File: grdfft.c

package info (click to toggle)
gmt 3.4-3
  • links: PTS
  • area: main
  • in suites: woody
  • size: 3,528 kB
  • ctags: 3,140
  • sloc: ansic: 54,081; sh: 2,552; makefile: 404; asm: 38
file content (1284 lines) | stat: -rw-r--r-- 42,870 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
/*--------------------------------------------------------------------
 *	$Id: grdfft.c,v 1.2 2001/03/01 22:08:26 pwessel Exp $
 *
 *	Copyright (c) 1991-2001 by P. Wessel and W. H. F. Smith
 *	See COPYING file for copying and redistribution conditions.
 *
 *	This program is free software; you can redistribute it and/or modify
 *	it under the terms of the GNU General Public License as published by
 *	the Free Software Foundation; version 2 of the License.
 *
 *	This program is distributed in the hope that it will be useful,
 *	but WITHOUT ANY WARRANTY; without even the implied warranty of
 *	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *	GNU General Public License for more details.
 *
 *	Contact info: gmt.soest.hawaii.edu
 *--------------------------------------------------------------------*/
/*
 *  grdfft.c
 *
 * A program to do various operations
 * on grdfiles in the frequency domain.
 *
 * W.H.F. Smith, 7 March 1990.
 *
 * Version 2.0.2 has option to do power spectral estimates.
 * added by WHFSmith, 4 Feb 1992.
 *
 * 1 Sept 1998:  Fixed bug in -E argv[i][2] should be [i][j].
 *   Note to myself:  users want azimuthal power spectra, and
 *   cross-spectra between two grids.  --whfs
 *
 * Version:	3.4
 */

#include "gmt.h"

#ifndef FSIGNIF
#define FSIGNIF 24
#endif
#define UP_DOWN_CONTINUE 0
#define AZIMUTHAL_DERIVATIVE 1
#define DIFFERENTIATE 2
#define INTEGRATE 3
#define ISOSTASY 4
#define FILTER 5
#define SPECTRUM 6

/* Macro definition ij_data(i,j) finds the array index to an element
	containing the real data(i,j) in the padded complex array:  */

#define	ij_data(i,j) (2*(nx2*((j)+j_data_start)+(i)+i_data_start))


int	narray[2];
int	i, j, k, n, nx2 = 0, ny2 = 0, ndatac, i_data_start, j_data_start;

BOOLEAN	map_units = FALSE, force_narray = FALSE, suggest_narray = FALSE, leave_trend_alone = FALSE, n_user_set = FALSE;

double	data_var, data2_var, delta_kx, delta_ky;
double	a[3];	/* Plane fitting coefficients  */
double	mGal_at_45 = 980619.9203; /* Moritz's 1980 IGF value for gravity in mGal at 45 degrees latitude */

char	*infile = NULL, *outfile = NULL;

struct GRD_HEADER h;
struct F_INFO {
	double	lc[3];		/* Low-cut frequency for r, x, and y	*/
	double	lp[3];		/* Low-pass frequency for r, x, and y	*/
	double	hp[3];		/* High-pass frequency for r, x, and y	*/
	double	hc[3];		/* High-cut frequency for r, x, and y	*/
	double	ltaper[3];	/* Low taper width for r, x, and y	*/
	double	htaper[3];	/* High taper width for r, x, and y	*/
	int	do_this[3];	/* T/F this filter wanted for r, x, and y	*/
	int	set_already;
} f_info;

struct FFT_SUGGESTION {
	int	nx;
	int	ny;
	int	worksize;	/* # single-complex elements needed in work array  */
	int	totalbytes;	/* (8*(nx*ny + worksize))  */
	double	run_time;
	double	rms_rel_err;
}	fft_sug[3];	/* [0] holds fastest, [1] most accurate, [2] least storage  */


float	*datac, *workc;
double	scale_out = 1.0;

int parse_f_string(char *c), read_data(int argc, char **argv), get_prime_factors(int n, int *f), get_non_symmetric_f(int *f, int n);
void do_continuation(double *zlevel), do_azimuthal_derivative(double *azim), do_differentiate(double *par), do_integrate(double *par), do_isostasy(double *par);
void do_filter(void), do_spectrum(double *par, int give_wavelength), remove_plane(void), taper_edges(void);

main (int argc, char **argv)
{

	int	op_count = 0, n_op_count = 0, par_count = 0, n_par = 0, *operation = NULL;
	BOOLEAN error = FALSE, stop, chose_spectrum = FALSE, give_wavelength;
	double	*par = NULL;

	for (i = 0; i < 3; i++) {
		f_info.lc[i] = f_info.lp[i] = -1.0;	/* Set negative, below valid freqency range  */
		f_info.hp[i] = f_info.hc[i] = DBL_MAX;	/* Set huge positive, above valid freqency range  */
		f_info.ltaper[i] = f_info.htaper[i] = 0.0;	/* 1/width of taper, zero when not used  */
		f_info.do_this[i] = FALSE;
	}
	f_info.set_already = FALSE;
	
	argc = GMT_begin (argc, argv);

        for (i = 1; i < argc; i++) {
                if (argv[i][0] == '-') {
                        switch (argv[i][1]) {
                        
				/* Common parameters */
			
				case 'V':
				case '\0':
					error += GMT_get_common_args (argv[i], 0, 0, 0, 0);
					break;
				
