1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570
|
<HTML>
<HEAD>
<!-- This HTML file has been created by texi2html 1.51
from gnat_ug.texi on 2 July 1999 -->
<TITLE>GNAT User's Guide</TITLE>
</HEAD>
<BODY>
<H1>GNAT User's Guide</H1>
<H2>GNAT, The GNU Ada 95 Compiler</H2>
<H2>Document revision level Document revision level 1.242 $</H2>
<H2>GNAT Version 3.12p </H2>
<H2>Date: $Date: 1999/06/28 18:09:34 $</H2>
<ADDRESS>Ada Core Technologies, Inc.</ADDRESS>
<P>
<P><HR><P>
<P>
(C) Copyright 1995-1999, Ada Core Technologies, Inc.
</P>
<P>
Permission is granted to make and distribute verbatim copies of
this manual provided the copyright notice and this permission notice
are preserved on all copies.
</P>
<P>
Silicon Graphics and IRIS are registered trademarks
and IRIX is a trademark of Silicon Graphics, Inc.
</P>
<P>
IBM PC is a trademark of International
Business Machines Corporation.
</P>
<P>
UNIX is a registered trademark of AT&T
Bell Laboratories.
</P>
<P>
The following are trademarks of Compaq Computers:
DEC, DEC Ada, DECthreads, DIGITAL, DECset, OpenVMS, and VAX.
</P>
<P>
The following are trademarks of Microsoft Corporation:
Windows NT, Windows 95, Windows 98.
</P>
<P>
The following are trademarks of Wind River Systems:
VxWorks, Tornado.
</P>
<H1><A NAME="SEC1" HREF="gnat_ug_toc.html#TOC1">About This Guide</A></H1>
<P>
This guide describes the use of GNAT, a compiler and software development
toolset for the full Ada 95 programming language.
It describes the features of the compiler and tools, and details
how to use them to build Ada 95 applications.
</P>
<UL>
<LI><A HREF="gnat_ug.html#SEC2">What This Guide Contains</A>
<LI><A HREF="gnat_ug.html#SEC3">What You Should Know Before Reading This Guide</A>
<LI><A HREF="gnat_ug.html#SEC4">Related Information</A>
<LI><A HREF="gnat_ug.html#SEC5">Conventions</A>
</UL>
<H2><A NAME="SEC2" HREF="gnat_ug_toc.html#TOC2">What This Guide Contains</A></H2>
<P>
This guide contains the following chapters:
<UL>
<LI>
section <A HREF="gnat_ug.html#SEC6">Getting Started With GNAT</A>, describes how to get started compiling
and running Ada programs with the GNAT Ada programming environment.
<LI>
section <A HREF="gnat_ug.html#SEC11">The GNAT Compilation Model</A>, describes the compilation model used
by GNAT.
<LI>
section <A HREF="gnat_ug.html#SEC33">Compiling Using <CODE>gcc</CODE></A>, describes how to compile
Ada programs with <CODE>gcc</CODE>, the Ada compiler.
<LI>
section <A HREF="gnat_ug.html#SEC52">Binding Using <CODE>gnatbind</CODE></A>, describes how to
perform binding of Ada programs with <CODE>gnatbind</CODE>, the GNAT binding
utility.
<LI>
section <A HREF="gnat_ug.html#SEC64">Linking Using <CODE>gnatlink</CODE></A>,
describes <CODE>gnatlink</CODE>, a
program that provides for linking using the GNAT run-time library to
construct a program. <CODE>gnatlink</CODE> can also incorporate foreign language
object units into the executable.
<LI>
section <A HREF="gnat_ug.html#SEC67">The GNAT Make Program <CODE>gnatmake</CODE></A>, describes <CODE>gnatmake</CODE>, a
utility that automatically determines the set of sources
needed by an Ada compilation unit, and executes the necessary compilations
binding and link.
<LI>
section <A HREF="gnat_ug.html#SEC75">Renaming Files Using <CODE>gnatchop</CODE></A>, describes
<CODE>gnatchop</CODE>, a utility that allows you to preprocess a file that
contains Ada source code, and split it into one or more new files, one
for each compilation unit.
<LI>
section <A HREF="gnat_ug.html#SEC94">The cross-referencing tools <CODE>gnatxref</CODE> and <CODE>gnatfind</CODE></A>, discusses
<CODE>gnatxref</CODE> and <CODE>gnatfind</CODE>, two tools that provide an easy
way to navigate through sources.
<LI>
section <A HREF="gnat_ug.html#SEC103">File Name Krunching Using <CODE>gnatkr</CODE></A>, describes the <CODE>gnatkr</CODE>
file name krunching utility, used to handle shortened
file names on operating systems with a limit on the length of names.
<LI>
section <A HREF="gnat_ug.html#SEC108">Preprocessing Using <CODE>gnatprep</CODE></A>, describes <CODE>gnatprep</CODE>, a
preprocessor utility that allows a single source file to be used to
generate multiple or parameterized source files, by means of macro
substitution.
<LI>
section <A HREF="gnat_ug.html#SEC113">The GNAT library browser <CODE>gnatls</CODE></A>, describes <CODE>gnatls</CODE>, a
utility that displays information about compiled units, including dependences
on the corresponding sources files, and consistency of compilations.
<LI>
section <A HREF="gnat_ug.html#SEC117">Rebuilding the GNAT Library</A>, describe the process of rebuilding
the GNAT library.
<LI>
section <A HREF="gnat_ug.html#SEC118">Finding memory problems with <CODE>gnatmem</CODE></A>, describes <CODE>gnatmem</CODE>, a
utility that monitors dynamic allocation and deallocation activity in a
program, and displays information about incorrect deallocations and sources
of possible memory leaks.
<LI>
section <A HREF="gnat_ug.html#SEC123">ASIS-Based Tools</A>, gives the general idea about the tools built
on top of the ASIS implementation for GNAT.
<LI>
section <A HREF="gnat_ug.html#SEC126">Creating Sample Bodies Using <CODE>gnatstub</CODE></A>, discusses <CODE>gnatstub</CODE>,
a utility that generates empty, but compilable bodies for library units.
<LI>
section <A HREF="gnat_ug.html#SEC129">Minimizing Executables for Ada Programs Using <CODE>gnatelim</CODE></A>, discusses
<CODE>gnatelim</CODE>, a tool which detects unused subprograms and produces
information that helps the compiler to create a smaller executable for a
program.
<LI>
section <A HREF="gnat_ug.html#SEC137">Other Utility Programs</A>, discusses several other GNAT utilities,
including <CODE>gnatpsta</CODE> and <CODE>gnatpsys</CODE>.
<LI>
section <A HREF="gnat_ug.html#SEC148">Running and Debugging Ada Programs</A>, describes how to run and debug
Ada programs.
<LI>
section <A HREF="gnat_ug.html#SEC27">Building mixed Ada & C++ programs</A>, gives hints on how to interface
with c++.
<LI>
section <A HREF="gnat_ug.html#SEC160">Performance Considerations</A>, reviews the trade offs between using
defaults or options in program development.
</UL>
<H2><A NAME="SEC3" HREF="gnat_ug_toc.html#TOC3">What You Should Know Before Reading This Guide</A></H2>
<P>
<A NAME="IDX1"></A>
This user's guide assumes that you are familiar with Ada 95 language, as
described in the International Standard ANSI/ISO/IEC-8652:1995, Jan
1995.
</P>
<H2><A NAME="SEC4" HREF="gnat_ug_toc.html#TOC4">Related Information</A></H2>
<P>
For further information about related tools, refer to the following
documents:
</P>
<UL>
<LI>
<CITE>GNAT Reference Manual</CITE>, which contains all reference
material for the GNAT implementation of Ada 95.
<LI>
<CITE>Ada 95 Language Reference Manual</CITE>, which contains all reference
material for the Ada 95 programming language.
<LI>
<CITE>Debugging with GDB</CITE>
contains all details on the use of the GNU source-level debugger.
<LI>
<CITE>GNU Emacs Manual</CITE>
contains full information on the extensible editor and programming
environment Emacs.
</UL>
<H2><A NAME="SEC5" HREF="gnat_ug_toc.html#TOC5">Conventions</A></H2>
<P>
<A NAME="IDX2"></A>
<A NAME="IDX3"></A>
</P>
<P>
Following are examples of the typographical and graphic conventions used
in this guide:
</P>
<UL>
<LI>
<CODE>Functions</CODE>, <CODE>utility program names</CODE>, <CODE>standard names</CODE>,
and <CODE>classes</CODE>.
<LI>
<SAMP>`Option flags'</SAMP>
<LI>
<TT>`File Names'</TT>, <TT>`button names'</TT>, and <TT>`field names'</TT>.
<LI>
<VAR>Variables</VAR>.
<LI>
<EM>Emphasis</EM>.
<LI>
[optional information or parameters]
<LI>
Examples are described by text
<PRE>
and then shown this way.
</PRE>
</UL>
<P>
Commands that are entered by the user are preceded in this manual by the
characters "<CODE>$ </CODE>" (dollar sign followed by space). If your system
uses this sequence as a prompt, then the commands will appear exactly as
you see them in the manual. If your system uses some other prompt, then
the command will appear with the <CODE>$</CODE> replaced by whatever prompt
character you are using.
</P>
<H1><A NAME="SEC6" HREF="gnat_ug_toc.html#TOC6">Getting Started With GNAT</A></H1>
<P>
This chapter describes the simplest ways of using GNAT to compile Ada
programs.
</P>
<UL>
<LI><A HREF="gnat_ug.html#SEC7">Running GNAT</A>
<LI><A HREF="gnat_ug.html#SEC8">Running a Simple Ada Program</A>
<LI><A HREF="gnat_ug.html#SEC9">Running a Program With Multiple Units</A>
<LI><A HREF="gnat_ug.html#SEC10">Using the gnatmake Utility</A>
</UL>
<H2><A NAME="SEC7" HREF="gnat_ug_toc.html#TOC7">Running GNAT</A></H2>
<P>
Three steps are needed to create an executable file from an Ada source
file:
</P>
<OL>
<LI>
The source file(s) must be compiled.
<LI>
The file(s) must be bound using the GNAT binder.
<LI>
All appropriate object files must be linked to produce an executable.
</OL>
<P>
All three steps are most commonly handled by using the <CODE>gnatmake</CODE>
utility program that, given the name of the main program, automatically
performs the necessary compilation, binding and linking steps.
</P>
<H2><A NAME="SEC8" HREF="gnat_ug_toc.html#TOC8">Running a Simple Ada Program</A></H2>
<P>
Any editor may be used to prepare an Ada program. If <CODE>emacs</CODE> is
used, the optional Ada mode may be helpful in laying out the program. The
program text is a normal text file. We will suppose in our initial
example that you have used your editor to prepare the following
standard format text file:
</P>
<PRE>
<B>with</B> Text_IO; <B>use</B> Text_IO;
<B>procedure</B> Hello <B>is</B>
<B>begin</B>
Put_Line ("Hello WORLD!");
<B>end</B> Hello;
</PRE>
<P>
This file should be named <TT>`hello.adb'</TT>.
Using the normal default file naming conventions, By default, GNAT requires
that each file
contain a single compilation unit whose file name corresponds to the
unit name
with periods replaced by hyphens, and whose
extension is <TT>`.ads'</TT> for a
spec and <TT>`.adb'</TT> for a body.
This default file naming convention can be overridden by use of the
special pragma <CODE>Source_File_Name</CODE> see section <A HREF="gnat_ug.html#SEC18">Using Other File Names</A>.
Alternatively, if you want to rename your files according to this default
convention, which is probably more convenient if you will be using GNAT
for all your compilation requirements, then the <CODE>gnatchop</CODE> utility
can be used to perform this renaming operation
(see section <A HREF="gnat_ug.html#SEC75">Renaming Files Using <CODE>gnatchop</CODE></A>).
</P>
<P>
You can compile the program using the following command:
</P>
<PRE>
$ gcc -c hello.adb
</PRE>
<P>
<CODE>gcc</CODE> is the command used to run the compiler. This compiler is
capable of compiling programs in several languages including Ada 95 and
C. It determines you have given it an Ada program by the extension
(<TT>`.ads'</TT> or <TT>`.adb'</TT>), and will call the GNAT compiler to compile
the specified file.
</P>
<P>
The <CODE>-c</CODE> switch is required. It tells <CODE>gcc</CODE> to only do a
compilation. (For C programs, <CODE>gcc</CODE> can also do linking, but this
capability is not used directly for Ada programs, so the <CODE>-c</CODE>
switch must always be present.)
</P>
<P>
This compile command generates a file
<TT>`hello.o'</TT> which is the object
file corresponding to your Ada program. It also generates a file
<TT>`hello.ali'</TT>
which contains additional information used to check
that an Ada program is consistent. To get an executable file,
we then use <CODE>gnatbind</CODE> to bind the program
and <CODE>gnatlink</CODE> to link it to produce the executable. The
argument to both gnatbind and gnatlink is the name of the
<TT>`ali'</TT> file, but the default extension of <TT>`.ali'</TT> can
be omitted. This means that in the most common case, the argument
is simply the name of the main program:
</P>
<PRE>
$ gnatbind hello
$ gnatlink hello
</PRE>
<P>
A simpler method of carrying out these steps is to use
<CODE>gnatmake</CODE>, which
is a master program which invokes all of the required
compilation, binding and linking tools in the correct order. In particular,
<CODE>gnatmake</CODE> automatically recompiles any sources that have been modified
since they were last compiled, or sources that depend
on such modified sources, so that a consistent compilation is ensured.
</P>
<PRE>
$ gnatmake hello.adb
</PRE>
<P>
The result is an executable program called <TT>`hello'</TT>, which can be
run by entering:
</P>
<PRE>
$ ./hello
</PRE>
<P>
and, if all has gone well, you will see
</P>
<PRE>
Hello WORLD!
</PRE>
<P>
appear in response to this command.
</P>
<H2><A NAME="SEC9" HREF="gnat_ug_toc.html#TOC9">Running a Program With Multiple Units</A></H2>
<P>
Consider a slightly more complicated example that has three files: a
main program, and the spec and body of a package:
</P>
<PRE>
<B>package</B> Greetings <B>is</B>
<B>procedure</B> Hello;
<B>procedure</B> Goodbye;
<B>end</B> Greetings;
<B>with</B> Text_IO; <B>use</B> Text_IO;
<B>package</B> <B>body</B> Greetings <B>is</B>
<B>procedure</B> Hello <B>is</B>
<B>begin</B>
Put_Line ("Hello WORLD!");
<B>end</B> Hello;
<B>procedure</B> Goodbye <B>is</B>
<B>begin</B>
Put_Line ("Goodbye WORLD!");
<B>end</B> Goodbye;
<B>end</B> Greetings;
<B>with</B> Greetings;
<B>procedure</B> Gmain <B>is</B>
<B>begin</B>
Greetings.Hello;
Greetings.Goodbye;
<B>end</B> Gmain;
</PRE>
<P>
Following the one-unit-per-file rule, place this program in the
following three separate files:
</P>
<DL COMPACT>
<DT><TT>`greetings.ads'</TT>
<DD>
spec of package <CODE>Greetings</CODE>
<DT><TT>`greetings.adb'</TT>
<DD>
body of package <CODE>Greetings</CODE>
<DT><TT>`gmain.adb'</TT>
<DD>
body of main program
</DL>
<P>
To build an executable version of
this program, we could use four separate steps to compile, bind, and link
the program, as follows:
</P>
<PRE>
$ gcc -c gmain.adb
$ gcc -c greetings.adb
$ gnatbind gmain
$ gnatlink gmain
</PRE>
<P>
Note that there is no required order of compilation when using GNAT.
In particular it is perfectly fine to compile the main program first.
Also, it is not necessary to compile package specs in the case where
there is a separate body, only the body need be compiled. If you want
to submit these programs to the compiler for semantic checking purposes,
then you use the
<CODE>-gnatc</CODE> switch:
</P>
<PRE>
$ gcc -c greetings.ads -gnatc
</PRE>
<P>
Although the compilation can be done in separate steps as in the
above example, in practice it is almost always more convenient
to use the <CODE>gnatmake</CODE> capability. All you need to know in this case
is the name of the main program source file. The effect of the above four
commands can be achieved with a single one:
</P>
<PRE>
$ gnatmake gmain.adb
</PRE>
<P>
</P>
<P>
In the next section we discuss the advantages of using <CODE>gnatmake</CODE> in
more detail.
</P>
<H2><A NAME="SEC10" HREF="gnat_ug_toc.html#TOC10">Using the <CODE>gnatmake</CODE> Utility</A></H2>
<P>
If you work on a program by compiling single components at a time using
<CODE>gcc</CODE>, you typically keep track of the units you modify. In order to
build a consistent system, you compile not only these units, but also any
units that depend on the units you have modified.
For example, in the preceding case,
if you edit <TT>`gmain.adb'</TT>, you only need to recompile that file. But if
you edit <TT>`greetings.ads'</TT>, you must recompile both
<TT>`greetings.adb'</TT> and <TT>`gmain.adb'</TT>, because both files contain
units that depend on <TT>`greetings.ads'</TT>.
</P>
<P>
<CODE>gnatbind</CODE> will warn you if you forget one of these compilation
steps, so that it is impossible to generate an inconsistent program as a
result of forgetting to do a compilation. Nevertheless it is tedious and
error-prone to keep track of dependencies among units.
One approach to handle the dependency-bookkeeping is to use a
makefile. However, makefiles present maintenance problems of their own:
if the dependencies change as you change the program, you must make
sure that the makefile is kept up-to-date manually, which is also an
error-prone process.
</P>
<P>
The <CODE>gnatmake</CODE> utility takes care of these details automatically.
Invoke it using either one of the following forms:
</P>
<PRE>
$ gnatmake gmain.adb
$ gnatmake gmain
</PRE>
<P>
The argument is the name of the file containing the main program from
which you may omit the extension. <CODE>gnatmake</CODE>
examines the environment, automatically recompiles any files that need
recompiling, and binds and links the resulting set of object files,
generating the executable file, <TT>`gmain'</TT>.
In a large program, it
can be extremely helpful to use <CODE>gnatmake</CODE>, because working out by hand
what needs to be recompiled can be difficult.
</P>
<P>
Note that <CODE>gnatmake</CODE>
takes into account all the intricate Ada 95 rules that
establish dependencies among units. These include dependencies that result
from inlining subprogram bodies, and from
generic instantiation. Unlike some other
Ada make tools, <CODE>gnatmake</CODE> does not rely on the dependencies that were
found by the compiler on a previous compilation, which may possibly
be wrong when sources change. <CODE>gnatmake</CODE> determines the exact set of
dependencies from scratch each time it is run.
</P>
<H1><A NAME="SEC11" HREF="gnat_ug_toc.html#TOC11">The GNAT Compilation Model</A></H1>
<P>
<A NAME="IDX4"></A>
<A NAME="IDX5"></A>
</P>
<UL>
<LI><A HREF="gnat_ug.html#SEC12">Source Representation</A>
<LI><A HREF="gnat_ug.html#SEC13">Foreign Language Representation</A>
<LI><A HREF="gnat_ug.html#SEC17">File Naming Rules</A>
<LI><A HREF="gnat_ug.html#SEC18">Using Other File Names</A>
<LI><A HREF="gnat_ug.html#SEC19">Generating Object Files</A>
<LI><A HREF="gnat_ug.html#SEC20">Source Dependencies</A>
<LI><A HREF="gnat_ug.html#SEC21">The Ada Library Information Files</A>
<LI><A HREF="gnat_ug.html#SEC22">Representation of Time Stamps</A>
<LI><A HREF="gnat_ug.html#SEC23">Binding an Ada Program</A>
<LI><A HREF="gnat_ug.html#SEC24">Mixed Language Programming</A>
<LI><A HREF="gnat_ug.html#SEC27">Building mixed Ada & C++ programs</A>
<LI><A HREF="gnat_ug.html#SEC31">Comparison between GNAT and C/C++ Compilation Models</A>
<LI><A HREF="gnat_ug.html#SEC32">Comparison between GNAT and Conventional Ada Library Models</A>
</UL>
<P>
This chapter describes the compilation model used by GNAT. Although
similar to that used by other languages, such as C and C++, this model
is substantially different from the traditional Ada compilation models,
which are based on a library. The model is initially described without
reference to the library-based model. If you have not previously used an
Ada compiler, you need only read the first part of this chapter. The
last section describes and discusses the differences between the GNAT
model and the traditional Ada compiler models. If you have used other
Ada compilers, this section will help you to understand those
differences, and the advantages of the GNAT model.
</P>
<H2><A NAME="SEC12" HREF="gnat_ug_toc.html#TOC12">Source Representation</A></H2>
<P>
<A NAME="IDX6"></A>
</P>
<P>
Ada source programs are represented in standard text files, using
Latin-1 coding. Latin-1 is an 8-bit code that includes the familiar
7-bit ASCII set, plus additional characters used for
representing foreign languages (see section <A HREF="gnat_ug.html#SEC13">Foreign Language Representation</A>
for support of non-USA character sets). The format effector characters
are represented using their standard ASCII encodings, as follows:
</P>
<DL COMPACT>
<DT><CODE>VT</CODE>
<DD>
<A NAME="IDX7"></A>
Vertical tab, <CODE>16#0B#</CODE>
<DT><CODE>HT</CODE>
<DD>
<A NAME="IDX8"></A>
Horizontal tab, <CODE>16#09#</CODE>
<DT><CODE>CR</CODE>
<DD>
<A NAME="IDX9"></A>
Carriage return, <CODE>16#0D#</CODE>
<DT><CODE>LF</CODE>
<DD>
<A NAME="IDX10"></A>
Line feed, <CODE>16#0A#</CODE>
<DT><CODE>FF</CODE>
<DD>
<A NAME="IDX11"></A>
Form feed, <CODE>16#0C#</CODE>
</DL>
<P>
Source files are in standard text file format. In addition, GNAT will
recognize a wide variety of stream formats, in which the end of physical
physical lines is marked by any of the following sequences:
<CODE>LF</CODE>, <CODE>CR</CODE>, <CODE>CR-LF</CODE>, or <CODE>LF-CR</CODE>. This is useful
in accommodating files that are imported from other operating systems.
