (i = 0; i < n_used; i++) {
						for (j = k = 0; j < n_outputs; j++) {
							if (output_choice[j] == -1) {	/* Copy over all z columns */
								memcpy ((void *)&out[k], (void *)p_data[i].z, (size_t)(n_z * sizeof (double)));
								GMT_free ((void *)p_data[i].z);
								k += n_z;
							}
							else
								out[k++] = p_data[i].a[output_choice[j]];
						}
						GMT_output (GMT_stdout, n_items, out);
					}
				}

				n_total_used += n_used;
				n_used = 0;

			}

			if (fp != GMT_stdin) GMT_fclose(fp);
		}
	}

	if (gmtdefs.verbose) fprintf(stderr, "%s: %d read, %d used\n", GMT_program, n_total_read, n_total_used);
	
	GMT_free ((void *)p_data);
	GMT_free ((void *)out);
	
	GMT_end (argc, argv);
}

int	compare_distances(const void *point_1, const void *point_2)
{
	double	d_1, d_2;

	d_1 = ((struct DATA *)point_1)->a[2];
	d_2 = ((struct DATA *)point_2)->a[2];

	if (d_1 < d_2)
		return (-1);
	if (d_1 > d_2)
		return (1);
	else
		return (0);
}

void	oblique_setup(double plat, double plon, double *p, double clat, double clon, double *c, int c_given, int rads)
{
	/* routine sets up a unit 3-vector p, the pole of an 
	   oblique projection, given plat, plon, the position 
	   of this pole in the usual coordinate frame.
	   c_given = TRUE means that clat, clon are to be used
	   as the usual coordinates of a point through which the
	   user wants the central meridian of the oblique
	   projection to go.  If such a point is not given, then
	   the central meridian will go through p and the usual
	   N pole.  In either case, a unit 3-vector c is created
	   which is the directed normal to the plane of the central
	   meridian, pointing in the positive normal (east) sense.
	   rads = TRUE if we need to convert plat, plon, clat, clon
	   from degrees to radians.  */
	
	double	s[3];  /* s points to the south pole  */

	s[0] = s[1] = 0.0;
	s[2] = -1.0;

	GMT_geo_to_cart(&plat, &plon, p, rads);
	
	if (c_given) {	/* s points to user's clat, clon  */
		GMT_geo_to_cart(&clat, &clon, s, rads);
	}
	GMT_cross3v(p, s, c);
	GMT_normalize3v(c);
}

void	oblique_transform(double xlat, double xlon, double *x_t_lat, double *x_t_lon, double *p, double *c, int rads)
{
	/* routine takes the point x at conventional (xlat, xlon) and
	   computes the transformed coordinates (x_t_lat, x_t_lon) in
	   an oblique reference frame specified by the unit 3-vectors
	   p (the pole) and c (the directed normal to the oblique
	   central meridian).  p and c have been computed earlier by
	   the routine oblique_setup().  rads = TRUE if lats and lons
	   are in degrees.  */

	double	x[3], p_cross_x[3], temp1, temp2;
	
	GMT_geo_to_cart(&xlat, &xlon, x, rads);

	temp1 = GMT_dot3v(x,p);
	*x_t_lat = d_asin(temp1);

	GMT_cross3v(p,x,p_cross_x);
	GMT_normalize3v(p_cross_x);
	
	temp1 = GMT_dot3v(p_cross_x, c);
	temp2 = GMT_dot3v(x, c);
	*x_t_lon = copysign( d_acos(temp1), temp2);

	if (rads) {
		*x_t_lat *= R2D;
		*x_t_lon *= R2D;
	}
}

void	make_euler_matrix(double *p, double *e, double *theta, int rads)
{
	/* Routine to fill an euler matrix e with the elements
	   needed to rotate a 3-vector about the pole p through
	   an angle theta.  p is a unit 3-vector.  If rads = TRUE,
	   we have to convert theta from degrees into radians before
	   we use it.  */
	
	double	cos_theta, sin_theta, one_minus_cos_theta;
	double	pxsin, pysin, pzsin, temp;
	
	if (rads) {
		*theta *= D2R;
	}
	cos_theta = cos(*theta);
	sin_theta = sin(*theta);
	one_minus_cos_theta = 1.0 - cos_theta;
	
	pxsin = p[0] * sin_theta;
	pysin = p[1] * sin_theta;
	pzsin = p[2] * sin_theta;
	
	temp = p[0] * one_minus_cos_theta;
	e[0] = temp * p[0] + cos_theta;
	e[1] = temp * p[1] - pzsin;
	e[2] = temp * p[2] + pysin;
	
	temp = p[1] * one_minus_cos_theta;
	e[3] = temp * p[0] + pzsin;
	e[4] = temp * p[1] + cos_theta;
	e[5] = temp * p[2] - pxsin;

	temp = p[2] * one_minus_cos_theta;
	e[6] = temp * p[0] - pysin;
	e[7] = temp * p[1] + pxsin;
	e[8] = temp * p[2] + cos_theta;
}

void	matrix_3v(double *a, double *x, double *b)
{
	/* routine to find b, where Ax = b, A is a 3 by 3 square matrix,
	   and x and b are 3-vectors.  A is stored row wise, that is:
	   