				/* Supplemental parameters */
			
                                case 'A':
					n_op_count++;
					operation = (int *) GMT_memory ((void *)operation, (size_t)n_op_count, sizeof(int), GMT_program);
                                        operation[op_count] = AZIMUTHAL_DERIVATIVE;
					op_count++;
					n_par++;
					par = (double *) GMT_memory ((void *)par, (size_t)n_par, sizeof(double), GMT_program);
					if ((sscanf(&argv[i][2], "%lf", &par[par_count])) != 1) {
						fprintf (stderr, "%s: GMT SYNTAX ERROR -A option:  Cannot read azimuth\n", GMT_program);
						error++;
					}
					par_count++;
                                        break;
                                case 'C':
					n_op_count++;
					operation = (int *) GMT_memory ((void *)operation, (size_t)n_op_count, sizeof(int), GMT_program);
                                        operation[op_count] = UP_DOWN_CONTINUE;
					op_count++;
					n_par++;
					par = (double *) GMT_memory ((void *)par, (size_t)n_par, sizeof(double), GMT_program);
					if ((sscanf(&argv[i][2], "%lf", &par[par_count])) != 1) {
						fprintf (stderr, "%s: GMT SYNTAX ERROR -C option:  Cannot read zlevel\n", GMT_program);
						error++;
					}
					par_count++;
                                        break;
                                case 'D':
					n_op_count++;
					operation = (int *) GMT_memory ((void *)operation, (size_t)n_op_count, sizeof(int), GMT_program);
                                        operation[op_count] = DIFFERENTIATE;
					op_count++;
					n_par++;
					par = (double *) GMT_memory ((void *)par, (size_t)n_par, sizeof(double), GMT_program);
                                        if (argv[i][2]) {
						par[par_count] = (argv[i][2] == 'g' || argv[i][2] == 'G') ? mGal_at_45 : atof (&argv[i][2]);
						if (par[par_count] == 0.0) {
							fprintf (stderr, "%s: GMT SYNTAX ERROR -D option:  scale must be nonzero\n", GMT_program);
							error++;
						}
					}
					par_count++;
                                        break;
                                case 'E':
					n_op_count++;
					operation = (int *) GMT_memory ((void *)operation, (size_t)n_op_count, sizeof(int), GMT_program);
                                        operation[op_count] = SPECTRUM;
					op_count++;
					n_par++;
					par = (double *) GMT_memory ((void *)par, (size_t)n_par, sizeof(double), GMT_program);
					par[par_count] = 0.0;
					give_wavelength = FALSE;
					j = 2;
					while(argv[i][j]) {
 						if (argv[i][j] == 'x' || argv[i][j] == 'X')
							par[par_count] = 1.0;
						else if (argv[i][j] == 'y' || argv[i][j] == 'Y')
							par[par_count] = -1.0;
						else if (argv[i][j] == 'w' || argv[i][j] == 'W')
							give_wavelength = TRUE;
						j++;
					}
					par_count++;
					chose_spectrum = TRUE;
                                        break;
                                case 'F':
                                	if (!(f_info.set_already)) {
						n_op_count++;
						operation = (int *) GMT_memory ((void *)operation, (size_t)n_op_count, sizeof(int), GMT_program);
                                        	operation[op_count] = FILTER;
                                        	op_count++;
                                        	f_info.set_already = TRUE;
                                        }
                                        if (parse_f_string(&argv[i][2])) {
						fprintf (stderr, "%s: GMT SYNTAX ERROR -F option: ", GMT_program);
                                        	error++;
                                        }
                                        break;
                                case 'G':
                                        outfile = &argv[i][2];
                                        break;
                                case 'I':
					n_op_count++;
					operation = (int *) GMT_memory ((void *)operation, (size_t)n_op_count, sizeof(int), GMT_program);
                                        operation[op_count] = INTEGRATE;
					op_count++;
					n_par++;
					par = (double *) GMT_memory ((void *)par, (size_t)n_par, sizeof(double), GMT_program);
                                        if (argv[i][2]) {
						par[par_count] = (argv[i][2] == 'g' || argv[i][2] == 'G') ? mGal_at_45 : atof (&argv[i][2]);
						if (par[par_count] == 0.0) {
							fprintf (stderr, "%s: GMT SYNTAX ERROR -I option:  scale must be nonzero\n", GMT_program);
							error++;
						}
					}
					par_count++;
                                        break;
                                case 'L':
                                        leave_trend_alone = TRUE;
                                        break;
                                case 'M':
                                        map_units = TRUE;
                                        break;
                                case 'N':
					if (argv[i][2] == 'f' || argv[i][2] == 'F')
						force_narray = TRUE;
					else if (argv[i][2] == 'q' || argv[i][2] == 'Q')
						suggest_narray = TRUE;
					else {
	                                        sscanf(&argv[i][2], "%d/%d", &nx2, &ny2);
						n_user_set = TRUE;
					}
                                        break;
                                case 'S':
                                        scale_out = (argv[i][2] == 'd' || argv[i][2] == 'D') ? 1.0e6: atof (&argv[i][2]);
                                        break;
                                case 'T':
					n_op_count++;
					operation = (int *) GMT_memory ((void *)operation, (size_t)n_op_count, sizeof(int), GMT_program);
                                        operation[op_count] = ISOSTASY;
					op_count++;
 					n_par += 5;
					par = (double *) GMT_memory ((void *)par, (size_t)n_par, sizeof(double), GMT_program);
                                        n = sscanf (&argv[i][2], "%lf/%lf/%lf/%lf/%lf", &par[par_count],
						&par[par_count+1], &par[par_count+2], &par[par_count+3], &par[par_count+4]);
					for (j = 1, k = 0; j < 5; j++) if (par[par_count+j] < 0.0) k++;
					if (n != 5 || k > 0) {
						fprintf (stderr, "%s: GMT SYNTAX ERROR -T option.  Correct syntax:\n", GMT_program);
						fprintf (stderr, "\t-T<te>/<rhol>/<rhom>/<rhow>/<rhoi>, all densities >= 0\n");
						error++;
					}
					par_count += 5;
                                        leave_trend_alone = TRUE;
                                        break;
                               default:
                                        error = TRUE;
					GMT_default_error (argv[i][1]);
                                        break;
                        }
                }
                else
                        infile = argv[i];
        }

	if (argc == 1 || GMT_quick) {
		fprintf (stderr, "grdfft %s - Perform mathematical operations on grdfiles in the frequency domain\n\n", GMT_VERSION);
		fprintf (stderr,"usage: grdfft <in_grdfile> [-G<out_grdfile>] [-A<azimuth>] [-C<zlevel>]\n");
		fprintf (stderr,"\t[-D[<scale>|g]] [-E[x_or_y][w]] [-F[x_or_y]<lc>/<lp>/<hp>/<hc>] [-I[<scale>|g]] [-L] [-M]\n");
		fprintf (stderr,"\t[-N<stuff>] [-S<scale>] [-T<te/rl/rm/rw/ri>] [-V]\n\n");
		
		if (GMT_quick) exit (EXIT_FAILURE);
		