</P>
<P>
<A NAME="IDX12"></A>
<A NAME="IDX13"></A>
<A NAME="IDX14"></A>
The end of a source file is normally represented by the physical end of
file. However, the control character <CODE>16#1A#</CODE> (<CODE>SUB</CODE>) is also
recognized as signalling the end of the source file. Again, this is
provided for compatibility with other operating systems where this
code is used to represent the end of file.
</P>
<P>
Each file contains a single Ada compilation unit, including any pragmas
associated with the unit. For example, this means you must place a
package declaration (a package <STRONG>spec</STRONG>) and the corresponding body in
separate files. An Ada <STRONG>compilation</STRONG> (which is a sequence of
compilation units) is represented using a sequence of files. Similarly,
you will place each subunit or child unit in a separate file.
</P>
<H2><A NAME="SEC13" HREF="gnat_ug_toc.html#TOC13">Foreign Language Representation</A></H2>
<P>
GNAT supports the standard character sets defined in Ada 95 as well as
several other non-standard character sets for use in localized versions
of the compiler (see section <A HREF="gnat_ug.html#SEC44">Character Set Control</A>).
<UL>
<LI><A HREF="gnat_ug.html#SEC14">Latin-1</A>
<LI><A HREF="gnat_ug.html#SEC15">Other 8-Bit Codes</A>
<LI><A HREF="gnat_ug.html#SEC16">Wide Character Encodings</A>
</UL>
<H3><A NAME="SEC14" HREF="gnat_ug_toc.html#TOC14">Latin-1</A></H3>
<P>
<A NAME="IDX15"></A>
</P>
<P>
The basic character set is Latin-1. This character set is defined by ISO
standard 8859, part 1. The lower half (character codes <CODE>16#00#</CODE>
... <CODE>16#7F#)</CODE> is identical to standard ASCII coding, but the upper half is
used to represent additional characters. These include extended letters
used by European languages, such as French accents, the vowels with umlauts
used in German, and the extra letter A-ring used in Swedish.
</P>
<P>
<A NAME="IDX16"></A>
For a complete list of Latin-1 codes and their encodings, see the source
file of library unit <CODE>Ada.Characters.Latin_1</CODE> in file
<TT>`a-chlat1.ads'</TT>.
You may use any of these extended characters freely in character or
string literals. In addition, the extended characters that represent
letters can be used in identifiers.
</P>
<H3><A NAME="SEC15" HREF="gnat_ug_toc.html#TOC15">Other 8-Bit Codes</A></H3>
<P>
GNAT also supports several other 8-bit coding schemes:
</P>
<DL COMPACT>
<DT>Latin-2
<DD>
<A NAME="IDX17"></A>
Latin-2 letters allowed in identifiers, with uppercase and lowercase
equivalence.
<DT>Latin-3
<DD>
<A NAME="IDX18"></A>
Latin-3 letters allowed in identifiers, with uppercase and lowercase
equivalence.
<DT>Latin-4
<DD>
<A NAME="IDX19"></A>
Latin-4 letters allowed in identifiers, with uppercase and lowercase
equivalence.
<DT>IBM PC (code page 437)
<DD>
<A NAME="IDX20"></A>
This code page is the normal default for PCs in the U.S. It corresponds
to the original IBM PC character set. This set has some, but not all, of
the extended Latin-1 letters, but these letters do not have the same
encoding as Latin-1. In this mode, these letters are allowed in
identifiers with uppercase and lowercase equivalence.
<DT>IBM PC (code page 850)
<DD>
<A NAME="IDX21"></A>
This code page is a modification of 437 extended to include all the
Latin-1 letters, but still not with the usual Latin-1 encoding. In this
mode, all these letters are allowed in identifiers with uppercase and
lowercase equivalence.
<DT>Full Upper 8-bit
<DD>
Any character in the range 80-FF allowed in identifiers, and all are
considered distinct. In other words, there are no uppercase and lowercase
equivalences in this range. This is useful in conjunction with
certain encoding schemes used for some foreign character sets (e.g.
the typical method of representing Chinese characters on the PC).
<DT>No Upper-Half
<DD>
No upper-half characters in the range 80-FF are allowed in identifiers.
This gives Ada 83 compatibility for identifier names.
</DL>
<P>
For precise data on the encodings permitted, and the uppercase and lowercase
equivalences that are recognized, see the file <TT>`csets.adb'</TT> in
the GNAT compiler sources. You will need to obtain a full source release
of GNAT to obtain this file.
</P>
<H3><A NAME="SEC16" HREF="gnat_ug_toc.html#TOC16">Wide Character Encodings</A></H3>
<P>
GNAT allows wide character codes to appear in character and string
literals, and also optionally in identifiers, by means of the following
possible encoding schemes:
</P>
<DL COMPACT>
<DT>Hex Coding
<DD>
In this encoding, a wide character is represented by the following five
character sequence:
<PRE>
ESC a b c d
</PRE>
Where <CODE>a</CODE>, <CODE>b</CODE>, <CODE>c</CODE>, <CODE>d</CODE> are the four hexadecimal
characters (using uppercase letters) of the wide character code. For
example, ESC A345 is used to represent the wide character with code
<CODE>16#A345#</CODE>.
This scheme is compatible with use of the full Wide_Character set.
<DT>Upper-Half Coding
<DD>
<A NAME="IDX22"></A>
The wide character with encoding <CODE>16#abcd#</CODE> where the upper bit is on (in
other words, "a" is in the range 8-F) is represented as two bytes,
<CODE>16#ab#</CODE> and <CODE>16#cd#</CODE>. The second byte cannot be a format control
character, but is not required to be in the upper half. This method can
be also used for shift-JIS or EUC, where the internal coding matches the
external coding.
<DT>Shift JIS Coding
<DD>
<A NAME="IDX23"></A>
A wide character is represented by a two-character sequence,
<CODE>16#ab#</CODE> and
<CODE>16#cd#</CODE>, with the restrictions described for upper-half encoding as
described above. The internal character code is the corresponding JIS
character according to the standard algorithm for Shift-JIS
conversion. Only characters defined in the JIS code set table can be
used with this encoding method.
<DT>EUC Coding
<DD>
<A NAME="IDX24"></A>
A wide character is represented by a two-character sequence
<CODE>16#ab#</CODE> and
<CODE>16#cd#</CODE>, with both characters being in the upper half. The internal
character code is the corresponding JIS character according to the EUC
encoding algorithm. Only characters defined in the JIS code set table
can be used with this encoding method.
<DT>UTF-8 Coding
<DD>
A wide character is represented using
UCS Transformation Format 8 (UTF-8) as defined in Annex R of ISO
10646-1/Am.2. Depending on the character value, the representation
is a one, two, or three byte sequence:
<PRE>
16#0000#-16#007f#: 2#0xxxxxxx#
16#0080#-16#07ff#: 2#110xxxxx# 2#10xxxxxx#
16#0800#-16#ffff#: 2#1110xxxx# 2#10xxxxxx# 2#10xxxxxx#
</PRE>
where the xxx bits correspond to the left-padded bits of the
16-bit character value. Note that all lower half ASCII characters
are represented as ASCII bytes and all upper half characters and
other wide characters are represented as sequences of upper-half
(The full UTF-8 scheme allows for encoding 31-bit characters as
6-byte sequences, but in this implementation, all UTF-8 sequences
of four or more bytes length will be treated as illegal).
<DT>Brackets Coding
<DD>
In this encoding, a wide character is represented by the following eight
character sequence:
<PRE>
[ " a b c d " ]
</PRE>
Where <CODE>a</CODE>, <CODE>b</CODE>, <CODE>c</CODE>, <CODE>d</CODE> are the four hexadecimal
characters (using uppercase letters) of the wide character code. For
example, ["A345"] is used to represent the wide character with code
<CODE>16#A345#</CODE>. It is also possible (though not required) to use the
Brackets coding for upper half characters. For example, the code
<CODE>16#A3#</CODE> can be represented as <CODE>["A3"]</CODE>.
This scheme is compatible with use of the full Wide_Character set,
and is also the method used for wide character encoding in the standard
ACVC (Ada Compiler Validation Capability) test suite distributions.
</DL>
<P>
Note: Some of these coding schemes do not permit the full use of the
Ada 95 character set. For example, neither Shift JIS, nor EUC allow the
use of the upper half of the Latin-1 set.
</P>
<H2><A NAME="SEC17" HREF="gnat_ug_toc.html#TOC17">File Naming Rules</A></H2>
<P>
The default file name is determined by the name of the unit that the
file contains. The name is formed by taking the full expanded name of
the unit and replacing the separating dots with hyphens and using
lowercase for all letters.
</P>
<P>
An exception arises if the file name generated by the above rules starts
with one of the characters
a,g,i, or s,
and the second character is a
minus. In this case, the character tilde is used in place
of the minus. The reason for this special rule is to avoid clashes with
the standard names for child units of the packages System, Ada,
Interfaces, and GNAT, which use the prefixes
s- a- i- and g-
respectively.
</P>
<P>
The file extension is <TT>`.ads'</TT> for a spec and
<TT>`.adb'</TT> for a body. The following list shows some
examples of these rules.
</P>
<DL COMPACT>
<DT><TT>`main.ads'</TT>
<DD>
Main (spec)
<DT><TT>`main.adb'</TT>
<DD>
Main (body)
<DT><TT>`arith_functions.ads'</TT>
<DD>
Arith_Functions (package spec)
<DT><TT>`arith_functions.adb'</TT>
<DD>
Arith_Functions (package body)
<DT><TT>`func-spec.ads'</TT>
<DD>
Func.Spec (child package spec)
<DT><TT>`func-spec.adb'</TT>
<DD>
Func.Spec (child package body)
<DT><TT>`main-sub.adb'</TT>
<DD>
Sub (subunit of Main)
<DT><TT>`a~bad.adb'</TT>
<DD>
A.Bad (child package body)
</DL>
<P>
Following these rules can result in excessively long
file names if corresponding
unit names are long (for example, if child units or subunits are
heavily nested). An option is available to shorten such long file names
(called file name "krunching"). This may be particularly useful when
programs being developed with GNAT are to be used on operating systems
with limited file name lengths. See section <A HREF="gnat_ug.html#SEC105">Using <CODE>gnatkr</CODE></A>.
</P>
<P>
Of course, no file shortening algorithm can guarantee uniqueness over
all possible unit names; if file name krunching is used, it is your
responsibility to ensure no name clashes occur. Alternatively you
can specify the exact file names that you want used, as described
in the next section. Finally, if your Ada programs are migrating from a
compiler with a different naming convention, you can use the gnatchop
utility to produce source files that follow the GNAT naming conventions.
(For details see section <A HREF="gnat_ug.html#SEC75">Renaming Files Using <CODE>gnatchop</CODE></A>.)
</P>
<H2><A NAME="SEC18" HREF="gnat_ug_toc.html#TOC18">Using Other File Names</A></H2>
<P>
<A NAME="IDX25"></A>
</P>
<P>
In the previous section, we have described the default rules used by
GNAT to determine the file name in which a given unit resides. It is
often convenient to follow these default rules, and if you follow them,
the compiler knows without being explicitly told where to find all
the files it needs.
</P>
<P>
However, in some cases, particularly when a program is imported from
another Ada compiler environment, it may be more convenient for the
programmer to specify which file names contain which units. GNAT allows
arbitrary file names to be used by means of the Source_File_Name pragma.
The form of this pragma is as shown in the following examples:
<A NAME="IDX26"></A>
</P>
<PRE>
<B>pragma</B> Source_File_Name (My_Utilities.Stacks,
Spec_File_Name => "myutilst_a.ada");
<B>pragma</B> Source_File_name (My_Utilities.Stacks,
Body_File_Name => "myutilst.ada");
</PRE>
<P>
As shown in this example, the first argument for the pragma is the unit
name (in this example a child unit). The second argument has the form
of a named association. The identifier
indicates whether the file name is for a spec or a body;
the file name itself is given by a string literal.
</P>
<P>
The source file name pragma is a configuration pragma, which means that
normally it will be placed in the <TT>`gnat.adc'</TT>
file used to hold configuration
pragmas that apply to a complete compilation environment.
For more details on how the <TT>`gnat.adc'</TT> file is created and used
see section <A HREF="gnat_ug.html#SEC82">Handling of Configuration Pragmas</A>
<A NAME="IDX27"></A>
</P>
<P>
GNAT allows completely arbitrary file names to be specified using the
source file name pragma. However, if the file name specified has an
extension other than <TT>`.ads'</TT> or <TT>`.adb'</TT> it is necessary to use a special
syntax when compiling the file. The name in this case must be preceded
by the special sequence <CODE>-x</CODE> followed by a space and the name of the
language, here <CODE>ada</CODE>, as in:
</P>
<PRE>
$ gcc -c -x ada peculiar_file_name.sim
</PRE>
<P>
<CODE>gnatmake</CODE> handles non-standard file names in the usual manner (the
non-standard file name for the main program is simply used as the
argument to gnatmake). Note that if the extension is also non-standard,
then it must be included in the gnatmake command, it may not be omitted.
</P>
<H2><A NAME="SEC19" HREF="gnat_ug_toc.html#TOC19">Generating Object Files</A></H2>
<P>
An Ada program consists of a set of source files, and the first step in
compiling the program is to generate the corresponding object files.
These are generated by compiling a subset of these source files.
The files you need to compile are the following:
</P>
<UL>
<LI>
If a package spec has no body, compile the package spec to produce the
object file for the package.
<LI>
If a package has both a spec and a body, compile the body to produce the
object file for the package. The source file for the package spec need
not be compiled in this case because there is only one object file, which
contains the code for both the spec and body of the package.
<LI>
For a subprogram, compile the subprogram body to produce the object file
for the subprogram. The spec, if one is present, is as usual in a
separate file, and need not be compiled.
<LI>
<A NAME="IDX28"></A>
In the case of subunits, only compile the parent unit. A single object
file is generated for the entire subunit tree, which includes all the
subunits.
<LI>
Compile child units independently of their parent units
(though, of course, the spec of all the ancestor unit must be present in order
to compile a child unit).
<LI>
<A NAME="IDX29"></A>
Compile generic units in the same manner as any other units. The object
files in this case are small dummy files that contain at most the
flag used for elaboration checking. This is because GNAT always handles generic
instantiation by means of macro expansion. However, it is still necessary to
compile generic units, for dependency checking and elaboration purposes.
</UL>
<P>
The preceding rules describe the set of files that must be compiled to
generate the object files for a program. Each object file has the same
name as the corresponding source file, except that the extension is
<TT>`.o'</TT> as usual.
</P>
<P>
You may wish to compile other files for the purpose of checking their
syntactic and semantic correctness. For example, in the case where a
package has a separate spec and body, you would not normally compile the
spec. However, it is convenient in practice to compile the spec to make
sure it is error-free before compiling clients of this spec, because such
compilations will fail if there is an error in the spec.
</P>
<P>
GNAT provides an option for compiling such files purely for the
purposes of checking correctness; such compilations are not required as
part of the process of building a program. To compile a file in this
checking mode, use the <CODE>-gnatc</CODE> switch.
</P>
<H2><A NAME="SEC20" HREF="gnat_ug_toc.html#TOC20">Source Dependencies</A></H2>
<P>
A given object file clearly depends on the source file which is compiled
to produce it. Here we are using <STRONG>depends</STRONG> in the sense of a typical
<CODE>make</CODE> utility; in other words, an object file depends on a source
file if changes to the source file require the object file to be
recompiled.
In addition to this basic dependency, a given object may depend on
additional source files as follows:
</P>
<UL>
<LI>
If a file being compiled <CODE>with</CODE>'s a unit <VAR>X</VAR>, the object file
depends on the file containing the spec of unit <VAR>X</VAR>. This includes
files that are <CODE>with</CODE>'ed implicitly either because they are parents
of <CODE>with</CODE>'ed child units or they are run-time units required by the
language constructs used in a particular unit.
<LI>
If a file being compiled instantiates a library level generic unit, the
object file depends on both the spec and body files for this generic
unit.
<LI>
If a file being compiled instantiates a generic unit defined within a
package, the object file depends on the body file for the package as
well as the spec file.
<LI>
<A NAME="IDX30"></A>
<A NAME="IDX31"></A>
If a file being compiled contains a call to a subprogram for which
pragma <CODE>Inline</CODE> applies and inlining is activated with the
<CODE>-gnatn</CODE> switch, the object file depends on the file containing the
body of this subprogram as well as on the file containing the spec.
Similarly if the <CODE>-gnatN</CODE> switch is used, then the unit is
dependent on all body files.
<LI>
The object file for a parent unit depends on all its subunit body files.
</UL>
<P>
These rules are applied transitively: if unit <CODE>A</CODE> <CODE>with</CODE>'s
unit <CODE>B</CODE>, whose elaboration calls an inlined procedure in package
<CODE>C</CODE>, the object file for unit <CODE>A</CODE> will depend on the body of
<CODE>C</CODE>, in file <TT>`c.adb'</TT>.
</P>
<P>
The set of dependent files described by these rules includes all the
files on which the unit is semantically dependent, as described in the
Ada 95 Language Reference Manual. However, it is a superset of what the
ARM describes, because it includes generic, inline, and subunit dependencies.
</P>
<P>
An object file must be recreated by recompiling the corresponding source
file if any of the source files on which it depends are modified. For
example, if the <CODE>make</CODE> utility is used to control compilation,
the rule for an Ada object file must mention all the source files on
which the object file depends, according to the above definition.
The determination of the necessary
recompilations is done automatically when one uses <CODE>gnatmake</CODE>.
</P>
<H2><A NAME="SEC21" HREF="gnat_ug_toc.html#TOC21">The Ada Library Information Files</A></H2>
<P>
Each compilation actually generates two output files. The first of these
is the normal object file that has a <TT>`.o'</TT> extension. The second is a
text file containing full dependency information. It has the same
name as the source file, but an <TT>`.ali'</TT> extension.
This file is known as the Ada Library Information (ALI) file.
</P>
<P>
Normally you need not be concerned with the contents of this file.
This section is included in case you want to understand how these files
are being used by the binder and other GNAT utilities.
Each ALI file consists of a series of lines of the form:
</P>
<PRE>
<VAR>Key_Character</VAR> <VAR>parameter</VAR> <VAR>parameter</VAR> ...
</PRE>
<P>
<A NAME="IDX32"></A>
The first two lines in the file identify the library output version and
<CODE>Standard</CODE> version. These are required to be consistent across the
entire set of compilation units in your program.
</P>
<PRE>
V "<VAR>xxxxxxxxxxxxxxxx</VAR>"
</PRE>
<P>
This line indicates the library output version, as defined in
<TT>`gnatvsn.ads'</TT>. It ensures that separate object modules of a
program are consistent. The library output version
must be changed if anything in the compiler changes that
would affect successful binding of modules compiled separately.
Examples of such changes are modifications in the format of the library
information described in this package, modifications to calling
sequences, or to the way data is represented.
</P>
<PRE>
S "<VAR>xxxxxxxxxxxxxxxx</VAR>"
</PRE>
<P>
<A NAME="IDX33"></A>
<A NAME="IDX34"></A>
This line contains information regarding types declared in packages
<CODE>Standard</CODE> as stored in <CODE>Gnatvsn.Standard_Version</CODE>.
The purpose of this information is to ensure that all units in a
program are compiled with a consistent set of options.
This is critical on systems where, for example, the size of <CODE>Integer</CODE>
can be set by command line switches.
</P>
<PRE>
M <VAR>type</VAR> [<VAR>priority</VAR>]
</PRE>
<P>
<A NAME="IDX35"></A>
This line is present only for a unit that can be a main program.
<VAR>type</VAR> is either <CODE>P</CODE> for a parameterless procedure or <CODE>F</CODE>
for a function returning a value of integral type. The latter is for
writing a main program that returns an exit status. <VAR>priority</VAR> is
present only if there was a valid pragma <CODE>Priority</CODE> in the
corresponding unit to set the main task priority. It is an unsigned
decimal integer.
</P>
<PRE>
F x
</PRE>
<P>
This line is present if a pragma Float_Representation or Long_Float is
used to specify other than the default floating-point format.
This option
applies only to implementations of GNAT for the Digital Alpha Systems.
The character
x is 'I' for IEEE_Float, 'G' for VAX_Float with Long_Float using G_Float,
and 'D' for VAX_Float for Long_Float with D_Float.
</P>
<PRE>
P L=x Q=x T=x
</PRE>
<P>
This line is present if the unit uses tasking directly or indirectly, and
has one or more valid xxx_Policy pragmas that apply to the unit. The
arguments are as follows
</P>
<PRE>
L=x (locking policy)
</PRE>
<P>
This is present if a valid Locking_Policy pragma applies to the unit. The
single character indicates the policy in effect
(e.g. <SAMP>`C'</SAMP> for Ceiling_Locking).
</P>
<PRE>
Q=x (queuing policy)
</PRE>
<P>
This is present if a valid Queuing_Policy pragma applies to the unit. The
single character indicates the policy in effect (e.g. <SAMP>`P'</SAMP> for
Priority_Queuing).
</P>
<PRE>
T=x (task_dispatching policy)
</PRE>
<P>
This is present if a valid
Task_Dispatching_Policy pragma applies to the unit. The
single character indicates the policy
in effect (e.g. <SAMP>`F'</SAMP> for
FIFO_Within_Priorities).
</P>
<P>
Following these header lines is a set of information lines, one per
compilation unit. Each line lists a unit in the object file corresponding
to this ALI file.
In particular, when a package body or subprogram body is compiled there
will be two such lines, one for the spec and one for the body,
with the entry for the body appearing first. This is the only case in
which a single ALI file contains more than one unit. Note that
subunits do not count as compilation units for this purpose, and
generate no library information, because they are inlined.
The lines for each compilation unit have the following form:
</P>
<PRE>
U <VAR>unit-name</VAR> <VAR>source-name</VAR> <VAR>version</VAR> [<VAR>attributes</VAR>]
</PRE>
<P>
<A NAME="IDX36"></A>
This line identifies the unit to which this section of the library
information file applies. <VAR>unit-name</VAR> is the unit name in internal
format, as described in package <CODE>Uname</CODE>, and <VAR>source-name</VAR> is
the name of the source file containing the unit.
