1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
.. index:: ! sphinterpolate
**************
sphinterpolate
**************
.. only:: not man
sphinterpolate - Spherical gridding in tension of data on a sphere
`Synopsis <#toc1>`_
-------------------
.. include:: common_SYN_OPTs.rst_
**sphinterpolate** [ *table* ] |-G|\ *grdfile*
[ |SYN_OPT-I| ]
[ |-Q|\ *mode*\ [/*options*] ]
[ |SYN_OPT-R| ]
[ |SYN_OPT-V| ]
[ |-Z| ]
[ |SYN_OPT-bi| ]
[ |SYN_OPT-di| ]
[ |SYN_OPT-h| ]
[ |SYN_OPT-i| ]
[ **-r** ]
[ |SYN_OPT-:| ]
|No-spaces|
Description
-----------
**sphinterpolate** reads one or more ASCII [or binary] files (or
standard input) containing lon, lat, f and performs a Delaunay
triangulation to set up a spherical interpolation in tension. The final
grid is saved to the specified file. Several options may be used to
affect the outcome, such as choosing local versus global gradient
estimation or optimize the tension selection to satisfy one of four
criteria.
Required Arguments
------------------
.. _-G:
**-G**\ *grdfile*
Name of the output grid to hold the interpolation.
Optional Arguments
------------------
.. |Add_intables| unicode:: 0x20 .. just an invisible code
.. include:: explain_intables.rst_
.. _-I:
.. include:: explain_-I.rst_
.. _-Q:
**-Q**\ *mode*\ [/*options*]
Specify one of four ways to calculate tension factors to preserve
local shape properties or satisfy arc constraints [Default is no
tension].
**-Q**\ 0
Piecewise linear interpolation; no tension is applied.
**-Q**\ 1
Smooth interpolation with local gradient estimates.
**-Q**\ 2
Smooth interpolation with global gradient estimates. You may
optionally append /*N*/*M*/*U*, where *N* is the number of
iterations used to converge at solutions for gradients when variable
tensions are selected (e.g., **-T** only) [3], *M* is the number of
Gauss-Seidel iterations used when determining the global gradients
[10], and *U* is the maximum change in a gradient at the last
iteration [0.01].
**-Q**\ 3
Smoothing. Optionally append */E/U* [/0/0], where *E* is Expected
squared error in a typical (scaled) data value, and *U* is Upper
bound on weighted sum of squares of deviations from data.
.. _-R:
.. |Add_-Rgeo| unicode:: 0x20 .. just an invisible code
.. include:: explain_-Rgeo.rst_
.. _-T:
**-T**
Use variable tension (ignored with **-Q**\ 0 [constant]
.. _-V:
.. |Add_-V| unicode:: 0x20 .. just an invisible code
.. include:: explain_-V.rst_
.. _-Z:
**-Z**
Before interpolation, scale data by the maximum data range [no
scaling].
.. |Add_-bi| replace:: [Default is 3 input columns].
.. include:: explain_-bi.rst_
.. |Add_-di| unicode:: 0x20 .. just an invisible code
.. include:: explain_-di.rst_
.. |Add_-h| unicode:: 0x20 .. just an invisible code
.. include:: explain_-h.rst_
.. include:: explain_colon.rst_
.. |Add_nodereg| unicode:: 0x20 .. just an invisible code
.. include:: explain_nodereg.rst_
.. include:: explain_help.rst_
.. include:: explain_precision.rst_
Examples
--------
To interpolate the points in the file testdata.txt on a global 1x1
degree grid with no tension, use
sphinterpolate testdata.txt -Rg -I1 -Gsolution.nc
See Also
--------
:doc:`gmt`,
:doc:`greenspline`,
:doc:`nearneighbor`,
:doc:`sphdistance`,
:doc:`sphtriangulate`,
:doc:`surface`,
:doc:`triangulate`
`References <#toc10>`_
----------------------
Renka, R, J., 1997, Algorithm 772: STRIPACK: Delaunay Triangulation and
Voronoi Diagram on the Surface of a Sphere, *AMC Trans. Math. Software*,
**23**\ (3), 416-434.
Renka, R, J,, 1997, Algorithm 773: SSRFPACK: Interpolation of scattered
data on the Surface of a Sphere with a surface under tension, *AMC
Trans. Math. Software*, **23**\ (3), 435-442.
|