		fprintf (stderr,"\tin_grdfile is the input netCDF grdfile\n");
		fprintf (stderr, "\tOPTIONS:\n");
		fprintf (stderr,"\t-G filename for output netCDF grdfile\n");
		fprintf (stderr,"\t-A<azimuth> Take azimuthal derivative along line <azimuth> degrees CW from North.\n");
		fprintf (stderr,"\t-C<zlevel>  Continue field upward (+) or downward (-) to zlevel (meters).\n");
		fprintf (stderr,"\t-D Differentiate, i.e., multiply by kr [ * scale].  Use -Dg to get mGal from m]\n");
		fprintf (stderr,"\t-E Estimate spEctrum of r [x] [y].  Write f, power[f], 1 std dev(power[f]) to stdout.\n");
		fprintf (stderr,"\t\tAppend w to write wavelength instead of frequency.\n");
		fprintf (stderr,"\t-F Filter r [x] [y] freq according to four wavelengths <lc>/<lp>/<hp>/<hc>.\n");
		fprintf (stderr,"\t   freq outside <lc>/<hc> are cut; inside <lp>/<hp> are passed, rest are tapered.\n");
		fprintf (stderr,"\t   replace wavelength by - to skip, e.g.  -F-/-/500/100 is a low-pass filter.\n");
		fprintf (stderr,"\t-I Integrate, i.e., devide by kr [ * scale].  Use -Ig to get m from mGal]\n");
		fprintf (stderr,"\t-L Leave trend alone.  Do not remove least squares plane from data.  [Default removes plane].\n");
		fprintf (stderr,"\t-M Map units used.  Convert grid dimensions from degrees to meters.\n");
		fprintf (stderr,"\t-N<stuff>  Choose or inquire about suitable grid dimensions for FFT.\n");
		fprintf (stderr,"\t\t-Nf will force the FFT to use the dimensions of the data.\n");
		fprintf (stderr,"\t\t-Nq will inQuire about more suitable dimensions.\n");
		fprintf (stderr,"\t\t-N<nx>/<ny> will do FFT on array size <nx>/<ny> (Must be >= grdfile size).\n");
		fprintf (stderr,"\t\tDefault chooses dimensions >= data which optimize speed, accuracy of FFT.\n");
		fprintf (stderr,"\t\tIf FFT dimensions > grdfile dimensions, data are extended and tapered to zero.\n");
		fprintf (stderr,"\t-S multiply field by scale after inverse FFT [1.0]\n");
		fprintf (stderr,"\t   Give -Sd to convert deflection of vertical to micro-radians\n");
		fprintf (stderr,"\t-T Compute isostatic response.  Input file is topo load. Append elastic thickness,\n");
		fprintf (stderr,"\t   and densities of load, mantle, water, and infill, all in SI units\n");
		fprintf (stderr,"\t   It also implicitly sets -L\n");
		GMT_explain_option ('V');
		fprintf (stderr,"\tList operations in the order desired for execution.\n");
		exit (EXIT_FAILURE);
	}

	if (!(n_op_count)) {
		fprintf (stderr, "%s: GMT SYNTAX ERROR:  Must specify at least one operation\n", GMT_program);
		error++;
	}
	if (n_user_set && (nx2 <= 0 || ny2 <= 0)) {
		fprintf (stderr, "%s: GMT SYNTAX ERROR -N option:  nx2 and/or ny2 <= 0\n", GMT_program);
		error++;
	}
	if (scale_out == 0.0) {
		fprintf (stderr, "%s: GMT SYNTAX ERROR -S option:  scale must be nonzero\n", GMT_program);
		error++;
	}
	if (!infile) {
		fprintf (stderr, "%s: GMT SYNTAX ERROR:  Must specify input file\n", GMT_program);
		error++;
	}
	if (chose_spectrum && outfile) {
		fprintf (stderr, "%s: GMT SYNTAX ERROR -E option:  -G ignored (stdout used for ASCII output)\n", GMT_program);
		error++;
	}
	if (!chose_spectrum && !outfile) {
		fprintf (stderr, "%s: GMT SYNTAX ERROR -G option:  Must specify output file\n", GMT_program);
		error++;
	}
	if (error) exit (EXIT_FAILURE);

	GMT_put_history (argc, argv);	/* Update .gmtcommands */

	if (read_data(argc, argv) ) {
		fprintf (stderr,"%s: Fatal GMT_memory error.  Exiting.\n", GMT_program);
		exit (EXIT_FAILURE);
	}
	
	/* Check that no NaNs are present */
	
	stop = FALSE;
	for (j = 0; !stop && j < h.ny; j++) for (i = 0; !stop && i < h.nx; i++) stop = GMT_is_fnan (datac[ij_data(i,j)]);
	if (stop) {
		fprintf (stderr, "%s: Input grid cannot have NaNs!\n", GMT_program);
		exit (EXIT_FAILURE);
	}

	if (gmtdefs.verbose) fprintf (stderr, "%s: forward FFT...", GMT_program);
	
	GMT_fourt (datac, narray, 2, -1, 1, workc);

	for (op_count=0, par_count = 0; op_count < n_op_count; op_count++) {
		switch(operation[op_count]) {
			case UP_DOWN_CONTINUE:
				if (gmtdefs.verbose) ((par[par_count] < 0.0) ? fprintf (stderr, "downward continuation...") : fprintf (stderr, "upward continuation..."));
				do_continuation (&par[par_count]);
				par_count++;
				break;
			case AZIMUTHAL_DERIVATIVE:
				if (gmtdefs.verbose) fprintf (stderr, "azimuthal derivative...");
				do_azimuthal_derivative (&par[par_count]);
				par_count++;
				break;
			case DIFFERENTIATE:
				if (gmtdefs.verbose) fprintf (stderr, "differentiate...");
				do_differentiate (&par[par_count]);
				par_count++;
				break;
			case INTEGRATE:
				if (gmtdefs.verbose) fprintf (stderr, "integrate...");
				do_integrate (&par[par_count]);
				par_count++;
				break;
			case ISOSTASY:
				if (gmtdefs.verbose) fprintf (stderr, "isostasy...");
				do_isostasy (&par[par_count]);
				par_count += 5;
				break;
			case FILTER:
				if (gmtdefs.verbose) fprintf (stderr, "filter...");
				do_filter ();
				break;
			case SPECTRUM:
				if (gmtdefs.verbose) fprintf (stderr, "spectrum...");
				do_spectrum (&par[par_count], give_wavelength);
				par_count += 2;
				break;
		}
	}

	if (outfile) {

		if (gmtdefs.verbose) fprintf (stderr, "inverse FFT...");

		GMT_fourt (datac, narray, 2, 1, 1, workc);

		scale_out *= (2.0 / ndatac);
		for (i = 0; i < ndatac; i+= 2) datac[i] *= (float)scale_out;

		/* The data are in the middle of the padded array:  */

		if (GMT_write_grd (outfile, &h, datac, h.x_min, h.x_max, h.y_min, h.y_max, GMT_pad, TRUE)) {
			fprintf (stderr, "%s: Error writing file %s\n", GMT_program, outfile);
			exit (EXIT_FAILURE);
		}
	}
	
	GMT_free ((void *)workc);
	GMT_free ((void *)datac);

	if (gmtdefs.verbose) fprintf (stderr, "Done\n");

	GMT_end (argc, argv);

	exit (EXIT_SUCCESS);
}

read_data(int argc, char **argv)
{
	int	worksize, factors[32];
	double	tdummy, edummy;
	void	suggest_fft(int nx, int ny, struct FFT_SUGGESTION *fft_sug, int do_print);
	void	fourt_stats(int nx, int ny, int *f, double *r, int *s, double *t);

	if (GMT_read_grd_info (infile, &h)) {
		fprintf (stderr, "%s: Error opening file %s\n", GMT_program, infile);
		exit (EXIT_FAILURE);
	}
	