</P>
<P>
<VAR>version</VAR> is the version, given by eight hexadecimal characters with
lowercase letters. This value is a hash code that includes
contributions from the time stamps of this unit and all the units on which
it semantically depends.
</P>
<P>
The optional <VAR>attributes</VAR> are a series of two-letter codes
indicating information about the unit. They indicate the nature of
the unit and they summarize information provided by
categorization pragmas.
</P>
<DL COMPACT>
<DT><CODE>EB</CODE>
<DD>
<A NAME="IDX37"></A>
Unit has pragma Elaborate_Body.
<DT><CODE>NE</CODE>
<DD>
Unit has no elaboration routine. All subprogram specs are in this
category, as are subprogram bodies if access-before-elaboration checks
are being generated. Package bodies and specs may or may not have
<CODE>NE</CODE> set, depending on whether or not elaboration code is required.
<DT><CODE>PK</CODE>
<DD>
Unit is a package.
<DT><CODE>PU</CODE>
<DD>
<A NAME="IDX38"></A>
Unit has pragma <CODE>Pure</CODE>.
<DT><CODE>PR</CODE>
<DD>
<A NAME="IDX39"></A>
Unit has pragma <CODE>Preelaborate</CODE>.
<DT><CODE>RC</CODE>
<DD>
<A NAME="IDX40"></A>
Unit has pragma <CODE>Remote_Call_Interface</CODE>.
<DT><CODE>RT</CODE>
<DD>
<A NAME="IDX41"></A>
Unit has pragma <CODE>Remote_Types</CODE>.
<DT><CODE>SP</CODE>
<DD>
<A NAME="IDX42"></A>
Unit has pragma <CODE>Shared_Passive</CODE>.
<DT><CODE>SU</CODE>
<DD>
Unit is a subprogram.
</DL>
<P>
The attributes may appear in any order, separated by spaces. The next
set of lines in the ALI file have the following form:
</P>
<PRE>
W <VAR>unit-name</VAR> [<VAR>source-name</VAR> <VAR>lib-name</VAR> [E] [EA] [ED]]
</PRE>
<P>
<A NAME="IDX43"></A>
<A NAME="IDX44"></A>
One of these lines is present for each unit mentioned in an explicit
<CODE>with</CODE> clause in the current unit. <VAR>unit-name</VAR> is the unit name
in internal format. <VAR>source-name</VAR> is the file name of the file that
must be compiled to compile that unit (usually the file for the body,
except for packages that have no body). <VAR>lib-name</VAR> is the file name
of the library information file that contains the results of compiling
the unit. The <CODE>E</CODE> and <CODE>EA</CODE> parameters are present if
pragma <CODE>Elaborate</CODE> or pragma <CODE>Elaborate_All</CODE>, respectively,
apply to this unit. <CODE>ED</CODE> is used to indicate that the compiler
has determined that a pragma <CODE>Elaborate_All</CODE> for this unit would be
desirable. For details on the use of the ED parameter see
See section <A HREF="gnat_ug.html#SEC84">Elaboration Order Handling in GNAT</A>.
</P>
<P>
Following the unit information is an optional series of lines that
indicate the usage of pragma <CODE>Linker_Options</CODE>. For each appearance of
pragma <CODE>Linker_Options</CODE> in any of the units for which unit lines are
present, a line of the form
</P>
<PRE>
L <VAR>string</VAR>
</PRE>
<P>
appears. <VAR>string</VAR> is the string from the pragma enclosed in
quotes. Within the quotes, the following can occur:
<UL>
<LI>
7-bit graphic characters other than " or {
<LI>
"" (indicating a single " character)
<LI>
{hh} indicating a character whose code is hex hh
</UL>
<P>
<A NAME="IDX45"></A>
<A NAME="IDX46"></A>
For further details, see <CODE>Stringt.Write_String_Table_Entry</CODE> in the
file <TT>`stringt.ads'</TT>. Note that wide characters of the form {hhhh}
cannot be produced, because <CODE>pragma Linker_Option</CODE> accepts only
<CODE>String</CODE>, not <CODE>Wide_String</CODE>.
</P>
<P>
Finally, the rest of the ALI file contains a series of lines that
indicate the source files on which the compiled units depend. This is
used by the binder for consistency checking and looks like:
<PRE>
D <VAR>source-name</VAR> <VAR>time-stamp</VAR> [<VAR>comments</VAR>]
</PRE>
<P>
where
<VAR>comments</VAR>, if present, must be separated from the time stamp by at
least one blank. Currently this field is unused.
</P>
<P>
Blank lines are ignored when the library information is read, and
separate sections of the file are separated by blank lines to help
readability. Extra blanks between fields are also ignored.
</P>
<H2><A NAME="SEC22" HREF="gnat_ug_toc.html#TOC22">Representation of Time Stamps</A></H2>
<P>
All compiled units are marked with a time stamp, which is derived from
the source file. The binder uses these time stamps to ensure consistency
of the set of units that constitutes a single program. Time stamps are
fourteen-character strings of the form <VAR>YYYYMMDDHHMMSS</VAR>. The
fields have the following meaning:
</P>
<DL COMPACT>
<DT><CODE>YYYY</CODE>
<DD>
year (4 digits)
<DT><CODE>MM</CODE>
<DD>
month (2 digits 01-12)
<DT><CODE>DD</CODE>
<DD>
day (2 digits 01-31)
<DT><CODE>HH</CODE>
<DD>
hour (2 digits 00-23)
<DT><CODE>MM</CODE>
<DD>
minutes (2 digits 00-59)
<DT><CODE>SS</CODE>
<DD>
seconds (2 digits 00-59)
</DL>
<P>
Time stamps may be compared lexicographically (in other words, the order
of Ada comparison operations on strings) to determine which is later or
earlier. However, in normal mode, only equality comparisons have any
effect on the semantics of the library. Later/earlier comparisons are
used only for determining the most informative error messages to be
issued by the binder.
</P>
<P>
The time stamp is the actual stamp stored with the file without any
adjustment resulting from time zone comparisons. This avoids problems in
using libraries across networks with clients spread across multiple time
zones, but it means that the time stamp might differ from that displayed in a
directory listing. For example, in UNIX systems,
file time stamps are stored in Greenwich Mean Time (GMT), but the
<CODE>ls</CODE> command displays local times.
</P>
<H2><A NAME="SEC23" HREF="gnat_ug_toc.html#TOC23">Binding an Ada Program</A></H2>
<P>
When using languages such as C and C++, once the source files have been
compiled the only remaining step in building an executable program
is linking the object modules together. This means that it is possible to
link an inconsistent version of a program, in which two units have
included different versions of the same header.
</P>
<P>
The rules of Ada do not permit such an inconsistent program to be built.
For example, if two clients have different versions of the same package,
it is illegal to build a program containing these two clients.
These rules are enforced by the GNAT binder, which also determines an
elaboration order consistent with the Ada rules.
</P>
<P>
The GNAT binder is run after all the object files for a program have
been created. It is given the name of the main program unit, and from
this it determines the set of units required by the program, by reading the
corresponding ALI files. It generates error messages if the program is
inconsistent or if no valid order of elaboration exists.
</P>
<P>
If no errors are detected, the binder produces a main program, in Ada by
default, that contains calls to the elaboration procedures of those
compilation unit that require them, followed by
a call to the main program. This Ada program is compiled to generate the
object file for the main program. The name of
the Ada file is <CODE>b~<VAR>xxx</VAR>.adb</CODE> (with the corresponding spec
<CODE>b~<VAR>xxx</VAR>.ads</CODE>) where <VAR>xxx</VAR> is the name of the
main program unit.
</P>
<P>
Finally, the linker is used to build the resulting executable program,
using the object from the main program from the bind step as well as the
object files for the Ada units of the program.
</P>
<H2><A NAME="SEC24" HREF="gnat_ug_toc.html#TOC24">Mixed Language Programming</A></H2>
<P>
<A NAME="IDX47"></A>
</P>
<UL>
<LI><A HREF="gnat_ug.html#SEC25">Interfacing to C</A>
<LI><A HREF="gnat_ug.html#SEC26">Calling Conventions</A>
</UL>
<H3><A NAME="SEC25" HREF="gnat_ug_toc.html#TOC25">Interfacing to C</A></H3>
<P>
There are two ways to
build a program that contains some Ada files and some other language
files depending on whether the main program is in Ada or not.
If the main program is in Ada, you should proceed as follows:
</P>
<OL>
<LI>
Compile the other language files to generate object files. For instance:
<PRE>
gcc -c file1.c
gcc -c file2.c
</PRE>
<LI>
Compile the Ada units to produce a set of object files and ALI
files. For instance:
<PRE>
gnatmake -c my_main.adb
</PRE>
<LI>
Run the Ada binder on the Ada main program. For instance:
<PRE>
gnatbind my_main
</PRE>
<LI>
Link the Ada main program, the Ada objects and the other language
objects. For instance:
<PRE>
gnatlink my_main.ali file1.o file2.o
</PRE>
</OL>
<P>
The three last steps can be grouped in a single command:
<PRE>
gnatmake my_main.adb -largs file1.o file2.o
</PRE>
<P>
<A NAME="IDX48"></A>
If the main program is in some language other than Ada, Then you may
have more than one entry point in the Ada subsystem. You must use a
special option of the binder to generate callable routines to initialize
and finalize the Ada units (see section <A HREF="gnat_ug.html#SEC58">Binding with Non-Ada Main Programs</A>).
Calls to the initialization and finalization routines must be inserted in
the main program, or some other appropriate point in the code. The call to
initialize the Ada units must occur before the first Ada subprogram is
called, and the call to finalize the Ada units must occur after the last
Ada subprogram returns. You use the same procedure for building the
program as described previously. In this case, however, the binder
only places the initialization and finalization subprograms into file
<TT>`b~<VAR>xxx</VAR>.adb'</TT> instead of the main program.
So, if the main program is not in Ada, you should proceed as follows:
</P>
<OL>
<LI>
Compile the other language files to generate object files. For instance:
<PRE>
gcc -c file1.c
gcc -c file2.c
</PRE>
<LI>
Compile the Ada units to produce a set of object files and ALI
files. For instance:
<PRE>
gnatmake -c entry_point1.adb
gnatmake -c entry_point2.adb
</PRE>
<LI>
Run the Ada binder on the Ada main program. For instance:
<PRE>
gnatbind -n entry_point1 entry_point2
</PRE>
<LI>
Link the Ada main program, the Ada objects and the other language
objects. You only need to give the last entry point here. For instance:
<PRE>
gnatlink entry_point2.ali file1.o file2.o
</PRE>
</OL>
<H3><A NAME="SEC26" HREF="gnat_ug_toc.html#TOC26">Calling Conventions</A></H3>
<P>
<A NAME="IDX49"></A>
<A NAME="IDX50"></A>
GNAT follows standard calling sequence conventions and will thus interface
to any other language that also follows these conventions. The following
Convention identifiers are recognized by GNAT:
</P>
<UL>
<LI>
<A NAME="IDX51"></A>
<A NAME="IDX52"></A>
<A NAME="IDX53"></A>
Ada. This indicates that the standard Ada calling sequence will be
used and all Ada data items may be passed without any limitations in the
case where GNAT is used to generate both the caller and callee. It is also
possible to mix GNAT generated code and code generated by another Ada
compiler. In this case, the data types should be restricted to simple
cases, including primitive types. Whether complex data types can be passed
depends on the situation. Probably it is safe to pass simple arrays, such
as arrays of integers or floats. Records may or may not work, depending
on whether both compilers lay them out identically. Complex structures
involving variant records, access parameters, tasks, or protected types,
are unlikely to be able to be passed.
Note that in the case of GNAT running
on a platform that supports DEC Ada 83, a higher degree of compatibility
can be guaranteed, and in particular records are layed out in an identical
manner in the two compilers. Note also that if output from two different
compilers is mixed, the program is responsible for dealing with elaboration
issues. Probably the safest approach is to write the main program in the
version of Ada other than GNAT, so that it takes care of its own elaboration
requirements, and then call the GNAT-generated adainit procedure to ensure
elaboration of the GNAT components. Consult the documentation of the other
Ada compiler for further details on elaboration.
However, it is not possible to mix the tasking runtime of GNAT and
DEC Ada 83, All the tasking operations must either be entirely within
GNAT compiled sections of the program, or entirely within DEC Ada 83
compiled sections of the program.
<A NAME="IDX54"></A>
<A NAME="IDX55"></A>
<LI>
Asm. Equivalent to Ada.
<A NAME="IDX56"></A>
<LI>
Assembler. Equivalent to Ada.
<A NAME="IDX57"></A>
<A NAME="IDX58"></A>
<A NAME="IDX59"></A>
<LI>
COBOL. Data will be passed according to the conventions described
in section B.4 of the Ada 95 Reference Manual.
<A NAME="IDX60"></A>
<A NAME="IDX61"></A>
<A NAME="IDX62"></A>
<LI>
C. Data will be passed according to the conventions described
in section B.3 of the Ada 95 Reference Manual.
<A NAME="IDX63"></A>
<A NAME="IDX64"></A>
<A NAME="IDX65"></A>
<LI>
CPP. This stands for C++. For most purposes this is identical to C.
See the separate description of the specialized GNAT pragmas relating to
C++ interfacing for further details.
<A NAME="IDX66"></A>
<A NAME="IDX67"></A>
<A NAME="IDX68"></A>
<LI>
Fortran. Data will be passed according to the conventions described
in section B.5 of the Ada 95 Reference Manual.
<LI>
Intrinsic. This defines an intrinsic operation, as defined in the Ada 95
Reference Manual. Normally this is not used in application programs. The
one exception is that GNAT permits the use of Intrinsic for defining shift
operations on user defined (signed and unsigned) integer types.
<A NAME="IDX69"></A>
<A NAME="IDX70"></A>
<LI>
Stdcall. This is relevant only to NT/Win95 implementations of GNAT,
and specifies that the Stdcall calling sequence will be used, as defined
by the NT API.
<A NAME="IDX71"></A>
<A NAME="IDX72"></A>
<LI>
Stubbed. This is a special convention that indicates that the compiler
should provide a stub body that raises Program_Error.
</UL>
<H2><A NAME="SEC27" HREF="gnat_ug_toc.html#TOC27">Building mixed Ada & C++ programs</A></H2>
<P>
Building a mixed application containing both Ada and C++ code may be a
challenge for the unaware programmer. As a matter of fact, this
interfacing has not been standardized in the Ada 95 reference manual due
to the immaturity and lack of standard of C++ at the time. This
section gives a few hints that should make this task easier. In
particular the first section addresses the differences with
interfacing with C. The second section looks into the delicate problem
of linking the complete application from its Ada and C++ parts. The last
section give some hints on how the GNAT runtime can be adapted in order
to allow inter-language dispatching with a new C++ compiler.
</P>
<UL>
<LI><A HREF="gnat_ug.html#SEC28">Interfacing to C++</A>
<LI><A HREF="gnat_ug.html#SEC29">Linking a mixed C++ & Ada program</A>
<LI><A HREF="gnat_ug.html#SEC30">Adapting the runtime to a new C++ compiler</A>
</UL>
<H3><A NAME="SEC28" HREF="gnat_ug_toc.html#TOC28">Interfacing to C++</A></H3>
<P>
GNAT supports interfacing with C++ compilers generating code that is
compatible with the standard Application Binary Interface of the given
platform.
</P>
<P>
Interfacing can be done at 3 levels: simple data, subprograms and
classes. In the first 2 cases, GNAT offer a specific <VAR>Convention
CPP</VAR> that behaves exactly like <VAR>Convention C</VAR>. Usually C++ mangle
names of subprograms and currently GNAT does not provide any help to
solve the demangling problem. This problem can be addressed in 2 ways:
<UL>
<LI>
by modifying the C++ code in order to force a C convention using
the <VAR>extern "C"</VAR> syntax.
<LI>
by figuring out the mangled name and use it as the Link_Name argument of
the pragma import.
</UL>
<P>
Interfacing at the class level can be achieved by using the GNAT specific
pragmas such as <CODE>CPP_Class</CODE> and <CODE> CPP_Virtual</CODE>. See the GNAT
Reference Manual for additional information.
</P>
<H3><A NAME="SEC29" HREF="gnat_ug_toc.html#TOC29">Linking a mixed C++ & Ada program</A></H3>
<P>
Usually the linker of the C++ development system must be used to link
mixed applications because most C++ systems will resolve elaboration
issues (such as calling constructors on global class instances)
transparently during the link phase. GNAT has been adapted to ease the
use of a foreign linker for the last phase. Three cases can be
considered:
<OL>
<LI>
Using GNAT and G++ (GNU C++ compiler) from the same GCC
installation. The c++ linker can simply be called by using the c++
specific driver called <CODE>c++</CODE>. Note that this setup is not
very common because it may request recompiling the whole GCC
tree from sources and it does not allow to upgrade easily to a new
version of one compiler for one of the two languages without taking the
risk of destabilizing the other.
<PRE>
$ c++ -c file1.C
$ c++ -c file2.C
$ gnatmake ada_unit -largs file1.o file2.o --LINK=c++
</PRE>
<LI>
Using GNAT and G++ from 2 different GCC installations. If both
compilers are on the PATH, the same method can be used. It is important
to be aware that environment variables such as C_INCLUDE_PATH or
GCC_EXEC_PREFIX will affect both compilers at the same time and thus may
make one of the 2 compilers operate improperly if they are set for the
other. In particular it is important that the link command has access to
the proper gcc library 'libgcc.a', that is to say the one that is part
of the C++ compiler installation. The implicit link command as suggested
in the gnatmake command from the former example can be replaced by an
explicit link command with full verbosity in order to verify which
library is used:
<PRE>
$ gnatbind ada_unit
$ gnatlink -v -v ada_unit file1.o file2.o --LINK=c++
</PRE>
If there is a problem due to interfering environment variables, it can be
workaround by using an intermediate script:
<PRE>
$ gnatlink -v -v ada_unit file1.o file2.o --LINK=./my_script
$ cat ./my_script
#!/bin/sh
unset C_INCLUDE_PATH
unset GCC_EXEC_PREFIX
c++ $*
</PRE>
<LI>
Using a non GNU C++ compiler. The same set of command as previously
described can be used to insure that the c++ linker is
used. Nonetheless, the Ada code may implicitly depend on the gcc
library. The latter can be located thanks to gnatls: it is to be found
on the last directory of the object path. It must then be explicitly
mentioned in the link command :
<PRE>
$ gnatls -v
$ Gdir=<the last directory on the object path>
$ gnatlink ada_unit file1.o file2.o -L$Gdir -lgcc --LINK=<cpp_linker>
</PRE>
</OL>
<H3><A NAME="SEC30" HREF="gnat_ug_toc.html#TOC30">Adapting the runtime to a new C++ compiler</A></H3>
<P>
GNAT offers the capability to derive Ada 95 tagged types directly from
preexisting C++ classes and . See "Interfacing with C++" in the GNAT
reference manual. The mechanism used by GNAT for achieving such a goal
has been made user configurable through a GNAT library unit
<CODE>Interfaces.CPP</CODE>. The default version of this file is adapted to
the GNU c++ compiler. Internal knowledge of the virtual
table layout used by the new C++ compiler is needed to configure
properly this unit. The Interface of this unit is known by the compiler
and cannot be changed except for the value of the constants defining the
characteristics of the virtual table: CPP_DT_Prologue_Size, CPP_DT_Entry_Size,
CPP_TSD_Prologue_Size, CPP_TSD_Entry_Size. Read comments in the source
of this unit for more details.
</P>
<H2><A NAME="SEC31" HREF="gnat_ug_toc.html#TOC31">Comparison between GNAT and C/C++ Compilation Models</A></H2>
<P>
The GNAT model of compilation is close to the C and C++ models. You can
think of Ada specs as corresponding to header files in C. As in C, you
don't need to compile specs; they are compiled when they are used. The
Ada <CODE>with</CODE> is similar in effect to the <CODE>#include</CODE> of a C
header.
</P>
<P>
One notable difference is that, in Ada, you may compile specs separately
to check them for semantic and syntactic accuracy. This is not always
possible with C headers because they are fragments of programs that have
less specific syntactic or semantic rules.
</P>
<P>
The other major difference is the requirement for running the binder,
which performs two important functions. First, it checks for
consistency. In C or C++, the only defense against assembling
inconsistent programs lies outside the compiler, in a makefile, for
example. The binder satisfies the Ada requirement that it be impossible
to construct an inconsistent program when the compiler is used in normal
mode.
</P>
<P>
<A NAME="IDX73"></A>
The other important function of the binder is to deal with elaboration
issues. There are also elaboration issues in C++ that are handled
automatically. This automatic handling has the advantage of being
simpler to use, but the C++ programmer has no control over elaboration.
Where <CODE>gnatbind</CODE> might complain there was no valid order of
elaboration, a C++ compiler would simply construct a program that
malfunctioned at run time.
</P>
<H2><A NAME="SEC32" HREF="gnat_ug_toc.html#TOC32">Comparison between GNAT and Conventional Ada Library Models</A></H2>
<P>
This section is intended to be useful to Ada programmers who have
previously used an Ada compiler implementing the traditional Ada library
model, as described in the Ada 95 Language Reference Manual. If you
have not used such a system, please go on to the next section.
</P>
<P>
<A NAME="IDX74"></A>
In GNAT, there is no <STRONG>library</STRONG> in the normal sense. Instead, the set of
source files themselves acts as the library. Compiling Ada programs does
not generate any centralized information, but rather an object file and
a ALI file, which are of interest only to the binder and linker.
In a traditional system, the compiler reads information not only from
the source file being compiled, but also from the centralized library.
This means that the effect of a compilation depends on what has been
previously compiled. In particular:
</P>
<UL>
<LI>
When a unit is <CODE>with</CODE>'ed, the unit seen by the compiler corresponds
to the version of the unit most recently compiled into the library.
<LI>
Inlining is effective only if the necessary body has already been
compiled into the library.