	   A = { a11, a12, a13, a21, a22, a23, a31, a32, a33 }  */
	
	b[0] = x[0]*a[0] + x[1]*a[1] + x[2]*a[2];
	b[1] = x[0]*a[3] + x[1]*a[4] + x[2]*a[5];
	b[2] = x[0]*a[6] + x[1]*a[7] + x[2]*a[8];
}

void	matrix_2v(double *a, double *x, double *b)
{
	/* routine to find b, where Ax = b, A is a 2 by 2 square matrix,
	   and x and b are 2-vectors.  A is stored row wise, that is:
	   
	   A = { a11, a12, a21, a22 }  */
	
	b[0] = x[0]*a[0] + x[1]*a[1];
	b[1] = x[0]*a[2] + x[1]*a[3];
}

void	sphere_project_setup(double alat, double alon, double *a, double blat, double blon, double *b, double *azim, double *p, double *c, int two_pts, int rads)
{
	/* routine to initialize a pole vector, p, and a central meridian 
	   normal vector, c, for use in projecting points onto a great circle.
	   
	   The great circle is specified in either one of two ways:
	   if (two_pts), then the user has given two points, a and b,
	   which specify the great circle (directed from a to b);
	   if !(two_pts), then the user has given one point, a, and an azimuth,
	   azim, clockwise from north, which defines the projection.

	   The strategy is to use the oblique_transform operations above,
	   in such a way that the great circle of the projection is the
	   equator of an oblique transform, and the central meridian goes
	   through a.  Then the transformed longitude gives the distance
	   along the projection circle, and the transformed latitude gives
	   the distance normal to the projection circle.

	   If (two_pts), then p = normalized(a X b).  If not, we temporarily
	   create p_temp = normalized(a X n), where n is the north pole.
	   p_temp is then rotated about a through the angle azim to give p.
	   After p is found, then c = normalized(p X a).
	*/

	double	e[9];	/* Euler roatation matrix, if needed  */
	double neg_azim;

	/* First find p vector  */

	if (two_pts) {
		GMT_geo_to_cart(&alat, &alon, a, rads);
		GMT_geo_to_cart(&blat, &blon, b, rads);
		GMT_cross3v(a, b, p);
		GMT_normalize3v(p);
	}
	else {
		GMT_geo_to_cart(&alat, &alon, a, rads);
		b[0] = b[1] = 0.0;	/* set b to north pole  */
		b[2] = 1.0;
		GMT_cross3v(a, b, c);	/* use c for p_temp  */
		GMT_normalize3v(c);
/*		make_euler_matrix(a, e, azim, rads);	*/
		neg_azim = -(*azim);
		make_euler_matrix(a, e, &neg_azim, rads);
		if (rads) *azim *= D2R;
		matrix_3v(e, c, p);	/* c (p_temp) rotates to p  */
	}

	/* Now set c vector  */
	
	GMT_cross3v(p, a, c);
	GMT_normalize3v(c);
}

void	flat_project_setup(double alat, double alon, double blat, double blon, double plat, double plon, double *azim, double *e, int two_pts, BOOLEAN pole_set)
{
	/* Sets up stuff for rotation of cartesian 2-vectors, analogous
	   to the spherical three vector stuff above.  Also change azim
	   to the cartesian theta, counterclockwise from the x axis.  */		

	if (two_pts) {
		*azim = d_atan2((blat - alat), (blon - alon));
	}
	else if (pole_set) {
		*azim = d_atan2((plat - alat), (plon - alon)) - 0.5 * M_PI;
	}
	else {
		*azim = D2R * (90.0 - *azim);
	}
	
	e[0] = e[3] = cos(*azim);
	e[1] = sin(*azim);
	e[3] = -e[1];
}

void copy_text_from_col3 (char *line, char *z_cols)
{	/* returns the input line starting at the 3rd column */

	int i;

	/* First replace any commas with spaces */

	for (i = 0; line[i]; i++) if (line[i] == ',') line[i] = ' ';

	sscanf (line, "%*s %*s %[^\n]", z_cols);
}