	GMT_grd_init (&h, argc, argv, TRUE);

	/* Get dimensions as may be appropriate:  */
	if (n_user_set) {
		if (nx2 < h.nx || ny2 < h.ny) {
			fprintf(stderr,"%s: Error: You specified -Nnx/ny smaller than input grdfile.  Ignored.\n", GMT_program);
			n_user_set = FALSE;
		}
	}
	if (!(n_user_set) ) {
		if (force_narray) {
			nx2 = h.nx;
			ny2 = h.ny;
		}
		else {
			suggest_fft(h.nx, h.ny, fft_sug, (gmtdefs.verbose || suggest_narray));
			if (fft_sug[1].totalbytes < fft_sug[0].totalbytes) {
				/* The most accurate solution needs same or less storage
				 * as the fastest solution; use the most accurate's dimensions:  */
				nx2 = fft_sug[1].nx;
				ny2 = fft_sug[1].ny;
			}
			else {
				/* Use the sizes of the fastest solution  */
				nx2 = fft_sug[0].nx;
				ny2 = fft_sug[0].ny;
			}
		}
	}

	/* Get here when nx2 and ny2 are set to the vals we will use.  */
	narray[0] = nx2;
	narray[1] = ny2;
	fourt_stats(nx2, ny2, factors, &edummy, &worksize, &tdummy);
	if (gmtdefs.verbose) fprintf(stderr,"%s:  Data dimension %d %d\tFFT dimension %d %d\n", GMT_program,
		h.nx, h.ny, nx2, ny2);

	/* Make an array of floats 2 * nx2 * ny2 for complex data:  */
	ndatac = 2 * nx2 * ny2;
        datac = (float *) GMT_memory (VNULL, (size_t)ndatac, sizeof(float), GMT_program);
	memset ((void *)datac, 0, (size_t)(ndatac*sizeof(float))); 
	if (worksize) {
                if (worksize < nx2) worksize = nx2;
                if (worksize < ny2) worksize = ny2;
		worksize *= 2;
        	workc = (float *) GMT_memory (VNULL, (size_t)worksize, sizeof(float), GMT_program);
		memset ((void *)workc, 0, (size_t)(worksize*sizeof(float))); 
	}
	else {
		workc = (float *) GMT_memory (VNULL, (size_t)4, sizeof(float), GMT_program);
		memset ((void *)workc, 0, (size_t)(4*sizeof(float))); 
	}

	/* Put the data in the middle of the padded array:  */

	i_data_start = GMT_pad[0] = (nx2 - h.nx)/2;	/* zero if nx2 < h.nx+1  */
	j_data_start = GMT_pad[3] = (ny2 - h.ny)/2;
	GMT_pad[1] = nx2 - h.nx - GMT_pad[0];
	GMT_pad[2] = ny2 - h.ny - GMT_pad[3];

	if (GMT_read_grd (infile, &h, datac, h.x_min, h.x_max, h.y_min, h.y_max, GMT_pad, TRUE)) {
		fprintf (stderr, "%s: Error reading file %s\n", GMT_program, infile);
		return (-1);
	}

	if (!(leave_trend_alone) )remove_plane();
	if (!(force_narray) )taper_edges();

	delta_kx = 2 * M_PI / (nx2 * h.x_inc);
	delta_ky = 2 * M_PI / (ny2 * h.y_inc);
	if (map_units) {
		/* Give delta_kx, delta_ky units of 2pi/meters  */
		double tmp;
		tmp = 2.0 * M_PI * gmtdefs.ellipse[N_ELLIPSOIDS-1].eq_radius / 360.0;	/* GRS-80 sphere m/degree */
		delta_kx /= (tmp * cos(0.5 * (h.y_min + h.y_max) * D2R) );
		delta_ky /= tmp;
	}

	return(0);
}

void	remove_plane(void)
{
	/* Remove the best-fitting plane by least squares.

	Let plane be z = a0 + a1 * x + a2 * y.  Choose the
	center of x,y coordinate system at the center of 
	the array.  This will make the Normal equations 
	matrix G'G diagonal, so solution is trivial.  Also,
	spend some multiplications on normalizing the 
	range of x,y into [-1,1], to avoid roundoff error.  */

	int	one_or_zero;
	double	x_half_length, one_on_xhl, y_half_length, one_on_yhl;
	double	sumx2, sumy2, x, y, z;

	one_or_zero = (h.node_offset) ? 0 : 1;
	x_half_length = 0.5 * (h.nx - one_or_zero);
	one_on_xhl = 1.0 / x_half_length;
	y_half_length = 0.5 * (h.ny - one_or_zero);
	one_on_yhl = 1.0 / y_half_length;

	sumx2 = sumy2 = data_var = 0.0;
	a[2] = a[1] = a[0] = 0.0;

	for (j = 0; j < h.ny; j++) {
		y = one_on_yhl * (j - y_half_length);
		for (i = 0; i < h.nx; i++) {
			x = one_on_xhl * (i - x_half_length);
			z = datac[ij_data(i,j)];
			a[0] += z;
			a[1] += z*x;
			a[2] += z*y;
			sumx2 += x*x;
			sumy2 += y*y;
		}
	}
	a[0] /= (h.nx*h.ny);
	a[1] /= sumx2;
	a[2] /= sumy2;
	for (j = 0; j < h.ny; j++) {
		y = one_on_yhl * (j - y_half_length);
		for (i = 0; i < h.nx; i++) {
			x = one_on_xhl * (i - x_half_length);
			datac[ij_data(i,j)] -= (float)(a[0] + a[1]*x + a[2]*y);
			data_var += (datac[ij_data(i,j)] * datac[ij_data(i,j)]);
		}
	}
	data_var = sqrt(data_var / (h.nx*h.ny - 1));
	/* Rescale a1,a2 into user's units, in case useful later:  */
	a[1] *= (2.0/(h.x_max - h.x_min));
	a[2] *= (2.0/(h.y_max - h.y_min));
	if(gmtdefs.verbose)fprintf (stderr,"%s: Plane removed.  Mean, S.D., Dx, Dy:  %.8lg\t%.8lg\t%.8lg\t%.8lg\n", GMT_program, a[0],data_var,a[1],a[2]);
}

void	taper_edges (void)
{
	int	im, jm, il1, ir1, il2, ir2, jb1, jb2, jt1, jt2;
	double	scale, cos_wt;

	/* Note that if nx2 = h.nx+1 and ny2 = h.ny + 1, then this routine
		will do nothing; thus a single row/column of zeros may be
		added to the bottom/right of the input array and it cannot
		be tapered.  But when (nx2 - h.nx)%2 == 1 or ditto for y,
		this is zero anyway.  */