<LI>
Compiling a unit may obsolete other units in the library.
</UL>
<P>
In GNAT, compiling one unit never affects the compilation of any other
units because the compiler reads only source files. Only changes to source
files can affect the results of a compilation. In particular:
</P>
<UL>
<LI>
When a unit is <CODE>with</CODE>'ed, the unit seen by the compiler corresponds
to the source version of the unit that is currently accessible to the
compiler.
<LI>
<A NAME="IDX75"></A>
Inlining requires the appropriate source files for the package or
subprogram bodies to be available to the compiler. Inlining is always
effective, independent of the order in which units are complied.
<LI>
Compiling a unit never affects any other compilations. The editing of
sources may cause previous compilations to be out of date if they
depended on the source file being modified.
</UL>
<P>
The most important result of these differences is that order of compilation
is never significant in GNAT. There is no situation in which one is
required to do one compilation before another. What shows up as order of
compilation requirements in the traditional Ada library becomes, in
GNAT, simple source dependencies; in other words, there is only a set
of rules saying what source files must be present when a file is
compiled.
</P>
<H1><A NAME="SEC33" HREF="gnat_ug_toc.html#TOC33">Compiling Using <CODE>gcc</CODE></A></H1>
<P>
This chapter discusses how to compile Ada programs using the <CODE>gcc</CODE>
command. It also describes the set of switches
that can be used to control the behavior of the compiler.
<UL>
<LI><A HREF="gnat_ug.html#SEC34">Compiling Programs</A>
<LI><A HREF="gnat_ug.html#SEC35">Switches for gcc</A>
<LI><A HREF="gnat_ug.html#SEC49">Search Paths and the Run-Time Library (RTL)</A>
<LI><A HREF="gnat_ug.html#SEC50">Order of Compilation Issues</A>
<LI><A HREF="gnat_ug.html#SEC51">Examples</A>
</UL>
<H2><A NAME="SEC34" HREF="gnat_ug_toc.html#TOC34">Compiling Programs</A></H2>
<P>
The first step in creating an executable program is to compile the units
of the program using the <CODE>gcc</CODE> command. You must compile the
following files:
</P>
<UL>
<LI>
the body file (<TT>`.adb'</TT>) for a library level subprogram or generic
subprogram
<LI>
the spec file (<TT>`.ads'</TT>) for a library level package or generic
package that has no body
<LI>
the body file (<TT>`.adb'</TT>) for a library level package
or generic package that has a body
</UL>
<P>
You need <EM>not</EM> compile the following files
</P>
<UL>
<LI>
the spec of a library unit which has a body
<LI>
subunits
</UL>
<P>
because they are compiled as part of compiling related units. GNAT
package specs
when the corresponding body is compiled, and subunits when the parent is
compiled.
<A NAME="IDX76"></A>
If you attempt to compile any of these files, you will get one of the
following error messages (where fff is the name of the file you compiled):
</P>
<PRE>
No code generated for file <VAR>fff</VAR> (<VAR>package spec</VAR>)
No code generated for file <VAR>fff</VAR> (<VAR>subunit</VAR>)
</PRE>
<P>
The basic command for compiling a file containing an Ada unit is
</P>
<PRE>
$ gcc -c [<VAR>switches</VAR>] <TT>`file name'</TT>
</PRE>
<P>
where <VAR>file name</VAR> is the name of the Ada file (usually
having an extension
<TT>`.ads'</TT> for a spec or <TT>`.adb'</TT> for a body).
You specify the
<CODE>-c</CODE> switch to tell <CODE>gcc</CODE> to compile, but not link, the file.
The result of a successful compilation is an object file, which has the
same name as the source file but an extension of <TT>`.o'</TT> and an Ada
Library Information (ALI) file, which also has the same name as the
source file, but with <TT>`.ali'</TT> as the extension. GNAT creates these
two output files in the current directory, but you may specify a source
file in any directory using an absolute or relative path specification
containing the directory information.
</P>
<P>
<A NAME="IDX77"></A>
<CODE>gcc</CODE> is actually a driver program that looks at the extensions of
the file arguments and loads the appropriate compiler. For example, the
GNU C compiler is <TT>`cc1'</TT>, and the Ada compiler is <TT>`gnat1'</TT>.
These programs are in directories known to the driver program (in some
configurations via environment variables you set), but need not be in
your path. The <CODE>gcc</CODE> driver also calls the assembler and any other
utilities needed to complete the generation of the required object
files.
</P>
<P>
It is possible to supply several file names on the same <CODE>gcc</CODE>
command. This causes <CODE>gcc</CODE> to call the appropriate compiler for
each file. For example, the following command lists three separate
files to be compiled:
</P>
<PRE>
$ gcc -c x.adb y.adb z.c
</PRE>
<P>
calls <CODE>gnat1</CODE> (the Ada compiler) twice to compile <TT>`x.adb'</TT> and
<TT>`y.adb'</TT>, and <CODE>cc1</CODE> (the C compiler) once to compile <TT>`z.c'</TT>.
The compiler generates three object files <TT>`x.o'</TT>, <TT>`y.o'</TT> and
<TT>`z.o'</TT> and the two ALI files <TT>`x.ali'</TT> and <TT>`y.ali'</TT> from the
Ada compilations. Any switches apply to all the files listed,
except for
<CODE>-gnat<VAR>x</VAR></CODE> switches, which apply only to Ada compilations.
</P>
<H2><A NAME="SEC35" HREF="gnat_ug_toc.html#TOC35">Switches for <CODE>gcc</CODE></A></H2>
<P>
The <CODE>gcc</CODE> command accepts numerous switches to control the
compilation process. These switches are fully described in this section.
</P>
<UL>
<LI><A HREF="gnat_ug.html#SEC36">Output and Error Message Control</A>
<LI><A HREF="gnat_ug.html#SEC37">Debugging and Assertion Control</A>
<LI><A HREF="gnat_ug.html#SEC39">Run-time Checks</A>
<LI><A HREF="gnat_ug.html#SEC38">Style Checking</A>
<LI><A HREF="gnat_ug.html#SEC40">Using gcc for Syntax Checking</A>
<LI><A HREF="gnat_ug.html#SEC41">Using gcc for Semantic Checking</A>
<LI><A HREF="gnat_ug.html#SEC42">Compiling Ada 83 Programs</A>
<LI><A HREF="gnat_ug.html#SEC43">Reference Manual Style Checking</A>
<LI><A HREF="gnat_ug.html#SEC44">Character Set Control</A>
<LI><A HREF="gnat_ug.html#SEC45">File Naming Control</A>
<LI><A HREF="gnat_ug.html#SEC46">Subprogram Inlining Control</A>
<LI><A HREF="gnat_ug.html#SEC47">Auxiliary Output Control</A>
<LI><A HREF="gnat_ug.html#SEC48">Debugging Control</A>
</UL>
<DL COMPACT>
<DT><CODE>-b <VAR>target</VAR></CODE>
<DD>
<A NAME="IDX78"></A>
Compile your program to run on <VAR>target</VAR>, which is the name of a
system configuration. You must have a GNAT cross-compiler built if
<VAR>target</VAR> is not the same as your host system.
<DT><CODE>-B<VAR>dir</VAR></CODE>
<DD>
<A NAME="IDX79"></A>
Load compiler executables (for example, <CODE>gnat1</CODE>, the Ada compiler)
from <VAR>dir</VAR> instead of the default location. Only use this switch
when multiple versions of the GNAT compiler are available. See the
<CODE>gcc</CODE> manual page for further details. You would normally use the
<CODE>-b</CODE> or <CODE>-V</CODE> switch instead.
<DT><CODE>-c</CODE>
<DD>
<A NAME="IDX80"></A>
Compile. Always use this switch when compiling Ada programs.
Note that you may not use <CODE>gcc</CODE> without a <CODE>-c</CODE> switch to
compile and link in one step. This is because the binder must be run,
and currently <CODE>gcc</CODE> cannot be used to run the GNAT binder.
<DT><CODE>-g</CODE>
<DD>
<A NAME="IDX81"></A>
Generate debugging information. This information is stored in the object
file and copied from there to the final executable file by the linker,
where it can be read by the debugger. You must use the <CODE>-g</CODE> switch
if you plan on using the debugger.
<DT><CODE>-I<VAR>dir</VAR></CODE>
<DD>
<A NAME="IDX82"></A>
<A NAME="IDX83"></A>
Direct GNAT to search the <VAR>dir</VAR> directory for source files needed by
the current compilation (see section <A HREF="gnat_ug.html#SEC49">Search Paths and the Run-Time Library (RTL)</A>).
<DT><CODE>-I-</CODE>
<DD>
<A NAME="IDX84"></A>
<A NAME="IDX85"></A>
Do not look for source files in the directory containing the source
file named in the command line
(see section <A HREF="gnat_ug.html#SEC49">Search Paths and the Run-Time Library (RTL)</A>).
<DT><CODE>-o <VAR>file</VAR></CODE>
<DD>
<A NAME="IDX86"></A>
This switch is used in <CODE>gcc</CODE> to redirect the generated object file
and its associated ALI file. Beware of this switch with GNAT, because it may
cause the object file and ALI file to have different names which in turn
may confuse the binder and the linker.
<DT><CODE>-O[<VAR>n</VAR>]</CODE>
<DD>
<A NAME="IDX87"></A>
<VAR>n</VAR> controls the optimization level.
<DL COMPACT>
<DT>n = 0
<DD>
No optimization, the default setting if no <CODE>-O</CODE> appears
<DT>n = 1
<DD>
Normal optimization, the default if you specify <CODE>-O</CODE> without
an operand.
<DT>n = 2
<DD>
Extensive optimization
<DT>n = 3
<DD>
Extensive optimization with automatic inlining. This applies only to
inlining within a unit. For details on control of inter-unit inlining
see See section <A HREF="gnat_ug.html#SEC46">Subprogram Inlining Control</A>.
</DL>
<DT><CODE>-S</CODE>
<DD>
<A NAME="IDX88"></A>
Used in place of <CODE>-c</CODE> to
cause the assembler source file to be
generated, using <TT>`.s'</TT> as the extension,
instead of the object file.
This may be useful if you need to examine the generated assembly code.
<DT><CODE>-v</CODE>
<DD>
<A NAME="IDX89"></A>
Show commands generated by the <CODE>gcc</CODE> driver. Normally used only for
debugging purposes or if you need to be sure what version of the
compiler you are executing.
<DT><CODE>-V <VAR>ver</VAR></CODE>
<DD>
<A NAME="IDX90"></A>
Execute <VAR>ver</VAR> version of the compiler. This is the <CODE>gcc</CODE>
version, not the GNAT version.
<DT><CODE>-Wuninitialized</CODE>
<DD>
<A NAME="IDX91"></A>
Generate warnings for uninitialized variables. You must also specify the
<CODE>-O</CODE> switch (in other words, This switch works only if
optimization is turned on).
<DT><CODE>-gnata</CODE>
<DD>
Assertions enabled. <CODE>Pragma Assert</CODE> and <CODE>pragma Debug</CODE> to be
activated.
<DT><CODE>-gnatb</CODE>
<DD>
Generate brief messages to <CODE>stderr</CODE> even if verbose mode set.
<DT><CODE>-gnatc</CODE>
<DD>
Check syntax and semantics only (no code generation attempted).
<DT><CODE>-gnatD</CODE>
<DD>
Output expanded source files for source level debugging.
<DT><CODE>-gnate</CODE>
<DD>
Force error message generation (for use when compiler crashes).
<DT><CODE>-gnatE</CODE>
<DD>
Full dynamic elaboration checks.
<DT><CODE>-gnatf</CODE>
<DD>
Full errors. Multiple errors per line, all undefined references.
<DT><CODE>-gnatg</CODE>
<DD>
GNAT style checks enabled.
<DT><CODE>-gnatG</CODE>
<DD>
List generated expanded code in source form.
<DT><CODE>-gnati<VAR>c</VAR></CODE>
<DD>
Identifier character set
(<VAR>c</VAR>=1/2/3/4/8/p/f/n/w).
<DT><CODE>-gnath</CODE>
<DD>
Output usage information. The output is written to <CODE>stdout</CODE>.
<DT><CODE>-gnatk<VAR>n</VAR></CODE>
<DD>
Limit file names to <VAR>n</VAR> (1-999) characters (<CODE>k</CODE> = krunch).
<DT><CODE>-gnatl</CODE>
<DD>
Output full source listing with embedded error messages.
<DT><CODE>-gnatm<VAR>n</VAR></CODE>
<DD>
Limit number of detected errors to <VAR>n</VAR> (1-999).
<DT><CODE>-gnatn</CODE>
<DD>
Activate inlining across unit boundaries for subprograms for which
pragma <CODE>inline</CODE> is specified.
<DT><CODE>-gnatN</CODE>
<DD>
Activate inlining across unit boundaries for all subprograms (not just
those for which pragma <CODE>inline</CODE> is specified. This is equivalent
to using <CODE>-gnatn</CODE> and adding a pragma <CODE>inline</CODE> for every
subprogram in the program.
<DT><CODE>-fno-inline</CODE>
<DD>
Suppresses all inlining, even if other optimization or inlining switches
are set.
<DT><CODE>-gnato</CODE>
<DD>
Enable other checks, not normally enabled by default, including numeric
overflow checking, and access before elaboration checks.
<DT><CODE>-gnatp</CODE>
<DD>
Suppress all checks.
<DT><CODE>-gnatq</CODE>
<DD>
Don't quit; try semantics, even if parse errors.
<DT><CODE>-gnatP</CODE>
<DD>
Enable polling. This is required on some systems (notably Windows NT) to
obtain asynchronous abort and asynchronous transfer of control capability.
See the description of pragma Polling in the GNAT Reference Manual for
full details.
<DT><CODE>-gnatR</CODE>
<DD>
Output representation information for declared array and record types.
<DT><CODE>-gnats</CODE>
<DD>
Syntax check only.
<DT><CODE>-gnatt</CODE>
<DD>
Tree output file to be generated.
<DT><CODE>-gnatu</CODE>
<DD>
List units for this compilation.
<DT><CODE>-gnatU</CODE>
<DD>
Tag all error messages with the unique string "error:"
<DT><CODE>-gnatv</CODE>
<DD>
Verbose mode. Full error output with source lines to <CODE>stdout</CODE>.
<DT><CODE>-gnatw<VAR>m</VAR></CODE>
<DD>
Warning mode
(<VAR>m</VAR>=<CODE>s,e,l</CODE> for suppress, treat as error, elaboration
warnings).
<DT><CODE>-gnatW<VAR>e</VAR></CODE>
<DD>
Wide character encoding method
(<VAR>e</VAR>=n/h/u/s/e/8).
<DT><CODE>-gnatx</CODE>
<DD>
Suppress generation of cross-reference information.
<DT><CODE>-gnatw<VAR>m</VAR></CODE>
<DD>
Warning mode
<DT><CODE>-gnaty</CODE>
<DD>
Enable built-in style checks. See separate section describing this feature.
<DT><CODE>-gnatz<VAR>m</VAR></CODE>
<DD>
Distribution stub generation and compilation
(<VAR>m</VAR>=r/c for receiver/caller stubs).
<DT><CODE>-gnat83</CODE>
<DD>
Enforce Ada 83 restrictions.
<DT><CODE>-gnat95</CODE>
<DD>
Standard Ada 95 mode
</DL>
<P>
You may combine a sequence of GNAT switches into a single switch. For
example, the combined switch
</P>
<P>
<A NAME="IDX92"></A>
<PRE>
-gnatcfi3
</PRE>
<P>
is equivalent to specifying the following sequence of switches:
</P>
<PRE>
-gnatc -gnatf -gnati3
</PRE>
<H3><A NAME="SEC36" HREF="gnat_ug_toc.html#TOC36">Output and Error Message Control</A></H3>
<P>
<A NAME="IDX93"></A>
</P>
<P>
The standard default format for error messages is called "brief format."
Brief format messages are written to <CODE>stdout</CODE> (the standard output
file) and have the following form:
</P>
<PRE>
e.adb:3:04: Incorrect spelling of keyword "function"
e.adb:4:20: ";" should be "is"
</PRE>
<P>
The first integer after the file name is the line number in the file,
and the second integer is the column number within the line.
<CODE>emacs</CODE> can parse the error messages
and point to the referenced character.
The following switches provide control over the error message
format:
</P>
<DL COMPACT>
<DT><CODE>-gnatv</CODE>
<DD>
<A NAME="IDX94"></A>
<A NAME="IDX95"></A>
The v stands for verbose.
The effect of this setting is to write long-format error
messages to <CODE>stdout</CODE>. The same program compiled with the
<CODE>-gnatv</CODE> switch would generate:
<PRE>
3. funcion X (Q : Integer)
|
>>> Incorrect spelling of keyword "function"
4. return Integer;
|
>>> ";" should be "is"
</PRE>
The vertical bar indicates the location of the error, and the <SAMP>`>>>'</SAMP>
prefix can be used to search for error messages. When this switch is
used the only source lines output are those with errors.
<DT><CODE>-gnatl</CODE>
<DD>
<A NAME="IDX96"></A>
The <CODE>l</CODE> stands for list.
This switch causes a full listing of
the file to be generated. The output might look as follows:
<PRE>
1. procedure E is
2. V : Integer;
3. funcion X (Q : Integer)
|
>>> Incorrect spelling of keyword "function"
4. return Integer;
|
>>> ";" should be "is"
5. begin
6. return Q + Q;
7. end;
8. begin
9. V := X + X;
10.end E;
</PRE>
When you specify the <CODE>-gnatv</CODE> or <CODE>-gnatl</CODE> switches and
standard output is redirected, a brief summary is written to
<CODE>stderr</CODE> (standard error) giving the number of error messages and
warning messages generated.
<DT><CODE>-gnatU</CODE>
<DD>
<A NAME="IDX97"></A>
This switch forces all error messages to be preceded by the unique
string "error:". This means that error messages take a few more
characters in space, but allows easy searching for and identification
of error messages.
<DT><CODE>-gnatb</CODE>
<DD>
<A NAME="IDX98"></A>
The <CODE>b</CODE> stands for brief.
This switch causes GNAT to generate the
brief format error messages to <CODE>stdout</CODE> as well as the verbose
format message or full listing.
<DT><CODE>-gnatm<VAR>n</VAR></CODE>
<DD>
<A NAME="IDX99"></A>
The <CODE>m</CODE> stands for maximum.
<VAR>n</VAR> is a decimal integer in the
range of 1 to 999 and limits the number of error messages to be
generated. For example, using <CODE>-gnatm2</CODE> might yield
<PRE>
e.adb:3:04: Incorrect spelling of keyword "function"
e.adb:5:35: missing ".."
fatal error: maximum errors reached
compilation abandoned
</PRE>
<DT><CODE>-gnatf</CODE>
<DD>
<A NAME="IDX100"></A>
<A NAME="IDX101"></A>
The <CODE>f</CODE> stands for full.
Normally, the compiler suppresses error messages that are likely to be
redundant. This switch causes all error
messages to be generated. In particular, in the case of
references to undefined variables. If a given variable is referenced
several times, the normal format of messages is
<PRE>
e.adb:7:07: "V" is undefined (more references follow)
</PRE>
where the parenthetical comment warns that there are additional
references to the variable <CODE>V</CODE>. Compiling the same program with the
<CODE>-gnatf</CODE> switch yields
<PRE>
e.adb:7:07: "V" is undefined
e.adb:8:07: "V" is undefined
e.adb:8:12: "V" is undefined
e.adb:8:16: "V" is undefined
e.adb:9:07: "V" is undefined
e.adb:9:12: "V" is undefined
</PRE>
<DT><CODE>-gnatq</CODE>
<DD>
<A NAME="IDX102"></A>
The <CODE>q</CODE> stands for quit (really "don't quit").
In normal operation mode, the compiler first parses the program and
determines if there are any syntax errors. If there are, appropriate
error messages are generated and compilation is immediately terminated.
This switch tells
GNAT to continue with semantic analysis even if syntax errors have been
found. This may enable the detection of more errors in a single run. On
the other hand, the semantic analyzer is more likely to encounter some
internal fatal error when given a syntactically invalid tree.
<DT><CODE>-gnate</CODE>
<DD>
<A NAME="IDX103"></A>
Normally, the compiler saves up error messages and generates them at the
end of compilation in proper sequence. This switch
(the <SAMP>`e'</SAMP> stands for error)
causes error messages to be generated as soon as they are
detected. The use of <CODE>-gnate</CODE> may cause error messages to be
generated out of sequence and also disconnects a number of useful
error message processing circuits. This switch should be used only
in error situations where the compiler terminates with no output
at all, or goes into an infinite loop. In such cases, the
<CODE>-gnate</CODE> switch may be used to see if any error situations
were detected before the compiler crash (see section <A HREF="gnat_ug.html#SEC157">GNAT Abnormal Termination</A>).
</DL>
<P>
In addition to error messages, which correspond to illegalities as defined
in the Ada 95 Reference Manual, the compiler detects two kinds of warning
situations.
</P>
<P>
<A NAME="IDX104"></A>
First, the compiler considers some constructs suspicious and generates a
warning message to alert you to a possible error. Second, if the
compiler detects a situation that is sure to raise an exception at
run time, it generates a warning message. The following shows an example
of warning messages:
</P>
<PRE>
e.adb:4:24: warning: creation of object may raise Storage_Error
e.adb:10:17: warning: static value out of range
e.adb:10:17: warning: "Constraint_Error" will be raised at run time
</PRE>
<P>
GNAT considers a large number of situations as appropriate
for the generation of warning messages. As always, warnings are not
definite indications of errors. For example, if you do an out-of-range
assignment with the deliberate intention of raising a
<CODE>Constraint_Error</CODE> exception, then the warning that may be
issued does not indicate an error. Some of the situations for which GNAT
issues warnings (at least some of the time) are:
</P>
<UL>
<LI>
Possible infinitely recursive calls
<LI>
Out-of-range values being assigned
<LI>
Possible order of elaboration problems
<LI>
Unreachable code
<LI>
Variables that are never assigned a value
<LI>
Variables that are referenced before being initialized
<LI>
Task entries with no corresponding Accept statement
<LI>
Duplicate Accepts for the same task entry in a select
<LI>
Objects that take too much storage
<LI>
Unchecked conversion between types of differing sizes
<LI>
Missing return statements along some execution paths in a function
<LI>
Incorrect pragmas
<LI>
Incorrect external names
<LI>
Allocation from empty storage pool
<LI>
Potentially blocking operations in protected types
<LI>
Suspicious parenthesization of expressions
<LI>
Mismatching bounds in an aggregate
<LI>
Attempt to return local value by reference
<LI>
Unrecognized pragmas
<LI>
Premature instantiation of a generic body
<LI>
Attempt to pack aliased components
<LI>
Out of bounds array subscripts
<LI>
Wrong length on string assignment
</UL>
<P>
Four switches are available to control the handling of warning messages:
</P>
<DL COMPACT>
<DT><CODE>-gnatwe (treat warnings as errors)</CODE>
<DD>
<A NAME="IDX105"></A>
This switch causes warning messages to be treated as errors.