	/* First reflect about xmin and xmax, point symmetric about edge point:  */

	for (im = 1; im <= i_data_start; im++) {
		il1 = -im;	/* Outside xmin; left of edge 1  */
		ir1 = im;	/* Inside xmin; right of edge 1  */
		il2 = il1 + h.nx - 1;	/* Inside xmax; left of edge 2  */
		ir2 = ir1 + h.nx - 1;	/* Outside xmax; right of edge 2  */
		for (j = 0; j < h.ny; j++) {
			datac[ij_data(il1,j)] = (float)2.0*datac[ij_data(0,j)] - datac[ij_data(ir1,j)];
			datac[ij_data(ir2,j)] = (float)2.0*datac[ij_data((h.nx-1),j)] - datac[ij_data(il2,j)];
		}
	}

	/* Next, reflect about ymin and ymax.
		At the same time, since x has been reflected,
		we can use these vals and taper on y edges:  */

	scale = M_PI / (j_data_start + 1);

	for (jm = 1; jm <= j_data_start; jm++) {
		jb1 = -jm;	/* Outside ymin; bottom side of edge 1  */
		jt1 = jm;	/* Inside ymin; top side of edge 1  */
		jb2 = jb1 + h.ny - 1;	/* Inside ymax; bottom side of edge 2  */
		jt2 = jt1 + h.ny - 1;	/* Outside ymax; bottom side of edge 2  */
		cos_wt = 0.5 * (1.0 + cos(jm * scale) );
		for (i = -i_data_start; i < nx2 - i_data_start; i++) {
			datac[ij_data(i,jb1)] = (float)(cos_wt * (2.0*datac[ij_data(i,0)] - datac[ij_data(i,jt1)]));
			datac[ij_data(i,jt2)] = (float)(cos_wt * (2.0*datac[ij_data(i,(h.ny-1))] - datac[ij_data(i,jb2)]));
		}
	}

	/* Now, cos taper the x edges:  */

	scale = M_PI / (i_data_start + 1);
	for (im = 1; im <= i_data_start; im++) {
		il1 = -im;
		ir1 = im;
		il2 = il1 + h.nx - 1;
		ir2 = ir1 + h.nx - 1;
		cos_wt = 0.5 * (1.0 + cos(im * scale) );
		for (j = -j_data_start; j < ny2 - j_data_start; j++) {
			datac[ij_data(il1,j)] *= (float)cos_wt;
			datac[ij_data(ir2,j)] *= (float)cos_wt;
		}
	}
}

double	kx(int k)
{
	/* Return the value of kx given k,
		where kx = 2 pi / lambda x,
		and k refers to the position
		in the datac array, datac[k].  */

	int	ii;

	ii = ((int)(k/2))%nx2;
	if (ii > nx2/2) ii -= nx2;
	return(ii * delta_kx);
}

double	ky(int k)
{
	/* Return the value of ky given k,
		where ky = 2 pi / lambda y,
		and k refers to the position
		in the datac array, datac[k].  */

	int	jj;

	jj = ((int)(k/2))/nx2;
	if (jj > ny2/2) jj -= ny2;
	return(jj * delta_ky);
}

double	modk(int k)
{
	/* Return the value of sqrt(kx*kx + ky*ky),
		given k, where k is array position.  */

	return (hypot (kx(k), ky(k)));
}

void	do_differentiate (double *par)
{
	int	k;
	double scale, fact;

	/* Differentiate in frequency domain by multiplying by kr [scale optional] */
	
	scale = (*par != 0.0) ? *par : 1.0;
	datac[0] = datac[1] = 0.0;
	for (k = 2; k < ndatac; k+= 2) {
		fact = scale * modk(k);
		datac[k] *= (float)fact;
		datac[k+1] *= (float)fact;
	}
}

void	do_integrate (double *par)
{
	/* Integrate in frequency domain by deviding by kr [scale optional] */
	int	k;
	double fact, scale;

	scale = (*par != 0.0) ? *par : 1.0;
	datac[0] = datac[1] = 0.0;
	for (k = 2; k < ndatac; k+= 2) {
		fact = 1.0 / (scale * modk(k) );
		datac[k] *= (float)fact;
		datac[k+1] *= (float)fact;
	}
}

void	do_continuation (double *zlevel)
{
	int	k;
	double tmp;

	/* If z is positive, the field will be upward continued using exp[- k z].  */

	for (k = 2; k < ndatac; k+= 2) {
		tmp = exp (-(*zlevel) * modk(k) );
		datac[k] *= (float)tmp;
		datac[k+1] *= (float)tmp;
	}
}

void	do_azimuthal_derivative (double *azim)
{
	int	k;
	float	tempr, tempi, fact;
	double cos_azim, sin_azim;

	cos_azim = cos ((*azim) * D2R);
	sin_azim = sin ((*azim) * D2R);

	datac[0] = datac[1] = 0.0;
	for (k = 2; k < ndatac; k+= 2) {
		fact = (float)(sin_azim * kx(k) + cos_azim * ky(k));
		tempr = -(datac[k+1] * fact);
		tempi = (datac[k] * fact);
		datac[k] = tempr;
		datac[k+1] = tempi;
	}
}

void	do_isostasy (double *par)
{

	/* Do the isostatic response function convolution in the Freq domain.
	All units assumed to be in SI (that is kx, ky, modk wavenumbers in m**-1,
	densities in kg/m**3, Te in m, etc.
	rw, the water density, is used to set the Airy ratio and the restoring
	force on the plate (rm - ri)*gravity if ri = rw; so use zero for topo in air.  */
	int	k;
	double	airy_ratio, rigidity_d, d_over_restoring_force, mk, k2, k4, transfer_fn;

	double	te;	/* Elastic thickness, SI units (m)  */
	double	rl;	/* Load density, SI units  */
	double	rm;	/* Mantle density, SI units  */
	double	rw;	/* Water density, SI units  */
	double	ri;	/* Infill density, SI units  */
	
	double	youngs_modulus = 1.0e11;	/* Pascal = Nt/m**2  */
	double	normal_gravity = 9.80619203;	/* m/s**2  */
	double	poissons_ratio = 0.25;

	te = par[0];	rl = par[1];	rm = par[2];	rw = par[3];	ri = par[4];
	rigidity_d = (youngs_modulus * te * te * te) / (12.0 * (1.0 - poissons_ratio * poissons_ratio));
	d_over_restoring_force = rigidity_d / ( (rm - ri) * normal_gravity);
	airy_ratio = -(rl - rw)/(rm - ri);

	if (te == 0.0) {	/* Airy isostasy; scale global variable scale_out and return */
		scale_out *= airy_ratio;
		return;
	}
	
	for (k = 0; k < ndatac; k+= 2) {
		mk = modk(k);
		k2 = mk * mk;
		k4 = k2 * k2;
		transfer_fn = airy_ratio / ( (d_over_restoring_force * k4) + 1.0);
		datac[k] *= (float)transfer_fn;
		datac[k+1] *= (float)transfer_fn;
	}
}

void	do_filter(void)
{
	int	k;
	double	weight, f_wt(int k);
	for (k = 0; k < ndatac; k += 2) {
		weight = f_wt(k);
		datac[k] *= (float)weight;
		datac[k+1] *= (float)weight;
	}
}

double	f_wt(int k)
{
	double	freq, return_value = 1.0;
	int	j;
	
	/* Always return immediately when zero weight encountered.  */
	
	for (j = 0; j < 3; j++) {
		if (!(f_info.do_this[j])) continue;
		switch (j) {
			case 0:
				freq = modk(k);
				break;
			case 1:
				freq = kx(k);
				break;
			case 2:
				freq = ky(k);
				break;
		}
		if (freq <= f_info.lc[j] || freq >= f_info.hc[j])
			/* In fully cut range.  Weight is zero.  */
			return(0.0);
		else if (freq > f_info.lc[j] && freq < f_info.lp[j])
			return_value *= 0.5 * (1.0 + cos (M_PI * (freq - f_info.lp[j]) * f_info.ltaper[j]));
		else if (freq > f_info.hp[j] && freq < f_info.hc[j])
			return_value *= 0.5 * (1.0 + cos (M_PI * (freq - f_info.hp[j]) * f_info.htaper[j]));
		/* Else freq is in the fully passed range, so weight is multiplied by 1.0  */
	}

	/* Get here when all weights have been multiplied on return_value:  */
	
	return(return_value);
}

int	parse_f_string(char *c)
{
	int	i, j, n_tokens, descending;
	double	fourvals[4];
	char	line[256], *p;
	
	strcpy(line, c);
	i = j = 0;	/* j is Filter type:  r=0, x=1, y=2  */
	
	if (line[i] == 'x') {
		j = 1;
		i++;
	}
	else if (line[i] == 'y') {
		j = 2;
		i++;
	}
	
	f_info.do_this[j] = TRUE;
	
	n_tokens = 0;
	p = strtok(&line[i],"/");
	while (p) {
		if (n_tokens > 3) {
			fprintf(stderr,"%s: Too many slashes in -F.\n", GMT_program);
			return(TRUE);
		}
		if(p[0] == '-') {
			fourvals[n_tokens] = -1.0;
		}
		else {
			if ((sscanf(p, "%lf", &fourvals[n_tokens])) != 1) {
				fprintf(stderr,"%s:  Cannot read token %d.\n", GMT_program, n_tokens);
				return(TRUE);
			}
		}
		n_tokens++;
		p = strtok(CNULL, "/");
	}
	
	if (n_tokens != 4) {
		fprintf(stderr,"%s: -F Cannot find 4 tokens separated by slashes.\n", GMT_program);
		return(TRUE);
	}

	descending = TRUE;
	for (i = 1; i < 4; i++) {
		if (fourvals[i] == -1.0 || fourvals[i-1] == -1.0) continue;
		if (fourvals[i] > fourvals[i-1]) descending = FALSE;
	}
	if (!(descending)) {
		fprintf(stderr,"%s: -F Wavelengths are not in descending order.\n", GMT_program);
		return(TRUE);
	}
	if ( (fourvals[0] * fourvals[1]) < 0.0 || (fourvals[2] * fourvals[3]) < 0.0) {
		fprintf(stderr,"%s: -F Pass/Cut specification error.\n", GMT_program);
		return(TRUE);
	}
	
	/* Now everything is OK  */
	
	if (fourvals[0] >= 0.0 || fourvals[1] >= 0.0) {	/* Lower end values are set  */
		f_info.lc[j] = (2.0 * M_PI)/fourvals[0];
		f_info.lp[j] = (2.0 * M_PI)/fourvals[1];
		if (fourvals[0] != fourvals[1]) f_info.ltaper[j] = 1.0/(f_info.lc[j] - f_info.lp[j]);
	}
	
	if (fourvals[2] >= 0.0 || fourvals[3] >= 0.0) {	/* Higher end values are set  */
		f_info.hp[j] = (2.0 * M_PI)/fourvals[2];
		f_info.hc[j] = (2.0 * M_PI)/fourvals[3];
		if (fourvals[2] != fourvals[3]) f_info.htaper[j] = 1.0/(f_info.hc[j] - f_info.hp[j]);
	}
	
	return(FALSE);
}

void	do_spectrum(double *par, int give_wavelength)
{
	/* This is modeled on the 1-D case, using the following ideas:
	 *	In 1-D, we ensemble average over samples of length L = 
	 *	n * dt.  This gives n/2 power spectral estimates, at
	 *	frequencies i/L, where i = 1, n/2.  If we have a total
	 *	data set of ndata, we can make nest=ndata/n independent
	 *	estimates of the power.  Our standard error is then
	 *	1/sqrt(nest).
	 *	In making 1-D estimates from 2-D data, we may choose
	 *	n and L from nx2 or ny2 and delta_kx, delta_ky as 
	 *	appropriate.  In this routine, we are giving the sum over
	 * 	all frequencies in the other dimension; that is, an
	 *	approximation of the integral.
	 */

	int	k, nk, nused, ifreq;
	double	delta_k, r_delta_k, freq, *power, eps_pow;
	PFD	get_k;
	char	format[64];
	/*  Added by WHFS in version 3.001 to normalize power  :  */
	double	powfactor;

	if (*par > 0.0) {
		/* X spectrum desired  */
		delta_k = delta_kx;
		nk = nx2/2;
		get_k = (PFD)kx;
	}
	else if (*par < 0.0) {
		/* Y spectrum desired  */
		delta_k = delta_ky;
		nk = ny2/2;
		get_k = (PFD)ky;
	}
	else {
		/* R spectrum desired  */
		if (delta_kx < delta_ky) {
			delta_k = delta_kx;
			nk = nx2/2;
		}
		else {
			delta_k = delta_ky;
			nk = ny2/2;
		}
		get_k = (PFD)modk;
	}

	/* Get an array for summing stuff:  */
	power = (double *) GMT_memory (VNULL, (size_t)nk, sizeof(double), GMT_program);
	for (k = 0; k < nk; k++) power[k] = 0.0;