The warning string still appears, but the warning messages are counted
as errors, and prevent the generation of an object file.
<DT><CODE>-gnatws (suppress warnings)</CODE>
<DD>
<A NAME="IDX106"></A>
This switch completely suppresses the
output of all warning messages.
<DT><CODE>-gnatwl (warn on elaboration order errors)</CODE>
<DD>
<A NAME="IDX107"></A>
This switch causes the generation
of additional warning messages relating to elaboration issues. See the
separate chapter on elaboration order handling for full details of the
use of this switch.
<DT><CODE>-gnatwu (warn on unused entities)</CODE>
<DD>
<A NAME="IDX108"></A>
This switch causes warning messages to be generated for entities that
are defined but not referenced, and for units that are <CODE>with</CODE>'ed
and not
referenced. In the case of packages, a warning is also generated if
no entities in the package are referenced. This means that if the package
is referenced but the only references are in <CODE>use</CODE>
clauses or <CODE>renames</CODE>
declarations, a warning is still generated. A warning is also generated
for a generic package that is <CODE>with</CODE>'ed but never instantiated.
<DT><CODE>-gnatR</CODE>
<DD>
<A NAME="IDX109"></A>
Use of the switch <CODE>-gnatR</CODE> causes the compiler to output a listing
showing representation information for declared array and record types,
including record representation clauses.
<DT><CODE>-gnatx</CODE>
<DD>
<A NAME="IDX110"></A>
Normally the compiler generates full cross-referencing information in
the <TT>`ALI'</TT> file. This information is used by a number of tools,
including <CODE>gnatfind</CODE> and <CODE>gnatxref</CODE>. The -gnatx switch
suppresses this information. This saves some space and may slightly
speed up compilation, but means that these tools cannot be used.
</DL>
<H3><A NAME="SEC37" HREF="gnat_ug_toc.html#TOC37">Debugging and Assertion Control</A></H3>
<DL COMPACT>
<DT><CODE>-gnata</CODE>
<DD>
<A NAME="IDX111"></A>
<A NAME="IDX112"></A>
<A NAME="IDX113"></A>
<A NAME="IDX114"></A>
The pragmas <CODE>Assert</CODE> and <CODE>Debug</CODE> normally have no effect and
are ignored. This switch, where <SAMP>`a'</SAMP> stands for assert, causes
<CODE>Assert</CODE> and <CODE>Debug</CODE> pragmas to be activated.
The pragmas have the form:
<PRE>
<B>pragma</B> Assert (<VAR>Boolean-expression</VAR> [, <VAR>static-string-expression</VAR>])
<B>pragma</B> Debug (<VAR>procedure call</VAR>)
</PRE>
The <CODE>Assert</CODE> pragma causes <VAR>Boolean-expression</VAR> to be tested.
If the result is <CODE>True</CODE>, the pragma has no effect (other than
possible side effects from evaluating the expression). If the result is
<CODE>False</CODE>, the exception <CODE>Assert_Error</CODE> declared in the package
<CODE>System.Assertions</CODE> is
raised (passing <VAR>static-string-expression</VAR>, if present, as the
message associated with the exception). If no string expression is
given the default is a string giving the file name and line number
of the pragma.
The <CODE>Debug</CODE> pragma causes <VAR>procedure</VAR> to be called. Note that
<CODE>pragma Debug</CODE> may appear within a declaration sequence, allowing
debugging procedures to be called between declarations.
</DL>
<H3><A NAME="SEC38" HREF="gnat_ug_toc.html#TOC38">Style Checking</A></H3>
<P>
<A NAME="IDX115"></A>
</P>
<P>
The -gnaty<VAR>x</VAR> switch causes the compiler to
enforce specified style rules. A limited set of style rules has been used
in writing the GNAT sources themselves. This switch allows user programs
to activate all or some of these checks. If the source program fails a
specified style check, an appropriate error message is given, preceded by
the character sequence "(style)", and the program is considered illegal.
The string <VAR>x</VAR> is a sequence of letters or digits
indicating the particular style
checks to be performed. The following checks are defined:
</P>
<DL COMPACT>
<DT><CODE>1-9 (specify indentation level)</CODE>
<DD>
If a digit from 1-9 appears in the string after <CODE>-gnaty</CODE> then proper
indentation is checked, with the digit indicating the indentation level
required. The general style of required indentation is as specified by
the examples in the Ada Reference Manual. Full line comments must be
aligned with the <CODE>--</CODE> starting on a column that is a multiple of
the alignment level.
<DT><CODE>a (check attribute casing)</CODE>
<DD>
If the letter a appears in the string after <CODE>-gnaty</CODE> then
attribute names, including the case of keywords such as <CODE>digits</CODE>
used as attributes names, must be written in mixed case, that is, the
initial letter and any letter following an underscore must be uppercase.
All other letters must be lowercase.
<DT><CODE>b (blanks not allowed at statement end)</CODE>
<DD>
If the letter b appears in the string after <CODE>-gnaty</CODE> then
trailing blanks are not allowed at the end of statements. The purpose of this
rule, together with h (no horizontal tabs), is to enforce a canonical format
for the use of blanks to separate source tokens.
<DT><CODE>c (check comments)</CODE>
<DD>
If the letter c appears in the string after <CODE>-gnaty</CODE> then
comments must meet the following set of rules:
<UL>
<LI>
The "--" that starts the column must either start in column one, or else
at least one blank must precede this sequence.
<LI>
Comments that follow other tokens on a line must have at least one blank
following the "--" at the start of the comment.
<LI>
Full line comments must have two blanks following the "--" that starts
the comment, with the following exceptions.
<LI>
A line consisting only of the "--" characters, possibly preceded by blanks
is permitted.
<LI>
A comment starting with "--!" is permitted. This allows proper processing
of the output generated by the <CODE>gnatprep</CODE> tool.
<LI>
A line consisting entirely of minus signs, possibly preceded by blanks, is
permitted. This allows the construction of box comments where lines of minus
signs are used to form the top and bottom of the box.
<LI>
If a comment starts and ends with "--" is permitted as long as at least
one blank follows the initial "--". Together with the preceding rule,
this allows the construction of box comments, as shown in the following
example:
<PRE>
---------------------------
-- This is a box comment --
-- with two text lines. --
---------------------------
</PRE>
</UL>
<DT><CODE>e (check end labels)</CODE>
<DD>
If the letter e appears in the string after <CODE>-gnaty</CODE> then
optional labels on <CODE>end</CODE> statements ending subprograms are required to be
present.
<DT><CODE>f (no form feeds or vertical tabs)</CODE>
<DD>
If the letter f appears in the string after <CODE>-gnaty</CODE> then
neither form feeds nor vertical tab characters are not permitted
in the source text.
<DT><CODE>h (no horizontal tabs)</CODE>
<DD>
If the letter h appears in the string after <CODE>-gnaty</CODE> then
horizontal tab characters are not permitted in the source text.
Together with the b (no blanks at end of line) check, this
enforces a canonical form for the use of blanks to separate
source tokens.
<DT><CODE>i (check if-then layout)</CODE>
<DD>
If the letter i appears in the string after <CODE>-gnaty</CODE>,
then the keyword <CODE>then</CODE> must appear either on the same
line as corresponding <CODE>if</CODE>, or on a line on its own, lined
up under the <CODE>if</CODE> with at least one non-blank line in between
containing all or part of the condition to be tested.
<DT><CODE>k (check keyword casing)</CODE>
<DD>
If the letter k appears in the string after <CODE>-gnaty</CODE> then
all keywords must be in lower case (with the exception of keywords
such as <CODE>digits</CODE> used as attribute names to which this check
does not apply).
<DT><CODE>l (check layout)</CODE>
<DD>
If the letter l appears in the string after <CODE>-gnaty</CODE> then
layout of statement and declaration constructs must follow the
recommendations in the Ada Reference Manual, as indicated by the
form of the syntax rules. For example an <CODE>else</CODE> keyword must
be lined up with the corresponding <CODE>if</CODE> keyword.
There are two respects in which the style rule enforced by this check
option are more liberal than those in the Ada Reference Manual. First
in the case of record declarations, it is permissible to put the
<CODE>record</CODE> keyword on the same line as the <CODE>type</CODE> keyword, and
then the <CODE>end</CODE> in <CODE>end record</CODE> must line up under <CODE>type</CODE>.
For example, either of the following two layouts is acceptable:
<PRE>
<B>type</B> q <B>is record</B>
a : integer;
b : integer;
<B>end record</B>;
<B>type</B> q <B>is</B>
<B>record</B>
a : integer;
b : integer;
<B>end record</B>;
</PRE>
Second, in the case of a block statement, a permitted alternative
is to put the block label on the same line as the <CODE>declare</CODE> or
<CODE>begin</CODE> keyword, and then line the <CODE>end</CODE> keyword up under
the block label. For example both the following are permitted:
<PRE>
Block : <B>declare</B>
A : Integer := 3;
<B>begin</B>
Proc (A, A);
<B>end</B> Block;
Block :
<B>declare</B>
A : Integer := 3;
<B>begin</B>
Proc (A, A);
<B>end</B> Block;
</PRE>
The same alternative format is allowed for loops. For example, both of
the following are permitted:
<PRE>
Clear : <B>while</B> J < 10 <B>loop</B>
A (J) := 0;
<B>end loop</B> Clear;
Clear :
<B>while</B> J < 10 <B>loop</B>
A (J) := 0;
<B>end loop</B> Clear;
</PRE>
<DT><CODE>m (check maximum line length)</CODE>
<DD>
If the letter m appears in the string after <CODE>-gnaty</CODE>
then the length of source lines must not exceed 79 characters, including
any trailing blanks. The value of 79 allows convenient display on an
80 character wide device or window, allowing for possible special
treatment of 80 character lines.
<DT><CODE>Mnnn (set maximum line length)</CODE>
<DD>
If the sequence Mnnn, where nnn is a decimal number, appears in
the string after <CODE>-gnaty</CODE> then the length of lines must not exceed the
given value.
<DT><CODE>p (check pragma casing)</CODE>
<DD>
If the letter p appears in the string after <CODE>-gnaty</CODE> then
pragma names must be written in mixed case, that is, the
initial letter and any letter following an underscore must be uppercase.
All other letters must be lowercase.
<DT><CODE>r (check references)</CODE>
<DD>
If the letter r appears in the string after <CODE>-gnaty</CODE>
then all identifier references must be cased in the same way as the
corresponding declaration. No specific casing style is imposed on
identifiers. The only requirement is for consistency of references
with declarations.
<DT><CODE>s (check separate specs)</CODE>
<DD>
If the letter s appears in the string after <CODE>-gnaty</CODE> then
separate declarations ("specs") are required for subprograms (a
body is not allowed to serve as its own declaration). The only
exception is that parameterless library level procedures are
not required to have a separate declaration. This exception covers
the most frequent form of main program procedures.
<DT><CODE>t (check token spacing)</CODE>
<DD>
If the letter t appears in the string after <CODE>-gnaty</CODE> then
the following token spacing rules are enforced:
<UL>
<LI>
The keywords <CODE>abs</CODE> and <CODE>not</CODE> must be followed by a space.
<LI>
The token <CODE>=></CODE> must be surrounded by spaces.
<LI>
The token <CODE><></CODE> must be preceded by a space or a left parenthesis.
<LI>
Binary operators other than <CODE>**</CODE> must be surrounded by spaces.
There is no restriction on the layout of the <CODE>**</CODE> binary operator.
<LI>
Colon must be surrounded by spaces.
<LI>
Colon-equal (assignment) must be surrounded by spaces.
<LI>
Comma must be the first non-blank character on the line, or be
immediately preceded by a non-blank character, and must be followed
by a space.
<LI>
Left parenthesis must be preceded by a space, and must not be followed
by a space (it can be at the end of a line).
<LI>
A right parenthesis must either be the first non-blank character on
a line, or it must be preceded by a non-blank character.
<LI>
A semicolon must not be preceded by a space, and must not be followed by
a non-blank character.
<LI>
A unary plus or minus may not be followed by a space.
<LI>
A vertical bar must be surrounded by spaces.
</UL>
In the above rules, appearing in column one is always permitted, that is,
counts as meeting either a requirement for a required preceding space,
or as meeting a requirement for no preceding space.
Appearing at the end of a line is also always permitted, that is, counts
as meeting either a requirement for a following space, or as meeting
a requirement for no following space.
</DL>
<P>
The switch
<CODE>-gnaty</CODE> on its own (that is not followed by any letters or digits),
is equivalent to <CODE>gnaty3abcefhiklmprst</CODE>, that is all checking
options are enabled, with an indentation level of 3. This is the standard
checking option that is used for the GNAT sources.
</P>
<H3><A NAME="SEC39" HREF="gnat_ug_toc.html#TOC39">Run-time Checks</A></H3>
<P>
<A NAME="IDX116"></A>
<A NAME="IDX117"></A>
<A NAME="IDX118"></A>
<A NAME="IDX119"></A>
</P>
<P>
If you compile with the default options, GNAT will insert many run-time
checks into the compiled code, including code that performs range
checking against constraints, but not arithmetic overflow checking for
integer operations (including division by zero) or checks for access
before elaboration on subprogram calls. All other run-time checks, as
required by the Ada 95 Reference Manual, are generated by default.
The following <CODE>gcc</CODE> switches refine this default behavior:
</P>
<DL COMPACT>
<DT><CODE>-gnatp</CODE>
<DD>
<A NAME="IDX120"></A>
<A NAME="IDX121"></A>
<A NAME="IDX122"></A>
<A NAME="IDX123"></A>
Suppress all run-time checks as though <CODE>pragma Suppress (all_checks</CODE>)
had been present in the source. Use this switch to improve the performance
of the code at the expense of safety in the presence of invalid data or
program bugs.
<DT><CODE>-gnato</CODE>
<DD>
<A NAME="IDX124"></A>
<A NAME="IDX125"></A>
<A NAME="IDX126"></A>
Enables overflow checking for integer operations.
This causes GNAT to generate slower and larger executable
programs by adding code to check for both overflow and division by zero
(resulting in raising <CODE>Constraint_Error</CODE> as required by Ada
semantics).
<A NAME="IDX127"></A>
Note that the <CODE>-gnato</CODE> switch does not affect the code generated
for any floating-point operations; it applies only to integer
operations. For floating-point, GNAT has the <CODE>Machine_Overflows</CODE>
attribute set to <CODE>False</CODE> and the normal mode of operation is to
generate IEEE NaN and infinite values on overflow or invalid operations
(such as dividing 0.0 by 0.0).
<DT><CODE>-gnatE</CODE>
<DD>
<A NAME="IDX128"></A>
<A NAME="IDX129"></A>
<A NAME="IDX130"></A>
Enables dynamic checks for access-before-elaboration
on subprogram calls and generic instantiations.
For full details of the effect and use of this switch,
See section <A HREF="gnat_ug.html#SEC33">Compiling Using <CODE>gcc</CODE></A>.
</DL>
<P>
<A NAME="IDX131"></A>
The setting of these switches only controls the default setting of the
checks. You may modify them using either <CODE>Suppress</CODE> (to remove
checks) or <CODE>Unsuppress</CODE> (to add back suppressed checks) pragmas in
the program source.
</P>
<H3><A NAME="SEC40" HREF="gnat_ug_toc.html#TOC40">Using <CODE>gcc</CODE> for Syntax Checking</A></H3>
<DL COMPACT>
<DT><CODE>-gnats</CODE>
<DD>
<A NAME="IDX132"></A>
The <CODE>s</CODE> stands for syntax.
Run GNAT in syntax checking only mode. For
example, the command
<PRE>
$ gcc -c -gnats x.adb
</PRE>
compiles file <TT>`x.adb'</TT> in syntax-check-only mode. You can check a
series of files in a single command
, and can use wild cards to specify such a group of files.
Note that you must specify the <CODE>-c</CODE> (compile
only) flag in addition to the <CODE>-gnats</CODE> flag.
.
You may use other switches in conjunction with <CODE>-gnats</CODE>. In
particular, <CODE>-gnatl</CODE> and <CODE>-gnatv</CODE> are useful to control the
format of any generated error messages.
The output is simply the error messages, if any. No object file or ALI
file is generated by a syntax-only compilation. Also, no units other
than the one specified are accessed. For example, if a unit <CODE>X</CODE>
<CODE>with</CODE>'s a unit <CODE>Y</CODE>, compiling unit <CODE>X</CODE> in syntax
check only mode does not access the source file containing unit
<CODE>Y</CODE>.
<A NAME="IDX133"></A>
Normally, GNAT allows only a single unit in a source file. However, this
restriction does not apply in syntax-check-only mode, and it is possible
to check a file containing multiple compilation units concatenated
together. This is primarily used by the <CODE>gnatchop</CODE> utility
(see section <A HREF="gnat_ug.html#SEC75">Renaming Files Using <CODE>gnatchop</CODE></A>).
</DL>
<H3><A NAME="SEC41" HREF="gnat_ug_toc.html#TOC41">Using <CODE>gcc</CODE> for Semantic Checking</A></H3>
<DL COMPACT>
<DT><CODE>-gnatc</CODE>
<DD>
<A NAME="IDX134"></A>
The <CODE>c</CODE> stands for check.
Causes the compiler to operate in semantic check mode,
with full checking for all illegalities specified in the
Ada 95 Reference Manual, but without generation of any source code (no object
or ALI file generated).
Because dependent files must be accessed, you must follow the GNAT
semantic restrictions on file structuring to operate in this mode:
<UL>
<LI>
The needed source files must be accessible (see section <A HREF="gnat_ug.html#SEC49">Search Paths and the Run-Time Library (RTL)</A>).
<LI>
Each file must contain only one compilation unit.
<LI>
The file name and unit name must match (see section <A HREF="gnat_ug.html#SEC17">File Naming Rules</A>).
</UL>
The output consists of error messages as appropriate. No object file or
ALI file is generated. The checking corresponds exactly to the notion of
legality in the Ada 95 Reference Manual.
Any unit can be compiled in semantics-checking-only mode, including
units that would not normally be compiled (subunits,
and specifications where a separate body is present).
</DL>
<H3><A NAME="SEC42" HREF="gnat_ug_toc.html#TOC42">Compiling Ada 83 Programs</A></H3>
<DL COMPACT>
<DT><CODE>-gnat83</CODE>
<DD>
<A NAME="IDX135"></A>
<A NAME="IDX136"></A>
<A NAME="IDX137"></A>
Although GNAT is primarily an Ada 95 compiler, it accepts this switch to
specify that an Ada 83 program is to be compiled in Ada83 mode. If you specify
this switch, GNAT rejects most Ada 95 extensions and applies Ada 83 semantics
where this can be done easily.
It is not possible to guarantee this switch does a perfect
job; for example, some subtle tests, such as are
found in earlier ACVC tests (that have been removed from the ACVC suite for Ada
95), may not compile correctly. However, for most purposes, using
this switch should help to ensure that programs that compile correctly
under the <CODE>-gnat83</CODE> switch can be ported easily to an Ada 83
compiler. This is the main use of the switch.
With few exceptions (most notably the need to use <CODE><></CODE> on
<A NAME="IDX138"></A>
unconstrained generic formal parameters, the use of the new Ada 95
keywords, and the use of packages
with optional bodies), it is not necessary to use the
<CODE>-gnat83</CODE> switch when compiling Ada 83 programs, because, with rare
exceptions, Ada 95 is upwardly compatible with Ada 83. This
means that a correct Ada 83 program is usually also a correct Ada 95
program.
<DT><CODE>-gnat95</CODE>
<DD>
<A NAME="IDX139"></A>
This switch specifies normal Ada 95 mode, and cancels the effect of
any previously given -gnat83 switch.
</DL>
<H3><A NAME="SEC43" HREF="gnat_ug_toc.html#TOC43">Reference Manual Style Checking</A></H3>
<DL COMPACT>
<DT><CODE>-gnatr</CODE>
<DD>
<A NAME="IDX140"></A>
Normally, GNAT permits any source layout consistent with the Ada 95
reference manual requirements. This switch
(<SAMP>`r'</SAMP> is for "reference manual")
enforces the layout conventions suggested by the examples and syntax
rules of the Ada 95 Language Reference Manual. For example, an <CODE>else</CODE>
must line up with an <CODE>if</CODE> and code in the <CODE>then</CODE> and
<CODE>else</CODE> parts must be indented. The compiler treats violations of
the layout rules as syntax errors if you specify this switch.
<DT><CODE>-gnatg</CODE>
<DD>
<A NAME="IDX141"></A>
Enforces a set of style conventions that correspond to the style used in
the GNAT source code. All compiler units are always compiled with the
<CODE>-gnatg</CODE> switch specified.
<A NAME="IDX142"></A>
You can find the full documentation for the style conventions imposed by
<CODE>-gnatg</CODE> in the body of the package <CODE>Style</CODE> in the
compiler sources (in the file <TT>`style.adb'</TT>).
<A NAME="IDX143"></A>
You should not normally use the <CODE>-gnatg</CODE> switch. However, you
<EM>must</EM> use <CODE>-gnatg</CODE> for compiling any language-defined unit,
or for adding children to any language-defined unit other than
<CODE>Standard</CODE>.