	/* Loop over it all, summing and storing, checking range for r:  */

	r_delta_k = 1.0 / delta_k;
	
	for (nused = 0, k = 2; k < ndatac; k+= 2) {
		freq = (*get_k)(k);
		ifreq = irint(fabs(freq)*r_delta_k) - 1;
		if (ifreq < 0) ifreq = 0;	/* Might happen when doing r spectrum  */
		if (ifreq >= nk) continue;	/* Might happen when doing r spectrum  */
		power[ifreq] += (datac[k]*datac[k] + datac[k+1]*datac[k+1]);
		nused++;
	}

	/* Now get here when array is summed.  */
	eps_pow = 1.0/sqrt((double)nused/(double)nk);
	delta_k /= (2.0*M_PI);	/* Write out frequency, not wavenumber  */
	sprintf (format, "%s\t%s\t%s\n\0", gmtdefs.d_format, gmtdefs.d_format, gmtdefs.d_format);
	powfactor = 4.0 / pow ((double)ndatac, 2.0);
	for (k = 0; k < nk; k++) {
		freq = (k + 1) * delta_k;
		if (give_wavelength) freq = 1.0/freq;
		power[k] *= powfactor;
		fprintf (GMT_stdout, format, freq, power[k], eps_pow * power[k]);
	}
}

void	fourt_stats(int nx, int ny, int *f, double *r, int *s, double *t)
{
	/* Find the proportional run time, t, and rms relative error, r,
	 * of a Fourier transform of size nx,ny.  Also gives s, the size
	 * of the workspace that will be needed by the transform.
	 * To use this routine for a 1-D transform, set ny = 1.
	 * 
	 * This is all based on the comments in Norman Brenner's code
	 * FOURT, from which our C codes are translated.
	 * Brenner says:
	 * r = 3 * pow(2, -FSIGNIF) * sum{ pow(prime_factors, 1.5) }
	 * where FSIGNIF is the smallest bit in the floating point fraction.
	 * 
	 * Let m = largest prime factor in the list of factors.
	 * Let p = product of all primes which appear an odd number of
	 * times in the list of prime factors.  Then the worksize needed
	 * s = max(m,p).  However, we know that if n is radix 2, then no
	 * work is required; yet this formula would say we need a worksize
	 * of at least 2.  So I will return s = 0 when max(m,p) = 2.
	 *
	 * I have two different versions of the comments in FOURT, with
	 * different formulae for t.  The simple formula says 
	 * 	t = n * (sum of prime factors of n).
	 * The more complicated formula gives coefficients in microsecs
	 * on a cdc3300 (ancient history, but perhaps proportional):
	 *	t = 3000 + n*(500 + 43*s2 + 68*sf + 320*nf),
	 * where s2 is the sum of all factors of 2, sf is the sum of all
	 * factors greater than 2, and nf is the number of factors != 2.
	 * We know that factors of 2 are very good to have, and indeed,
	 * Brenner's code calls different routines depending on whether
	 * the transform is of size 2 or not, so I think that the second
	 * formula is more correct, using proportions of 43:68 for 2 and
	 * non-2 factors.  So I will use the more complicated formula.
	 * However, I realize that the actual numbers are wrong for today's
	 * architectures, and the relative proportions may be wrong as well.
	 * 
	 * W. H. F. Smith, 26 February 1992.
	 *  */

	int	n_factors, i, ntotal, sum2, sumnot2, nnot2;
	int	nonsymx, nonsymy, nonsym, storage;
	double	err_scale, sig_bits = FSIGNIF;


	/* Find workspace needed.  First find non_symmetric factors in nx, ny  */
	n_factors = get_prime_factors(nx, f);
	nonsymx = get_non_symmetric_f(f, n_factors);
	n_factors = get_prime_factors(ny, f);
	nonsymy = get_non_symmetric_f(f, n_factors);
	nonsym = MAX(nonsymx, nonsymy);

	/* Now get factors of ntotal  */
	ntotal = nx * ny;
        n_factors = get_prime_factors(ntotal, f);
	storage = MAX(nonsym, f[n_factors - 1]);
	if (storage == 2)
		*s = 0;
	else
		*s = storage;

	/* Now find time and error estimates:  */

	err_scale = 0.0;
	sum2 = 0;
	sumnot2 = 0;
	nnot2 = 0;
	for(i = 0; i < n_factors; i++) {
		if (f[i] == 2)
			sum2 += f[i];
		else {
			sumnot2 += f[i];
			nnot2++;
		}
		err_scale += pow((double)f[i], 1.5);
	}
	*t = 1.0e-06*(3000.0 + ntotal * (500.0 + 43.0*sum2 + 68.0*sumnot2 + 320.0*nnot2));
	*r = err_scale * 3.0 * pow(2.0, -sig_bits);
	return;
} 

int	get_non_symmetric_f(int *f, int n)
{
	/* Return the product of the non-symmetric factors in f[]  */
	int	i = 0, j = 1, retval = 1;

	if (n == 1) return(f[0]);

	while(i < n) {
		while(j < n && f[j] == f[i]) j++;
		if ((j-i)%2) retval *= f[i];
		i = j;
		j = i + 1;
	}
	if (retval == 1) retval = 0;	/* There are no non-sym factors  */
	return(retval);
}

void	suggest_fft(int nx, int ny, struct FFT_SUGGESTION *fft_sug, int do_print)
{
	int	f[64], xstop, ystop;
	int	nx_best_t, ny_best_t;
	int	nx_best_e, ny_best_e;
	int	nx_best_s, ny_best_s;
        int     nxg, nyg;       /* Guessed by this routine  */
        int     nx2, ny2, nx3, ny3, nx5, ny5;   /* For powers  */
	double	current_time, best_time, given_time, s_time, e_time;
	int	current_space, best_space, given_space, e_space, t_space;
	double	current_err, best_err, given_err, s_err, t_err;
	void	fourt_stats(int nx, int ny, int *f, double *r, int *s, double *t);


	fourt_stats(nx, ny, f, &given_err, &given_space, &given_time);
	given_space += nx*ny;
	given_space *= 8;
	if (do_print) fprintf(stderr,"%s:  Data dimension\t%d %d\ttime factor %.8lg\trms error %.8le\tbytes %d\n", GMT_program,
		nx, ny, given_time, given_err, given_space);

	best_err = s_err = t_err = given_err;
	best_time = s_time = e_time = given_time;
	best_space = t_space = e_space = given_space;
	nx_best_e = nx_best_t = nx_best_s = nx;
	ny_best_e = ny_best_t = ny_best_s = ny;

	xstop = 2 * nx;
	ystop = 2 * ny;

        for (nx2 = 2; nx2 <= xstop; nx2 *= 2) {
          for (nx3 = 1; nx3 <= xstop; nx3 *= 3) {
            for (nx5 = 1; nx5 <= xstop; nx5 *= 5) {
                nxg = nx2 * nx3 * nx5;
                if (nxg < nx || nxg > xstop) continue;