</DL>
<H3><A NAME="SEC44" HREF="gnat_ug_toc.html#TOC44">Character Set Control</A></H3>
<DL COMPACT>
<DT><CODE>-gnati<VAR>c</VAR></CODE>
<DD>
<A NAME="IDX144"></A>
Normally GNAT recognizes the Latin-1 character set in source program
identifiers, as described in the Ada 95 Reference Manual.
This switch causes
GNAT to recognize alternate character sets in identifiers. <VAR>c</VAR> is a
single character indicating the character set, as follows:
<DL COMPACT>
<DT><CODE>1</CODE>
<DD>
Latin-1 identifiers
<DT><CODE>2</CODE>
<DD>
Latin-2 letters allowed in identifiers
<DT><CODE>3</CODE>
<DD>
Latin-3 letters allowed in identifiers
<DT><CODE>4</CODE>
<DD>
Latin-4 letters allowed in identifiers
<DT><CODE>p</CODE>
<DD>
IBM PC letters (code page 437) allowed in identifiers
<DT><CODE>8</CODE>
<DD>
IBM PC letters (code page 850) allowed in identifiers
<DT><CODE>f</CODE>
<DD>
Full upper-half codes allowed in identifiers
<DT><CODE>n</CODE>
<DD>
No upper-half codes allowed in identifiers
<DT><CODE>w</CODE>
<DD>
Wide-character codes allowed in identifiers
</DL>
See section <A HREF="gnat_ug.html#SEC13">Foreign Language Representation</A>, for full details on the
implementation of these character sets.
<DT><CODE>-gnatW<VAR>e</VAR></CODE>
<DD>
<A NAME="IDX145"></A>
Specify the method of encoding for wide characters.
<VAR>e</VAR> is one of the following:
<DL COMPACT>
<DT><CODE>h</CODE>
<DD>
Hex encoding (brackets coding also recognized)
<DT><CODE>u</CODE>
<DD>
Upper half encoding (brackets encoding also recognized)
<DT><CODE>s</CODE>
<DD>
Shift/JIS encoding (brackets encoding also recognized)
<DT><CODE>e</CODE>
<DD>
EUC encoding (brackets encoding also recognized)
<DT><CODE>8</CODE>
<DD>
UTF-8 encoding (brackets encoding also recognized)
<DT><CODE>b</CODE>
<DD>
Brackets encoding only (default value)
</DL>
For full details on the these encoding
methods see See section <A HREF="gnat_ug.html#SEC16">Wide Character Encodings</A>.
Note that brackets coding is always accepted, even if one of the other
options is specified, so for example <CODE>-gnatW8</CODE> specifies that both
brackets and <CODE>UTF-8</CODE> encodings will be recognized. The units that are
with'ed directly or indirectly will be scanned using the specified
representation scheme, and so if one of the non-brackets scheme is
used, it must be used consistently throughout the program. However,
since brackets encoding is always recognized, it may be conveniently
used in standard libraries, allowing these libraries to be used with
any of the available coding schemes.
scheme. If no <CODE>-gnatW?</CODE> parameter is present, then the default
representation is Brackets encoding only.
Note that the wide character representation that is specified (explicitly
or by default) for the main program also acts as the default encoding used
for Wide_Text_IO files if not specifically overridden by a WCEM form
parameter.
</DL>
<H3><A NAME="SEC45" HREF="gnat_ug_toc.html#TOC45">File Naming Control</A></H3>
<DL COMPACT>
<DT><CODE>-gnatk<VAR>n</VAR></CODE>
<DD>
<A NAME="IDX146"></A>
Activates file name "krunching". <VAR>n</VAR>, a decimal integer in the range
1-999, indicates the maximum allowable length of a file name (not
including the <TT>`.ads'</TT> or <TT>`.adb'</TT> extension). The default is not
to enable file name krunching.
For the source file naming rules, See section <A HREF="gnat_ug.html#SEC17">File Naming Rules</A>.
</DL>
<H3><A NAME="SEC46" HREF="gnat_ug_toc.html#TOC46">Subprogram Inlining Control</A></H3>
<DL COMPACT>
<DT><CODE>-gnatn</CODE>
<DD>
<A NAME="IDX147"></A>
The <CODE>n</CODE> here is intended to suggest the first syllable of the
word "inline".
GNAT recognizes and processes <CODE>Inline</CODE> pragmas. However, for the
inlining to actually occur, optimization must be enabled. To enable
inlining across unit boundaries, this is, inlining a call in one unit of
a subprogram declared in a <CODE>with</CODE>'ed unit, you must also specify
this switch.
In the absence of this switch, GNAT does not attempt
inlining across units and does not need to access the bodies of
subprograms for which <CODE>pragma Inline</CODE> is specified if they are not
in the current unit.
If you specify this switch the compiler will access these bodies,
creating an extra source dependency for the resulting object file, and
where possible, the call will be inlined. For further details on when inlining is possible
see See section <A HREF="gnat_ug.html#SEC163">Inlining of Subprograms</A>.
<DT><CODE>-gnatN</CODE>
<DD>
This switch enforces a more extreme form of inlining across unit
boundaries. It causes the compiler to proceed as though the normal
(pragma) inlining switch was set, and to assume that there is a
pragma <CODE>Inline</CODE> for every subprogram referenced by the compiled
unit.
</DL>
<H3><A NAME="SEC47" HREF="gnat_ug_toc.html#TOC47">Auxiliary Output Control</A></H3>
<DL COMPACT>
<DT><CODE>-gnatt</CODE>
<DD>
<A NAME="IDX148"></A>
<A NAME="IDX149"></A>
<A NAME="IDX150"></A>
Cause GNAT to write the internal tree for a unit to a file (with the
extension <TT>`.atb'</TT> for a body or <TT>`.ats'</TT> for a spec). This is
not normally required, but is used by separate analysis tools. Typically
these tools do the necessary compilations automatically, so you should
never have to specify this switch in normal operation.
<DT><CODE>-gnatu</CODE>
<DD>
<A NAME="IDX151"></A>
Print a list of units required by this compilation on <CODE>stdout</CODE>.
The listing includes all units on which the unit being compiled depends
either directly or indirectly.
</DL>
<H3><A NAME="SEC48" HREF="gnat_ug_toc.html#TOC48">Debugging Control</A></H3>
<DL COMPACT>
<DT><CODE>-gnatd<VAR>x</VAR></CODE>
<DD>
<A NAME="IDX152"></A>
Activate internal debugging switches. <VAR>x</VAR> is a letter or digit, or
string of letters or digits, which specifies the type of debugging
outputs desired. Normally these are used only for internal development
or system debugging purposes. You can find full documentation for these
switches in the body of the <CODE>Debug</CODE> unit in the compiler source
file <TT>`debug.adb'</TT>.
<DT><CODE>-gnatG</CODE>
<DD>
<A NAME="IDX153"></A>
This switch causes the compiler to generate auxiliary output containing
a pseudo-source listing of the generated expanded code. Like most Ada
compilers, GNAT works by first transforming the high level Ada code into
lower level constructs. For example, tasking operations are transformed
into calls to the tasking run-time routines. A unique capability of GNAT
is to list this expanded code in a form very close to normal Ada source.
This is very useful in understanding the implications of various Ada
usage on the efficiency of the generated code. There are many cases in
Ada (e.g. the use of controlled types), where simple Ada statements can
generate a lot of run-time code. By using <CODE>-gnatG</CODE> you can identify
these cases, and consider whether it may be desirable to modify the coding
approach to improve efficiency.
The format of the output is very similar to standard Ada source, and is
easily understood by an Ada programmer. The following special syntactic
additions correspond to low level features used in the generated code that
do not have any exact analogies in pure Ada source form:
<DT><CODE>-gnatD</CODE>
<DD>
<A NAME="IDX154"></A>
This switch is used in conjunction with <CODE>-gnatG</CODE> to cause the expanded
source, as described above to be written to files with names
<TT>`xxx.dg'</TT>, where <TT>`xxx'</TT> is the normal file name,
for example, if the source file name is <TT>`hello.adb'</TT>,
then a file <TT>`hello.adb.dg'</TT> will be written.
The debugging information generated
by the <CODE>gcc</CODE> <CODE>-g</CODE> switch will refer to the generated
<TT>`xxx.dg'</TT> file. This allows you to do source level debugging using
the generated code which is sometimes useful for complex code, for example
to find out exactly which part of a complex construction raised an
exception.
</DL>
<DL COMPACT>
<DT><CODE>new <VAR>xxx</VAR> [storage_pool = <VAR>yyy</VAR>]</CODE>
<DD>
Shows the storage pool being used for an allocator.
<DT><CODE>at end <VAR>procedure-name</VAR>;</CODE>
<DD>
Shows the finalization (cleanup) procedure for a scope.
<DT><CODE>(if <VAR>expr</VAR> then <VAR>expr</VAR> else <VAR>expr</VAR>)</CODE>
<DD>
Conditional expression equivalent to the <CODE>x?y:z</CODE> construction in C.
<DT><CODE><VAR>target</VAR>^(<VAR>source</VAR>)</CODE>
<DD>
A conversion with floating-point truncation instead of rounding.
<DT><CODE><VAR>target</VAR>?(<VAR>source</VAR>)</CODE>
<DD>
A conversion that bypasses normal Ada semantic checking. In particular
enumeration types and fixed-point types are treated simply as integers.
<DT><CODE><VAR>target</VAR>?^(<VAR>source</VAR>)</CODE>
<DD>
Combines the above two cases.
<DT><CODE><VAR>x</VAR> #/ <VAR>y</VAR></CODE>
<DD>
<DT><CODE><VAR>x</VAR> #mod <VAR>y</VAR></CODE>
<DD>
<DT><CODE><VAR>x</VAR> #* <VAR>y</VAR></CODE>
<DD>
<DT><CODE><VAR>x</VAR> #rem <VAR>y</VAR></CODE>
<DD>
A division or multiplication of fixed-point values which are treated as
integers without any kind of scaling.
<DT><CODE>free <VAR>expr</VAR> [storage_pool = <VAR>xxx</VAR>]</CODE>
<DD>
Shows the storage pool associated with a <CODE>free</CODE> statement.
<DT><CODE>freeze <VAR>typename</VAR> [<VAR>actions</VAR>]</CODE>
<DD>
Shows the point at which <VAR>typename</VAR> is frozen, with possible
associated actions to be performed at the freeze point.
<DT><CODE>reference <VAR>itype</VAR></CODE>
<DD>
Reference (and hence definition) to internal type <VAR>itype</VAR>.
<DT><CODE><VAR>function-name</VAR>! (<VAR>arg</VAR>, <VAR>arg</VAR>, <VAR>arg</VAR>)</CODE>
<DD>
Intrinsic function call.
<DT><CODE><VAR>labelname</VAR> : label</CODE>
<DD>
Declaration of label <VAR>labelname</VAR>.
<DT><CODE><VAR>expr</VAR> && <VAR>expr</VAR> && <VAR>expr</VAR> ... && <VAR>expr</VAR></CODE>
<DD>
A multiple concatenation (same effect as <VAR>expr</VAR> & <VAR>expr</VAR> &
<VAR>expr</VAR>, but handled more efficiently).
<DT><CODE>[constraint_error]</CODE>
<DD>
Raise the <CODE>Constraint_Error</CODE> exception.
<DT><CODE><VAR>expression</VAR>'reference</CODE>
<DD>
A pointer to the result of evaluating <VAR>expression</VAR>.
<DT><CODE><VAR>target-type</VAR>!(<VAR>source-expression</VAR>)</CODE>
<DD>
An unchecked conversion of <VAR>source-expression</VAR> to <VAR>target-type</VAR>.
<DT><CODE>[<VAR>numerator</VAR>/<VAR>denominator</VAR>]</CODE>
<DD>
Used to represent internal real literals (that) have no exact
representation in base 2-16 (for example, the result of compile time
evaluation of the expression 1.0/27.0).
</DL>
<H2><A NAME="SEC49" HREF="gnat_ug_toc.html#TOC49">Search Paths and the Run-Time Library (RTL)</A></H2>
<P>
With the GNAT source-based library system, the compiler must be able to
find source files for units that are needed by the unit being compiled.
Search paths are used to guide this process.
</P>
<P>
The compiler compiles one source file whose name must be given
explicitly on the command line. In other words, no searching is done
for this file. To find all other source files that are needed (the most
common being the specs of units), the compiler examines the following
directories, in the following order:
</P>
<OL>
<LI>
The directory containing the source file of the main unit being compiled
(the file name on the command line).
<LI>
Each directory named by an <CODE>-I</CODE> switch given on the <CODE>gcc</CODE>
command line, in the order given.
<LI>
<A NAME="IDX155"></A>
Each of the directories listed in the value of the
<CODE>ADA_INCLUDE_PATH</CODE> environment variable.
Construct this value
exactly as the <CODE>PATH</CODE> environment variable: a list of directory
names separated by colons.
<LI>
The default location for the GNAT Run Time Library (RTL) source files.
This is determined at the time GNAT is built and installed on your
system.
</OL>
<P>
Specifying the switch <CODE>-I-</CODE>
inhibits the use of the directory
containing the source file named in the command line. You can still
have this directory on your search path, but in this case it must be
explicitly requested with a <CODE>-I</CODE> switch.
</P>
<P>
Specifying the switch <CODE>-nostdinc</CODE>
inhibits the search of the default location for the GNAT Run Time
Library (RTL) source files.
</P>
<P>
The compiler outputs its object files and ALI files in the current
working directory.
Caution: The object file can be redirected with the <CODE>-o</CODE> switch;
however, <CODE>gcc</CODE> and <CODE>gnat1</CODE> have not been coordinated on this
so the ALI file will not go to the right place. Therefore, you should
avoid using the <CODE>-o</CODE> switch.
</P>
<P>
<A NAME="IDX156"></A>
The packages <CODE>Ada</CODE>, <CODE>System</CODE>, and <CODE>Interfaces</CODE> and their
children make up the GNAT RTL, together with the simple <CODE>System.IO</CODE>
package used in the "Hello World" example. The sources for these units
are needed by the compiler and are kept together in one directory. Not
all of the bodies are needed, but all of the sources are kept together
anyway. In a normal installation, you need not specify these directory
names when compiling or binding. Either the environment variables or
the built-in defaults cause these files to be found.
</P>
<P>
In addition to the language-defined hierarchies (System, Ada and
Interfaces), the GNAT distribution provides a fourth hierarchy,
consisting of child units of GNAT. This is a collection of generally
useful routines. See the GNAT Reference Manual for further details.
</P>
<P>
Besides simplifying access to the RTL, a major use of search paths is
in compiling sources from multiple directories. This can make
development environments much more flexible.
</P>
<H2><A NAME="SEC50" HREF="gnat_ug_toc.html#TOC50">Order of Compilation Issues</A></H2>
<P>
If, in our earlier example, there was a spec for the <CODE>hello</CODE>
procedure, it would be contained in the file <TT>`hello.ads'</TT>; yet this
file would not have to be explicitly compiled. This is the result of the
model we chose to implement library management. Some of the consequences
of this model are as follows:
</P>
<UL>
<LI>
There is no point in compiling specs (except for package
specs with no bodies) because these are compiled as needed by clients. If
you attempt a useless compilation, you will receive an error message.
It is also useless to compile subunits because they are compiled as needed
by the parent.
<LI>
There are no order of compilation requirements: performing a
compilation never obsoletes anything. The only way you can obsolete
something and require recompilations is to modify one of the
source files on which it depends.
<LI>
There is no library as such, apart from the ALI files (see section <A HREF="gnat_ug.html#SEC21">The Ada Library Information Files</A>, for information on the format of these
files). For now we find it convenient to create separate ALI files, but
eventually the information therein may be incorporated into the object
file directly.
<LI>
When you compile a unit, the source files for the specs of all units
that it <CODE>with</CODE>'s, all its subunits, and the bodies of any generics it
instantiates must be available (reachable by the search-paths mechanism
described above), or you will receive a fatal error message.
</UL>
<H2><A NAME="SEC51" HREF="gnat_ug_toc.html#TOC51">Examples</A></H2>
<P>
The following are some typical Ada compilation command line examples:
</P>
<DL COMPACT>
<DT><CODE>$ gcc -c xyz.adb</CODE>
<DD>
Compile body in file <TT>`xyz.adb'</TT> with all default options.
<DT><CODE>$ gcc -c -O2 -gnata xyz-def.adb</CODE>
<DD>
Compile the child unit package in file <TT>`xyz-def.adb'</TT> with extensive
optimizations, and pragma <CODE>Assert</CODE>/<CODE>Debug</CODE> statements
enabled.
<DT><CODE>$ gcc -c -gnatc abc-def.adb</CODE>
<DD>
Compile the subunit in file <TT>`abc-def.adb'</TT> in semantic-checking-only
mode.
</DL>
<H1><A NAME="SEC52" HREF="gnat_ug_toc.html#TOC52">Binding Using <CODE>gnatbind</CODE></A></H1>
<P>
<A NAME="IDX157"></A>
</P>
<UL>
<LI><A HREF="gnat_ug.html#SEC53">Running gnatbind</A>
<LI><A HREF="gnat_ug.html#SEC54">Consistency-Checking Modes</A>
<LI><A HREF="gnat_ug.html#SEC55">Binder Error Message Control</A>
<LI><A HREF="gnat_ug.html#SEC56">Elaboration Control</A>
<LI><A HREF="gnat_ug.html#SEC57">Output Control</A>
<LI><A HREF="gnat_ug.html#SEC58">Binding with Non-Ada Main Programs</A>
<LI><A HREF="gnat_ug.html#SEC59">Binding Programs with no Main Subprogram</A>
<LI><A HREF="gnat_ug.html#SEC60">Summary of Binder Switches</A>
<LI><A HREF="gnat_ug.html#SEC61">Command-Line Access</A>
<LI><A HREF="gnat_ug.html#SEC62">Search Paths for gnatbind</A>
<LI><A HREF="gnat_ug.html#SEC63">Examples of gnatbind Usage</A>
</UL>
<P>
This chapter describes the GNAT binder, <CODE>gnatbind</CODE>, which is used
to bind compiled GNAT objects. The <CODE>gnatbind</CODE> program performs
four separate functions:
</P>
<OL>
<LI>
Checks that a program is consistent, in accordance with the rules in
Chapter 10 of the Ada 95 Reference Manual. In particular, error
messages are generated if a program uses inconsistent versions of a
given unit.
<LI>
Checks that an acceptable order of elaboration exists for the program
and issues an error message if it cannot find an order of elaboration
that satisfies the rules in Chapter 10 of the Ada 95 Language Manual.
<LI>
Generates a main program incorporating the given elaboration order.
This program is a small C source file that must be subsequently compiled
using the C compiler. The two most important functions of this program
are to call the elaboration routines of units in an appropriate order
and to call the main program.
<LI>
Determines the set of object files required by the given main program.
This information is output in the forms of comments in the generated C program,
to be read by the <CODE>gnatlink</CODE> utility used to link the Ada application.
</OL>
<H2><A NAME="SEC53" HREF="gnat_ug_toc.html#TOC53">Running <CODE>gnatbind</CODE></A></H2>
<P>
The form of the <CODE>gnatbind</CODE> command is
</P>
<PRE>
$ gnatbind [<VAR>switches</VAR>] <VAR>mainprog</VAR>[.ali] [<VAR>switches</VAR>]
</PRE>
<P>
where <VAR>mainprog</VAR>.adb is the Ada file containing the main program
unit body. If no switches are specified, <CODE>gnatbind</CODE> constructs an Ada
package in two files whose names are
<TT>`b~<VAR>ada_main</VAR>.ads'</TT>, and
<TT>`b~<VAR>ada_main</VAR>.adb'</TT>.
For example, if given the
parameter <SAMP>`hello.ali'</SAMP>, for a main program contained in file
<TT>`hello.adb'</TT>, the binder output files would be <TT>`b~hello.ads'</TT>
and <TT>`b~hello.adb'</TT>.
</P>
<P>
When doing consistency checking, the binder takes any source files it
can locate into consideration. For example, if the binder determines
that the given main program requires the package <CODE>Pack</CODE>, whose ALI
file is <TT>`pack.ali'</TT> and whose corresponding source spec file is
<TT>`pack.ads'</TT>, it attempts to locate the source file <TT>`pack.ads'</TT>
(using the same search path conventions as previously described for the
<CODE>gcc</CODE> command). If it can locate this source file, it checks that
the time stamps
or source checksums of the source and its references to in <TT>`ali'</TT> files
match. In other words, any <TT>`ali'</TT> files that mentions this spec must have
resulted from compiling this version of the source file (or in the case
where the source checksums match, a version close enough that the
difference does not matter).
</P>
<P>
<A NAME="IDX158"></A>
The effect of this consistency checking, which includes source files, is
that the binder ensures that the program is consistent with the latest
version of the source files that can be located at bind time. Editing a
source file without compiling files that depend on the source file cause
error messages to be generated by the binder.
</P>
<P>
For example, suppose you have a main program <TT>`hello.adb'</TT> and a
package <CODE>P</CODE>, from file <TT>`p.ads'</TT> and you perform the following
steps:
</P>
<OL>
<LI>
Enter <CODE>gcc -c hello.adb</CODE> to compile the main program.
<LI>
Enter <CODE>gcc -c p.ads</CODE> to compile package <CODE>P</CODE>.
<LI>
Edit file <TT>`p.ads'</TT>.
<LI>
Enter <CODE>gnatbind hello</CODE>.
</OL>
<P>
At this point, the file <TT>`p.ali'</TT> contains an out-of-date time stamp
because the file <TT>`p.ads'</TT> has been edited. The attempt at binding
fails, and the binder generates the following error messages:
</P>
<PRE>
error: "hello.adb" must be recompiled ("p.ads" has been modified)
error: "p.ads" has been modified and must be recompiled
</PRE>
<P>
Now both files must be recompiled as indicated, and then the bind can
succeed, generating a main program. You need not normally be concerned
with the contents of this file, but it is similar to the following (when
using -C):
</P>
<PRE>
extern int gnat_argc;
extern char **gnat_argv;
extern char **gnat_envp;
extern int gnat_exit_status;
void adafinal ();
void adainit ()
{
__gnat_set_globals (
-1, /* Main_Priority */
-1, /* Time_Slice_Value */
' ', /* Locking_Policy */
' ', /* Queuing_Policy */
' ', /* Tasking_Dispatching_Policy */
adafinal);
system___elabs ();
/* system__standard_library___elabs (); */
/* system__task_specific_data___elabs (); */
/* system__tasking_soft_links___elabs (); */
system__tasking_soft_links___elabb ();
/* system__task_specific_data___elabb (); */
/* system__standard_library___elabb (); */
/* m___elabb (); */
}
void adafinal () {
}
int main (argc, argv, envp)
int argc;
char **argv;
char **envp;
{
gnat_argc = argc;
gnat_argv = argv;
gnat_envp = envp;
__gnat_initialize();
adainit();
_ada_m ();
adafinal();
__gnat_finalize();
exit (gnat_exit_status);
}
unsigned mB = 0x2B0EB17F;
unsigned system__standard_libraryB = 0x0122ED49;
unsigned system__standard_libraryS = 0x79B018CE;
unsigned systemS = 0x08FBDA7E;
unsigned system__task_specific_dataB = 0x6CC7367B;
unsigned system__task_specific_dataS = 0x47178527;
unsigned system__tasking_soft_linksB = 0x5A75A73C;
unsigned system__tasking_soft_linksS = 0x3012AFCB;
/* BEGIN Object file/option list
./system.o
./s-tasoli.o
./s-taspda.o
./s-stalib.o
./m.o
END Object file/option list */
</PRE>
<P>
The call to <CODE>__gnat_set_globals</CODE> establishes program parameters,
including the priority of the main task, and parameters for tasking
control. It also passes the address of the finalization routine so
that it can be called at the end of program execution.
</P>
<P>
<A NAME="IDX159"></A>
<A NAME="IDX160"></A>
<A NAME="IDX161"></A>
<A NAME="IDX162"></A>
<A NAME="IDX163"></A>
</P>
<P>
Next there is code to save the <CODE>argc</CODE> and <CODE>argv</CODE> values for
later access by the <CODE>Ada.Command_Line</CODE> package. The variable
<CODE>gnat_exit_status</CODE> saves the exit status set by calls to
<CODE>Ada.Command_Line.Set_Exit_Status</CODE> and is used to return an exit
status to the system.
</P>
<P>
<A NAME="IDX164"></A>
<A NAME="IDX165"></A>
The call to <CODE>__gnat_initialize</CODE> and the corresponding call at the
end of execution to <CODE>__gnat_finalize</CODE> allow any specialized
initialization and finalization code to be hooked in. The default
versions of these routines do nothing.
</P>
<P>
<A NAME="IDX166"></A>
The calls to <CODE>xxx___elabb</CODE> and
<CODE>xxx___elabs</CODE> perform necessary elaboration of the bodies and
specs respectively of units in the program. These calls are commented
out if the unit in question has no elaboration code.
</P>
<P>
The call to
<CODE>m</CODE>
is the call to the main program.
</P>
<P>
<A NAME="IDX167"></A>
<A NAME="IDX168"></A>
The list of unsigned constants gives the version number information.
Version numbers are computed by combining time stamps of a unit and all
units on which it depends. These values are used for implementation of
the <CODE>Version</CODE> and <CODE>Body_Version</CODE> attributes.
</P>
<P>
Finally, a set of comments gives the full names of all the object files
that must be linked to provide the Ada component of the program. As seen in
the previous example, this list includes the files explicitly supplied
and referenced by the user as well as implicitly referenced run-time unit
files. The latter are omitted if the corresponding units reside in
shared libraries. The directory names for the run-time units depend on
the system configuration. See section <A HREF="gnat_ug.html#SEC57">Output Control</A>.
</P>
<H2><A NAME="SEC54" HREF="gnat_ug_toc.html#TOC54">Consistency-Checking Modes</A></H2>
<P>
As described in the previous section, by default <CODE>gnatbind</CODE> checks
that object files are consistent with one another and are consistent
with any source files it can locate. The following switches control binder
access to sources.
</P>
<DL COMPACT>
<DT><CODE>-s</CODE>
<DD>
<A NAME="IDX169"></A>
Require source files to be present. In this mode, the binder must be
able to locate all source files that are referenced, in order to check
their consistency. In normal mode, if a source file cannot be located it
is simply ignored. If you specify this switch, a missing source
file is an error.
<DT><CODE>-x</CODE>
<DD>
<A NAME="IDX170"></A>
Exclude source files. In this mode, the binder only checks that ALI
files are consistent with one another. Source files are not accessed.
The binder runs faster in this mode, and there is still a guarantee that
the resulting program is self-consistent.
If a source file has been edited since it was last compiled, and you
specify this switch, the binder will not detect that the object
file is out of date with respect to the source file. Note that this is the
mode that is automatically used by <CODE>gnatmake</CODE> because in this
case the checking against sources has already been performed by
<CODE>gnatmake</CODE> in the course of compilation (i.e. before binding).
</DL>
<H2><A NAME="SEC55" HREF="gnat_ug_toc.html#TOC55">Binder Error Message Control</A></H2>
<P>
The following switches provide control over the generation of error
messages from the binder:
</P>
<DL COMPACT>
<DT><CODE>-v</CODE>
<DD>
<A NAME="IDX171"></A>
Verbose mode. In the normal mode, brief error messages are generated to
<CODE>stderr</CODE>. If this switch is present, a header is written
to <CODE>stdout</CODE> and any error messages are directed to <CODE>stdout</CODE>.
All that is written to <CODE>stderr</CODE> is a brief summary message.
<DT><CODE>-b</CODE>
<DD>
<A NAME="IDX172"></A>
Generate brief error messages to <CODE>stderr</CODE> even if verbose mode is
specified. This is relevant only when used with the
<CODE>-v</CODE> switch.
<DT><CODE>-m<VAR>n</VAR></CODE>
<DD>
<A NAME="IDX173"></A>
Limits the number of error messages to <VAR>n</VAR>, a decimal integer in the
range 1-999. The binder terminates immediately if this limit is reached.
<DT><CODE>-M<VAR>xxx</VAR></CODE>
<DD>
<A NAME="IDX174"></A>
Renames the generated main program from <CODE>main</CODE> to <CODE>xxx</CODE>.
This is useful in the case of some cross-building environments, where
the actual main program is separate from the one generated
by <CODE>gnatbind</CODE>.
<DT><CODE>-ws</CODE>
<DD>
<A NAME="IDX175"></A>
<A NAME="IDX176"></A>
Suppress all warning messages.
<DT><CODE>-we</CODE>
<DD>
<A NAME="IDX177"></A>
Treat any warning messages as fatal errors.
<DT><CODE>-t</CODE>
<DD>
<A NAME="IDX178"></A>
<A NAME="IDX179"></A>
Ignore time stamp errors. Any time stamp error messages are treated as
warning messages. This switch essentially disconnects the normal
consistency checking, and the resulting program may have undefined
semantics if inconsistent units are present. <EM>This means that
<CODE>-t</CODE> should be used only in unusual situations,
with extreme care.</EM>
</DL>
<H2><A NAME="SEC56" HREF="gnat_ug_toc.html#TOC56">Elaboration Control</A></H2>
<P>
The following switches provide additional control over the elaboration
order. For full details see See section <A HREF="gnat_ug.html#SEC84">Elaboration Order Handling in GNAT</A>.
</P>
<DL COMPACT>
<DT><CODE>-f</CODE>
<DD>
<A NAME="IDX180"></A>
Instructs the binder to ignore directives from the compiler about
implied <CODE>Elaborate_All</CODE> pragmas, and to use full Ada 95 Reference
Manual semantics in an attempt to find a legal elaboration order,
even if it seems likely that this order will cause an elaboration
exception.
<DT><CODE>-p</CODE>
<DD>
<A NAME="IDX181"></A>
Normally the binder attempts to choose an elaboration order that is
likely to minimize the likelihood of an elaboration order error resulting
in raising a <CODE>Program_Error</CODE> exception. This switch reverses the
action of the binder, and requests that it deliberately choose an order
that is likely to maximize the likelihood of an elaboration error.
This is useful in ensuring portability and avoiding dependence on
accidental fortuitous elaboration ordering.
</DL>
<H2><A NAME="SEC57" HREF="gnat_ug_toc.html#TOC57">Output Control</A></H2>
<P>
The following switches allow additional control over the output
generated by the binder.
</P>
<DL COMPACT>
<DT><CODE>-A</CODE>
<DD>
<A NAME="IDX182"></A>
Generate binder program in Ada (default). The binder program is named
<TT>`b~<VAR>mainprog</VAR>.adb'</TT> by default. This can be changed with
<CODE>-o</CODE> <CODE>gnatbind</CODE> option.
<DT><CODE>-C</CODE>
<DD>
<A NAME="IDX183"></A>
Generate binder program in C. The binder program is named
<TT>`b_<VAR>mainprog</VAR>.c'</TT>. This can be changed with <CODE>-o</CODE> <CODE>gnatbind</CODE>
option.
<DT><CODE>-e</CODE>
<DD>
<A NAME="IDX184"></A>
Output complete list of elaboration-order dependencies, showing the
reason for each dependency. This output can be rather extensive but may
be useful in diagnosing problems with elaboration order. The output is
written to <CODE>stdout</CODE>.
<DT><CODE>-h</CODE>
<DD>
<A NAME="IDX185"></A>
Output usage information. The output is written to <CODE>stdout</CODE>.
<DT><CODE>-l</CODE>
<DD>
<A NAME="IDX186"></A>
Output chosen elaboration order. The output is written to <CODE>stdout</CODE>.
<DT><CODE>-O</CODE>
<DD>
<A NAME="IDX187"></A>
Output full names of all the object files that must be linked to provide
the Ada component of the program. The output is written to <CODE>stdout</CODE>.
This list includes the files explicitly supplied and referenced by the user
as well as implicitly referenced run-time unit files. The latter are
omitted if the corresponding units reside in shared libraries. The
directory names for the run-time units depend on the system configuration.
<DT><CODE>-o <VAR>file</VAR></CODE>
<DD>
<A NAME="IDX188"></A>
Set name of output file to <VAR>file</VAR> instead of the normal
<TT>`b~<VAR>mainprog</VAR>.adb'</TT> default. Note that <VAR>file</VAR> denote the Ada
binder generated body filename. In C mode you would normally give
<VAR>file</VAR> an extension of <TT>`.c'</TT> because it will be a C source program.
Note that if this option is used, then linking must be done manually.
It is not possible to use gnatlink in this case, since it cannot locate
the binder file.
<DT><CODE>-c</CODE>
<DD>
<A NAME="IDX189"></A>
Check only. Do not generate the binder output file. In this mode the
binder performs all error checks but does not generate an output file.
</DL>
<H2><A NAME="SEC58" HREF="gnat_ug_toc.html#TOC58">Binding with Non-Ada Main Programs</A></H2>
<P>
In our description so far we have assumed that the main
program is in Ada, and that the task of the binder is to generate a
corresponding function <CODE>main</CODE> that invokes this Ada main
program. GNAT also supports the building of executable programs where
the main program is not in Ada, but some of the called routines are
written in Ada and compiled using GNAT (see section <A HREF="gnat_ug.html#SEC24">Mixed Language Programming</A>).
The following switch is used in this situation:
</P>
<DL COMPACT>
<DT><CODE>-n</CODE>
<DD>
<A NAME="IDX190"></A>
No main program. The main program is not in Ada.
</DL>
<P>
In this case, most of the functions of the binder are still required,
but instead of generating a main program, the binder generates a file
containing the following callable routines:
</P>
<DL COMPACT>
<DT><CODE>adainit</CODE>
<DD>
<A NAME="IDX191"></A>
You must call this routine to initialize the Ada part of the program by
calling the necessary elaboration routines. A call to <CODE>adainit</CODE> is
required before the first call to an Ada subprogram.
<DT><CODE>adafinal</CODE>
<DD>
<A NAME="IDX192"></A>
You must call this routine to perform any library-level finalization
required by the Ada subprograms. A call to <CODE>adafinal</CODE> is required
after the last call to an Ada subprogram, and before the program
terminates.
</DL>
<P>
If the <CODE>-n</CODE> switch
<A NAME="IDX193"></A>
is given, more than one ALI file may appear on
the command line for <CODE>gnatbind</CODE>. The normal <STRONG>closure</STRONG>
calculation is performed for each of the specified units. Calculating
the closure means finding out the set of units involved by tracing
<CODE>with</CODE> references. The reason it is necessary to be able to
specify more than one ALI file is that a given program may invoke two or
more quite separate groups of Ada units.
</P>
<P>
The binder takes the name of its output file from the last specified ALI
file, unless overridden by the use of the <CODE>\-o
file\/OUTPUT=file\</CODE>. The output is an Ada unit in source form that can
be compiled with GNAT unless the -C switch is used in which case the
output is a C source file, which must be compiled using the C compiler.
This compilation occurs automatically as part of the <CODE>gnatlink</CODE>
processing.
</P>
<H2><A NAME="SEC59" HREF="gnat_ug_toc.html#TOC59">Binding Programs with no Main Subprogram</A></H2>
<P>
It is possible to have an Ada program which does not have a main
subprogram. This program will call the elaboration routines of all the
packages, then the finalization routines.
</P>
<P>
The following switch is used to bind programs organized in this manner:
</P>
<DL COMPACT>
<DT><CODE>-z</CODE>
<DD>
<A NAME="IDX194"></A>
Normally the binder checks that the unit name given on the command line
corresponds to a suitable main subprogram. When this switch is used,
a list of ALI files can be given, and the execution of the program
consists of elaboration of these units in an appropriate order.
</DL>
<H2><A NAME="SEC60" HREF="gnat_ug_toc.html#TOC60">Summary of Binder Switches</A></H2>
<P>
The following are the switches available with <CODE>gnatbind</CODE>:
</P>
<DL COMPACT>
<DT><CODE>-aO</CODE>
<DD>
Specify directory to be searched for ALI files.
<DT><CODE>-aI</CODE>
<DD>
Specify directory to be searched for source file.
<DT><CODE>-A</CODE>
<DD>
Generate binder program in Ada (default)
<DT><CODE>-b</CODE>
<DD>
Generate brief messages to <CODE>stderr</CODE> even if verbose mode set.
<DT><CODE>-c</CODE>
<DD>
Check only, no generation of binder output file.
<DT><CODE>-C</CODE>
<DD>
Generate binder program in C
<DT><CODE>-e</CODE>
<DD>
Output complete list of elaboration-order dependencies.
<DT><CODE>-E</CODE>
<DD>
Store tracebacks in exception occurrences when the target supports it.
This is the default with the zero cost exception mechanism.
This option is currently only supported on Solaris and Linux where you
explicitly need to use the <CODE>gcc</CODE> flag <CODE>-funwind-tables</CODE> when
compiling every file in your application. See also the packages
<CODE>GNAT.Traceback</CODE> and <CODE>GNAT.Traceback.Symbolic</CODE>
<DT><CODE>-f</CODE>
<DD>
Full elaboration semantics. Follow Ada rules. No attempt to be kind
<DT><CODE>-h</CODE>
<DD>
Output usage (help) information
<DT><CODE>-I</CODE>
<DD>
Specify directory to be searched for source and ALI files.
<DT><CODE>-I-</CODE>
<DD>
Do not look for sources in the current directory where <CODE>gnatbind</CODE> was
invoked, and do not look for ALI files in the directory containing the
ALI file named in the <CODE>gnatbind</CODE> command line.
<DT><CODE>-l</CODE>
<DD>
Output chosen elaboration order.
<DT><CODE>-Mxyz</CODE>
<DD>
Rename generated main program from main to xyz
<DT><CODE>-m<VAR>n</VAR></CODE>
<DD>
Limit number of detected errors to <VAR>n</VAR> (1-999).
<DT><CODE>-n</CODE>
<DD>
No main program.
<DT><CODE>-nostdinc</CODE>
<DD>
Do not look for sources in the system default directory.
<DT><CODE>-nostdlib</CODE>
<DD>
Do not look for library files in the system default directory.
<DT><CODE>-o <VAR>file</VAR></CODE>
<DD>
Name the output file <VAR>file</VAR> (default is <TT>`b~<VAR>xxx</VAR>.adb'</TT>).
Note that if this option is used, then linking must be done manually,
gnatlink cannot be used.
<DT><CODE>-O</CODE>
<DD>
Output object list.
<DT><CODE>-p</CODE>
<DD>
Pessimistic (worst-case) elaboration order
<DT><CODE>-s</CODE>
<DD>
Require all source files to be present.
<DT><CODE>-static</CODE>
<DD>
Link against a static GNAT run time.
<DT><CODE>-shared</CODE>
<DD>
Link against a shared GNAT run time when available.
<DT><CODE>-t</CODE>
<DD>
Tolerate time stamp and other consistency errors
<DT><CODE>-T<VAR>n</VAR></CODE>
<DD>
Set the time slice value to n milliseconds. A value of zero means no time
slicing and also indicates to the tasking run time to match as close as
possible to the annex D requirements of the RM.
<DT><CODE>-v</CODE>
<DD>
Verbose mode. Write error messages, header, summary output to
<CODE>stdout</CODE>.
<DT><CODE>-w<VAR>x</VAR></CODE>
<DD>
Warning mode (<VAR>x</VAR>=s/e for suppress/treat as error)
<DT><CODE>-x</CODE>
<DD>
Exclude source files (check object consistency only).
<DT><CODE>-z</CODE>
<DD>
No main subprogram.
</DL>
<P>
You may obtain this listing by running the program <CODE>gnatbind</CODE> with
no arguments.
</P>
<H2><A NAME="SEC61" HREF="gnat_ug_toc.html#TOC61">Command-Line Access</A></H2>
<P>
The package <CODE>Ada.Command_Line</CODE> provides access to the command-line
arguments and program name. In order for this interface to operate
correctly, the two variables
</P>
<PRE>
int gnat_argc;
char **gnat_argv;
</PRE>
<P>
<A NAME="IDX195"></A>
<A NAME="IDX196"></A>
are declared in one of the GNAT library routines. These variables must
be set from the actual <CODE>argc</CODE> and <CODE>argv</CODE> values passed to the
main program. With no <CODE>n</CODE> present, <CODE>gnatbind</CODE>
generates the C main program to automatically set these variables.
If the <CODE>n</CODE> switch is used, there is no automatic way to
set these variables. If they are not set, the procedures in
<CODE>Ada.Command_Line</CODE> will not be available, and any attempt to use
them will raise <CODE>Constraint_Error</CODE>. If command line access is
required, your main program must set <CODE>gnat_argc</CODE> and
<CODE>gnat_argv</CODE> from the <CODE>argc</CODE> and <CODE>argv</CODE> values passed to
it.
</P>
<H2><A NAME="SEC62" HREF="gnat_ug_toc.html#TOC62">Search Paths for <CODE>gnatbind</CODE></A></H2>
<P>
The binder takes the name of an ALI file as its argument and needs to
locate source files as well as other ALI files to verify object consistency.
</P>
<P>
For source files, it follows exactly the same search rules as <CODE>gcc</CODE>
(see section <A HREF="gnat_ug.html#SEC49">Search Paths and the Run-Time Library (RTL)</A>). For ALI files the
directories searched are:
</P>
<OL>
<LI>
The directory containing the ALI file named in the command line, unless
the switch <CODE>-I-</CODE> is specified.
<LI>
All directories specified by <CODE>-I</CODE>
switches on the <CODE>gnatbind</CODE>
command line, in the order given.
<LI>
<A NAME="IDX197"></A>
Each of the directories listed in the value of the
<CODE>ADA_OBJECTS_PATH</CODE> environment variable.
Construct this value
exactly as the <CODE>PATH</CODE> environment variable: a list of directory
names separated by colons.
<LI>
The default location for the GNAT Run-Time Library (RTL) files,
determined when GNAT was built and installed on your system, unless
the switch <CODE>-nostdlib</CODE> is specified.
</OL>
<P>
In the binder the switch <CODE>-I</CODE>
is used to specify both source and
library file paths. Use <CODE>-aI</CODE>
instead if you want to specify
source paths only, and <CODE>-aO</CODE>
if you want to specify library paths
only. This means that for the binder
<CODE>-I</CODE><VAR>dir</VAR> is equivalent to
<CODE>-aI</CODE><VAR>dir</VAR>
<CODE>-aO</CODE><VAR>dir</VAR>.
The binder generates the bind file (a C language source file) in the
current working directory.
</P>
<P>
<A NAME="IDX198"></A>
<A NAME="IDX199"></A>
<A NAME="IDX200"></A>
<A NAME="IDX201"></A>
The packages <CODE>Ada</CODE>, <CODE>System</CODE>, and <CODE>Interfaces</CODE> and their
children make up the GNAT Run-Time Library, together with the package
GNAT and its children, which contain a set of useful additional
library functions provided by GNAT. The sources for these units are
needed by the compiler and are kept together in one directory. The ALI
files and object files generated by compiling the RTL are needed by the
binder and the linker and are kept together in one directory, typically
different from the directory containing the sources. In a normal
installation, you need not specify these directory names when compiling
or binding. Either the environment variables or the built-in defaults
cause these files to be found.
</P>
<P>
Besides simplifying access to the RTL, a major use of search paths is
in compiling sources from multiple directories. This can make
development environments much more flexible.
</P>
<H2><A NAME="SEC63" HREF="gnat_ug_toc.html#TOC63">Examples of <CODE>gnatbind</CODE> Usage</A></H2>
<P>
This section contains a number of examples of using the GNAT binding
utility <CODE>gnatbind</CODE>.
</P>
<DL COMPACT>
<DT><CODE>gnatbind hello</CODE>
<DD>
The main program <CODE>Hello</CODE> (source program in <TT>`hello.adb'</TT>) is
bound using the standard switch settings. The generated main program is
<TT>`b~hello.adb'</TT>. This is the normal, default use of the binder.