                for (ny2 = 2; ny2 <= ystop; ny2 *= 2) {
                  for (ny3 = 1; ny3 <= ystop; ny3 *= 3) {
                    for (ny5 = 1; ny5 <= ystop; ny5 *= 5) {
                        nyg = ny2 * ny3 * ny5;
                        if (nyg < ny || nyg > ystop) continue;

			fourt_stats(nxg, nyg, f, &current_err, &current_space, &current_time);
			current_space += nxg*nyg;
			current_space *= 8;
			if (current_err < best_err) {
				best_err = current_err;
				nx_best_e = nxg;
				ny_best_e = nyg;
				e_time = current_time;
				e_space = current_space;
			}
			if (current_time < best_time) {
				best_time = current_time;
				nx_best_t = nxg;
				ny_best_t = nyg;
				t_err = current_err;
				t_space = current_space;
			}
			if (current_space < best_space) {
				best_space = current_space;
				nx_best_s = nxg;
				ny_best_s = nyg;
				s_time = current_time;
				s_err = current_err;
			}

		    }
		  }
		}

	    }
	  }
	}

	if (do_print) {
		fprintf(stderr,"%s:  Highest speed\t%d %d\ttime factor %.8lg\trms error %.8le\tbytes %d\n", GMT_program,
			nx_best_t, ny_best_t, best_time, t_err, t_space);
		fprintf(stderr,"%s:  Most accurate\t%d %d\ttime factor %.8lg\trms error %.8le\tbytes %d\n", GMT_program,
			nx_best_e, ny_best_e, e_time, best_err, e_space);
		fprintf(stderr,"%s:  Least storage\t%d %d\ttime factor %.8lg\trms error %.8le\tbytes %d\n", GMT_program,
			nx_best_s, ny_best_s, s_time, s_err, best_space);
	}
	/* Fastest solution:  */
	fft_sug[0].nx = nx_best_t;
	fft_sug[0].ny = ny_best_t;
	fft_sug[0].worksize = (t_space/8) - (nx_best_t * ny_best_t);
	fft_sug[0].totalbytes = t_space;
	fft_sug[0].run_time = best_time;
	fft_sug[0].rms_rel_err = t_err;
	/* Most accurate solution:  */
	fft_sug[1].nx = nx_best_e;
	fft_sug[1].ny = ny_best_e;
	fft_sug[1].worksize = (e_space/8) - (nx_best_e * ny_best_e);
	fft_sug[1].totalbytes = e_space;
	fft_sug[1].run_time = e_time;
	fft_sug[1].rms_rel_err = best_err;
	/* Least storage solution:  */
	fft_sug[2].nx = nx_best_s;
	fft_sug[2].ny = ny_best_s;
	fft_sug[2].worksize = (best_space/8) - (nx_best_s * ny_best_s);
	fft_sug[2].totalbytes = best_space;
	fft_sug[2].run_time = s_time;
	fft_sug[2].rms_rel_err = s_err;

	return;
}

int	get_prime_factors(int n, int *f)
{
	/* Fills the integer array f with the prime factors of n.
	 * Returns the number of locations filled in f, which is
	 * one if n is prime.
	 *
	 * f[] should have been malloc'ed to enough space before
	 * calling prime_factors().  We can be certain that f[32]
	 * is enough space, for if n fits in a long, then n < 2**32,
	 * and so it must have fewer than 32 prime factors.  I think
	 * that in general, ceil(log2((double)n)) is enough storage
	 * space for f[].
	 *
	 * Tries 2,3,5 explicitly; then alternately adds 2 or 4
	 * to the previously tried factor to obtain the next trial
	 * factor.  This is done with the variable two_four_toggle.
	 * With this method we try 7,11,13,17,19,23,25,29,31,35,...
	 * up to a maximum of sqrt(n).  This shortened list results
	 * in 1/3 fewer divisions than if we simply tried all integers
	 * between 5 and sqrt(n).  We can reduce the size of the list
	 * of trials by an additional 20% by removing the multiples
	 * of 5, which are equal to 30m +/- 5, where m >= 1.  Starting
	 * from 25, these are found by alternately adding 10 or 20.
	 * To do this, we use the variable ten_twenty_toggle.
	 *
	 * W. H. F. Smith, 26 Feb 1992, after D.E. Knuth, vol. II  */

	int	current_factor;	/* The factor currently being tried  */
	int	max_factor;	/* Don't try any factors bigger than this  */
	int	n_factors = 0;	/* Returned; one if n is prime  */
	int	two_four_toggle = 0;	/* Used to add 2 or 4 to get next trial factor  */
	int	ten_twenty_toggle = 0;	/* Used to add 10 or 20 to skip_five  */
	int	skip_five = 25;	/* Used to skip multiples of 5 in the list  */
	int	m;	/* Used to keep a working copy of n  */


	/* Initialize m and max_factor  */
	m = abs(n);
	if (m < 2) return(0);
	max_factor = (int)floor(sqrt((double)m));

	/* First find the 2s  */
	current_factor = 2;
	while(!(m%current_factor)) {
		m /= current_factor;
		f[n_factors] = current_factor;
		n_factors++;
	}
	if (m == 1) return(n_factors);

	/* Next find the 3s  */
	current_factor = 3;
	while(!(m%current_factor)) {
		m /= current_factor;
		f[n_factors] = current_factor;
		n_factors++;
	}
	if (m == 1) return(n_factors);

	/* Next find the 5s  */
	current_factor = 5;
	while(!(m%current_factor)) {
		m /= current_factor;
		f[n_factors] = current_factor;
		n_factors++;
	}
	if (m == 1) return(n_factors);

	/* Now try all the rest  */

	while (m > 1 && current_factor <= max_factor) {

		/* Current factor is either 2 or 4 more than previous value  */

		if (two_four_toggle) {
			current_factor += 4;
			two_four_toggle = 0;
		}
		else {
			current_factor += 2;
			two_four_toggle = 1;
		}

		/* If current factor is a multiple of 5, skip it.  But first,
			set next value of skip_five according to 10/20 toggle:  */

		if (current_factor == skip_five) {
			if (ten_twenty_toggle) {
				skip_five += 20;
				ten_twenty_toggle = 0;
			}
			else {
				skip_five += 10;
				ten_twenty_toggle = 1;
			}
			continue;
		}

		/* Get here when current_factor is not a multiple of 2,3 or 5:  */

		while(!(m%current_factor)) {
			m /= current_factor;
			f[n_factors] = current_factor;
			n_factors++;
		}
	}

	/* Get here when all factors up to floor(sqrt(n)) have been tried.  */

	if (m > 1) {
		/* m is an additional prime factor of n  */
		f[n_factors] = m;
		n_factors++;
	}
	return (n_factors);
}