<DT><CODE>gnatbind hello -o mainprog.adb</CODE>
<DD>
The main program <CODE>Hello</CODE> (source program in <TT>`hello.adb'</TT>) is
bound using the standard switch settings. The generated main program is
<TT>`mainprog.adb'</TT> with the associated spec in
<TT>`mainprog.ads'</TT>. Note that you must specify the body here not the
spec, in the case where the output is in Ada. Note that if this option
is used, then linking must be done manually, since gnatlink will not
be able to find the generated file.
<DT><CODE>gnatbind main -C -o mainprog.c -x</CODE>
<DD>
The main program <CODE>Main</CODE> (source program in
<TT>`main.adb'</TT>) is bound, excluding source files from the
consistency checking, generating
the file <TT>`mainprog.c'</TT>.
<DT><CODE>gnatbind -x main_program -C -o mainprog.c</CODE>
<DD>
This command is exactly the same as the previous example. Switches may
appear anywhere in the command line, and single letter switches may be
combined into a single switch.
<DT><CODE>gnatbind -n math dbase -C -o ada-control.c</CODE>
<DD>
The main program is in a language other than Ada, but calls to
subprograms in packages <CODE>Math</CODE> and <CODE>Dbase</CODE> appear. This call
to <CODE>gnatbind</CODE> generates the file <TT>`ada-control.c'</TT> containing
the <CODE>adainit</CODE> and <CODE>adafinal</CODE> routines to be called before and
after accessing the Ada units.
</DL>
<H1><A NAME="SEC64" HREF="gnat_ug_toc.html#TOC64">Linking Using <CODE>gnatlink</CODE></A></H1>
<P>
<A NAME="IDX202"></A>
</P>
<P>
This chapter discusses <CODE>gnatlink</CODE>, a utility program used to link
Ada programs and build an executable file. This is a simple program
that invokes the UNIX linker (via the <CODE>gcc</CODE>
command) with a correct list of object files and library references.
<CODE>gnatlink</CODE> automatically determines the list of files and
references for the Ada part of a program. It uses the binder file
generated by the binder to determine this list.
</P>
<UL>
<LI><A HREF="gnat_ug.html#SEC65">Running gnatlink</A>
<LI><A HREF="gnat_ug.html#SEC66">Switches for gnatlink</A>
</UL>
<H2><A NAME="SEC65" HREF="gnat_ug_toc.html#TOC65">Running <CODE>gnatlink</CODE></A></H2>
<P>
The form of the <CODE>gnatlink</CODE> command is
</P>
<PRE>
$ gnatlink [<VAR>switches</VAR>] <VAR>mainprog</VAR>[.ali] [<VAR>non-Ada objects</VAR>] [<VAR>linker options</VAR>]
</PRE>
<P>
<TT>`<VAR>mainprog</VAR>.ali'</TT> references the ALI file of the main program.
The <TT>`.ali'</TT> extension of this file can be omitted. From this
reference, <CODE>gnatlink</CODE> locates the corresponding binder file
<TT>`b~<VAR>mainprog</VAR>.adb'</TT> and, using the information in this file along
with the list of non-Ada objects and linker options, constructs a UNIX
linker command file to create the executable.
</P>
<P>
The arguments following <TT>`<VAR>mainprog</VAR>.ali'</TT> are passed to the
linker uninterpreted. They typically include the names of object files
for units written in other languages than Ada and any library references
required to resolve references in any of these foreign language units,
or in <CODE>pragma Import</CODE> statements in any Ada units. This list may
also include linker switches.
</P>
<P>
<CODE>gnatlink</CODE> determines the list of objects required by the Ada
program and prepends them to the list of objects passed to the linker.
<CODE>gnatlink</CODE> also gathers any arguments set by the use of
<CODE>pragma Linker_Options</CODE> and adds them to the list of arguments
presented to the linker.
</P>
<H2><A NAME="SEC66" HREF="gnat_ug_toc.html#TOC66">Switches for <CODE>gnatlink</CODE></A></H2>
<P>
The following switches are available with the <CODE>gnatlink</CODE> utility:
</P>
<DL COMPACT>
<DT><CODE>-A</CODE>
<DD>
<A NAME="IDX203"></A>
The binder has generated code in Ada. This is the default.
<DT><CODE>-C</CODE>
<DD>
<A NAME="IDX204"></A>
If instead of generating a file in Ada, the binder has generated one in
C, then the linker needs to know about it. Use this switch to signal
to <CODE>gnatlink</CODE> that the binder has generated C code rather than
Ada code.
<DT><CODE>-g</CODE>
<DD>
<A NAME="IDX205"></A>
<A NAME="IDX206"></A>
The option to include debugging information causes the Ada bind file (in
other words, <TT>`b~<VAR>mainprog</VAR>.adb'</TT>) to be compiled with
<CODE>-g</CODE>.
In addition, the binder does not delete the <TT>`b~<VAR>mainprog</VAR>.adb'</TT>,
<TT>`b~<VAR>mainprog</VAR>.o'</TT> and <TT>`b~<VAR>mainprog</VAR>.ali'</TT> files.
Without <CODE>-g</CODE>, the binder removes these files by
default. The same procedure apply if a C bind file was generated using
<CODE>-C</CODE> <CODE>gnatbind</CODE> option, in this case the filenames are
<TT>`b_<VAR>mainprog</VAR>.c'</TT> and <TT>`b_<VAR>mainprog</VAR>.o'</TT>.
<DT><CODE>-n</CODE>
<DD>
<A NAME="IDX207"></A>
Do not compile the file generated by the binder. This may be used when
a link is rerun with different options, but there is no need to recompile
the binder file.
<DT><CODE>-v</CODE>
<DD>
<A NAME="IDX208"></A>
Causes additional information to be output, including a full list of the
included object files. This switch option is most useful when you want
to see what set of object files are being used in the link step.
<DT><CODE>-v -v</CODE>
<DD>
<A NAME="IDX209"></A>
Very verbose mode. Requests that the compiler operate in verbose mode when
it compiles the binder file, and that the system linker run in verbose mode.
<DT><CODE>-o <VAR>exec-name</VAR></CODE>
<DD>
<A NAME="IDX210"></A>
<VAR>exec-name</VAR> specifies an alternate name for the generated
executable program. If this switch is omitted, the executable has the same
name as the main unit. For example, <CODE>gnatlink try.ali</CODE> creates
an executable called <TT>`try'</TT>.
<DT><CODE>-b <VAR>target</VAR></CODE>
<DD>
<A NAME="IDX211"></A>
Compile your program to run on <VAR>target</VAR>, which is the name of a
system configuration. You must have a GNAT cross-compiler built if
<VAR>target</VAR> is not the same as your host system.
<DT><CODE>-B<VAR>dir</VAR></CODE>
<DD>
<A NAME="IDX212"></A>
Load compiler executables (for example, <CODE>gnat1</CODE>, the Ada compiler)
from <VAR>dir</VAR> instead of the default location. Only use this switch
when multiple versions of the GNAT compiler are available. See the
<CODE>gcc</CODE> manual page for further details. You would normally use the
<CODE>-b</CODE> or <CODE>-V</CODE> switch instead.
<DT><CODE>--GCC=<VAR>compiler_name</VAR></CODE>
<DD>
<A NAME="IDX213"></A>
Program used for compiling the binder file. The default is
<CODE>gcc</CODE>'. You need to use quotes around <VAR>compiler_name</VAR> if
<CODE>compiler_name</CODE> contains spaces or other separator characters. As
an example <CODE>--GCC="foo -x -y"</CODE> will instruct <CODE>gnatlink</CODE> to use
<CODE>foo -x -y</CODE> as your compiler. Note that switch <CODE>-c</CODE> is always
inserted after your command name. Thus in the above example the compiler
command that will be used by <CODE>gnatlink</CODE> will be <CODE>foo -c -x -y</CODE>.
<DT><CODE>--LINK=<VAR>name</VAR></CODE>
<DD>
<A NAME="IDX214"></A>
<VAR>name</VAR> is the name of the linker to be invoked. This is especially
useful in mixed language programs since languages such as c++ require
their own linker to be used. When this switch is
omitted, the default name for the linker is (<TT>`gcc'</TT>).
</DL>
<H1><A NAME="SEC67" HREF="gnat_ug_toc.html#TOC67">The GNAT Make Program <CODE>gnatmake</CODE></A></H1>
<P>
<A NAME="IDX215"></A>
</P>
<UL>
<LI><A HREF="gnat_ug.html#SEC68">Running gnatmake</A>
<LI><A HREF="gnat_ug.html#SEC69">Switches for gnatmake</A>
<LI><A HREF="gnat_ug.html#SEC70">Mode switches for gnatmake</A>
<LI><A HREF="gnat_ug.html#SEC71">Notes on the Command Line</A>
<LI><A HREF="gnat_ug.html#SEC72">How gnatmake Works</A>
<LI><A HREF="gnat_ug.html#SEC73">Examples of gnatmake Usage</A>
<LI><A HREF="gnat_ug.html#SEC74">Gnatmake in makefiles</A>
</UL>
<P>
A typical development cycle when working on an Ada program consists of
the following steps:
</P>
<OL>
<LI>
Edit some sources to fix bugs.
<LI>
Add enhancements.
<LI>
Compile all sources affected.
<LI>
Rebind and relink.
<LI>
Test.
</OL>
<P>
The third step can be tricky, because not only do the modified files
<A NAME="IDX216"></A>
have to be compiled, but any files depending on these files must also be
recompiled. The dependency rules in Ada can be quite complex, especially
in the presence of overloading, <CODE>use</CODE> clauses, generics and inlined
subprograms.
</P>
<P>
<CODE>gnatmake</CODE> automatically takes care of the third and fourth steps
of this process. It determines which sources need to be compiled,
compiles them, and binds and links the resulting object files.
</P>
<P>
Unlike some other Ada make programs, the dependencies are always
accurately recomputed from the new sources. The source based approach of
the GNAT compilation model makes this possible. This means that if
changes to the source program cause corresponding changes in
dependencies, they will always be tracked exactly correctly by
<CODE>gnatmake</CODE>.
</P>
<H2><A NAME="SEC68" HREF="gnat_ug_toc.html#TOC68">Running <CODE>gnatmake</CODE></A></H2>
<P>
The form of the <CODE>gnatmake</CODE> command is
</P>
<PRE>
$ gnatmake [<VAR>switches</VAR>] <VAR>file_name</VAR> [<VAR>mode_switches</VAR>]
</PRE>
<P>
The only required argument is <VAR>file_name</VAR>, which specifies
the compilation unit that is the main program. If <CODE>switches</CODE> are
present, they can be placed before of after <VAR>file_name</VAR>.
If <VAR>mode_switches</VAR> are present, they must always be placed after
<VAR>file_name</VAR> and all <CODE>switches</CODE>.
</P>
<P>
If you are using standard file extensions (.adb and .ads), then the
extension may be omitted from the <VAR>file_name</VAR> argument. However, if
you are using non-standard extensions, then it is required that the
extension be given. A relative or absolute directory path can be
specified in <VAR>file_name</VAR>, in which case, the input source file will
be searched for in the specified directory only. Otherwise, the input
source file will first be searched in the directory where
<CODE>gnatmake</CODE> was invoked and if it is not found, it will be search on
the source path of the compiler as described in section <A HREF="gnat_ug.html#SEC49">Search Paths and the Run-Time Library (RTL)</A>.
</P>
<P>
All <CODE>gnatmake</CODE> output (except when you specify
<CODE>-M</CODE>) is to
<CODE>stderr</CODE>. The output produced by the
<CODE>-M</CODE> switch is send to
<CODE>stdout</CODE>.
</P>
<H2><A NAME="SEC69" HREF="gnat_ug_toc.html#TOC69">Switches for <CODE>gnatmake</CODE></A></H2>
<P>
You may specify any of the following switches to <CODE>gnatmake</CODE>:
</P>
<DL COMPACT>
<DT><CODE>--GCC=<VAR>compiler_name</VAR></CODE>
<DD>
<A NAME="IDX217"></A>
Program used for compiling. The default is <CODE>gcc</CODE>'. You need to use
quotes around <VAR>compiler_name</VAR> if <CODE>compiler_name</CODE> contains
spaces or other separator characters. As an example <CODE>--GCC="foo -x
-y"</CODE> will instruct <CODE>gnatmake</CODE> to use <CODE>foo -x -y</CODE> as your
compiler. Note that switch <CODE>-c</CODE> is always inserted after your
command name. Thus in the above example the compiler command that will
be used by <CODE>gnatmake</CODE> will be <CODE>foo -c -x -y</CODE>.
<DT><CODE>--GNATBIND=<VAR>binder_name</VAR></CODE>
<DD>
<A NAME="IDX218"></A>
Program used for binding. The default is <CODE>gnatbind</CODE>'. You need to
use quotes around <VAR>binder_name</VAR> if <VAR>binder_name</VAR> contains spaces
or other separator characters. As an example <CODE>--GNATBIND="bar -x
-y"</CODE> will instruct <CODE>gnatmake</CODE> to use <CODE>bar -x -y</CODE> as your
binder. Binder switches that are normally appended by <CODE>gnatmake</CODE> to
<CODE>gnatbind</CODE>' are now appended to the end of <CODE>bar -x -y</CODE>.
<DT><CODE>--GNATLINK=<VAR>linker_name</VAR></CODE>
<DD>
<A NAME="IDX219"></A>
Program used for linking. The default is <CODE>gnatlink</CODE>'. You need to
use quotes around <VAR>linker_name</VAR> if <VAR>linker_name</VAR> contains spaces
or other separator characters. As an example <CODE>--GNATLINK="lan -x
-y"</CODE> will instruct <CODE>gnatmake</CODE> to use <CODE>lan -x -y</CODE> as your
linker. Linker switches that are normally appended by <CODE>gnatmake</CODE> to
<CODE>gnatlink</CODE>' are now appended to the end of <CODE>lan -x -y</CODE>.
<DT><CODE>-a</CODE>
<DD>
<A NAME="IDX220"></A>
Consider all files in the make process, even the GNAT internal system
files (for example, the predefined Ada library files), as well as any
locked files. Locked files are files whose ALI file is write-protected.
By default,
<CODE>gnatmake</CODE> does not check these files,
because the assumption is that the GNAT internal files are properly up
to date, and also that any write protected ALI files have been properly
installed. Note that if there is an installation problem, such that one
of these files is not up to date, it will be properly caught by the
binder.
You may have to specify this switch if you are working on GNAT
itself. <CODE>-f</CODE> is also useful in conjunction with
<CODE>-f</CODE>
if you need to recompile an entire application,
including run-time files, using special configuration pragma settings,
such as a non-standard <CODE>Float_Representation</CODE> pragma.
By default
<CODE>gnatmake -a</CODE> compiles all GNAT
internal files with
<CODE>gcc -c -gnatg</CODE> rather than <CODE>gcc -c</CODE>.
<DT><CODE>-c</CODE>
<DD>
<A NAME="IDX221"></A>
Compile only. Do not perform binding and linking. If the root unit
specified by <VAR>file_name</VAR> is not a main unit, this is the
default. Otherwise <CODE>gnatmake</CODE> will attempt binding and linking
unless all objects are up to date and the executable is more recent than
the objects.
<DT><CODE>-f</CODE>
<DD>
<A NAME="IDX222"></A>
Force recompilations. Recompile all sources, even though some object
files may be up to date, but don't recompile predefined or GNAT internal
files or locked files (files with a write-protected ALI file),
unless the <CODE>-a</CODE> switch is also specified.
<DT><CODE></CODE>
<DD>
<DT><CODE>-i</CODE>
<DD>
<A NAME="IDX223"></A>
In normal mode, <CODE>gnatmake</CODE> compiles all object files and ALI files
into the current directory. If the <CODE>-i</CODE> switch is used,
then instead object files and ALI files that already exist are overwritten
in place. This means that once a large project is organized into separate
directories in the desired manner, then <CODE>gnatmake</CODE> will automatically
maintain and update this organization. If no ALI files are found on the
Ada object path (section <A HREF="gnat_ug.html#SEC49">Search Paths and the Run-Time Library (RTL)</A>),
the new object and ALI files are created in the
directory containing the source being compiled. If another organization
is desired, where objects and sources are kept in different directories,
a useful technique is to create dummy ALI files in the desired directories.
When detecting such a dummy file, <CODE>gnatmake</CODE> will be forced to recompile
the corresponding source file, and it will be put the resulting object
and ALI files in the directory where it found the dummy file.
<DT><CODE>-j<VAR>n</VAR></CODE>
<DD>
<A NAME="IDX224"></A>
<A NAME="IDX225"></A>
Use <VAR>n</VAR> processes to carry out the (re)compilations. On a
multiprocessor machine compilations will occur in parallel. In the
event of compilation errors, messages from various compilations might
get interspersed (but <CODE>gnatmake</CODE> will give you the full ordered
list of failing compiles at the end). If this is problematic, rerun
the make process with n set to 1 to get a clean list of messages.
<DT><CODE>-k</CODE>
<DD>
<A NAME="IDX226"></A>
Keep going. Continue as much as possible after a compilation error. To
ease the programmer's task in case of compilation errors, the list of
sources for which the compile fails is given when <CODE>gnatmake</CODE>
terminates.
<DT><CODE>-m</CODE>
<DD>
<A NAME="IDX227"></A>
Specifies that the minimum necessary amount of recompilations
be performed. In this mode <CODE>gnatmake</CODE> ignores time
stamp differences when the only
modifications to a source file consist in adding/removing comments,
empty lines, spaces or tabs. This means that if you have changed the
comments in a source file or have simply reformatted it, using this
switch will tell gnatmake not to recompile files that depend on it
(provided other sources on which these files depend have undergone no
semantic modifications).
<DT><CODE>-M</CODE>
<DD>
<A NAME="IDX228"></A>
<A NAME="IDX229"></A>
Check if all objects are up to date. If they are, output the object
dependences to <CODE>stdout</CODE> in a form that can be directly exploited in
a <TT>`Makefile'</TT>. By default, each source file is prefixed with its
(relative or absolute) directory name. This name is whatever you
specified in the various <CODE>-aI</CODE>
and <CODE>-I</CODE> switches. If you use
<CODE>gnatmake -M</CODE>
<CODE>-q</CODE>
(see below), only the source file names,
without relative paths, are output. If you just specify the
<CODE>-M</CODE>
switch, dependencies of the GNAT internal system files are omitted. This
is typically what you want. If you also specify
the <CODE>-a</CODE> switch,
dependencies of the GNAT internal files are also listed. Note that
dependencies of the objects in external Ada libraries (see switch
<CODE>-aL</CODE><VAR>dir</VAR> in the following list) are never reported.
<DT><CODE>-n</CODE>
<DD>
<A NAME="IDX230"></A>
Don't compile, bind, or link. Checks if all objects are up to date.
If they are not, the full name of the first file that needs to be
recompiled is printed.
Repeated use of this option, followed by compiling the indicated source
file, will eventually result in recompiling all required units.
<DT><CODE>-o <VAR>exec_name</VAR></CODE>
<DD>
<A NAME="IDX231"></A>
Output executable name. The name of the final executable program will be
<VAR>exec_name</VAR>. If the <CODE>-o</CODE> switch is omitted the default
name for the executable will be the name of the input file in appropriate form
for an executable file on the host system.
<DT><CODE>-q</CODE>
<DD>
<A NAME="IDX232"></A>
Quiet. When this flag is not set, the commands carried out by
<CODE>gnatmake</CODE> are displayed.
<DT><CODE>-v</CODE>
<DD>
<A NAME="IDX233"></A>
Verbose. Displays the reason for all recompilations <CODE>gnatmake</CODE>
decides are necessary.
<DT><CODE>-z</CODE>
<DD>
<A NAME="IDX234"></A>
No main subprogram. Bind and link the program even if the unit name
given on the command line is a package name. The resulting executable
will execute the elaboration routines of the package and its closure,
then the finalization routines.
<DT><CODE><CODE>gcc</CODE> switches</CODE>
<DD>
The switch <CODE>-g</CODE> or any uppercase switch (other than <CODE>-A</CODE>, or
<CODE>-L</CODE>) or any switch that is more than one character is passed to
<CODE>gcc</CODE> (e.g. <CODE>-O</CODE>, <CODE>-gnato,</CODE> etc.)
</DL>
<P>
Source and library search path switches:
</P>
<DL COMPACT>
<DT><CODE>-aI<VAR>dir</VAR></CODE>
<DD>
<A NAME="IDX235"></A>
When looking for source files also look in directory <VAR>dir</VAR>.
The order in which source files search is undertaken is
described in section <A HREF="gnat_ug.html#SEC49">Search Paths and the Run-Time Library (RTL)</A>.
<DT><CODE>-aL<VAR>dir</VAR></CODE>
<DD>
<A NAME="IDX236"></A>
Consider <VAR>dir</VAR> as being an externally provided Ada library.
Instructs <CODE>gnatmake</CODE> to skip compilation units whose <TT>`.ali'</TT>
files have been located in directory <VAR>dir</VAR>. This allows you to have
missing bodies for the units in <VAR>dir</VAR>. You still need to specify
the location of the specs for these units by using the switches
<CODE>-aI<VAR>dir</VAR></CODE>
or <CODE>-I<VAR>dir</VAR></CODE>.
Note: this switch is provided for compatibility with previous versions
of <CODE>gnatmake</CODE>. The easier method of causing standard libraries
to be excluded from consideration is to write-protect the corresponding
ALI files.
<DT><CODE>-aO<VAR>dir</VAR></CODE>
<DD>
<A NAME="IDX237"></A>
When searching for library and object files, look in directory
<VAR>dir</VAR>. The order in which library files are searched is described in
section <A HREF="gnat_ug.html#SEC62">Search Paths for <CODE>gnatbind</CODE></A>.
<DT><CODE>-A<VAR>dir</VAR></CODE>
<DD>
<A NAME="IDX238"></A>
<A NAME="IDX239"></A>
Equivalent to <CODE>-aL<VAR>dir</VAR>
-aI<VAR>dir</VAR></CODE>.
<DT><CODE>-I<VAR>dir</VAR></CODE>
<DD>
<A NAME="IDX240"></A>
Equivalent to <CODE>-aO<VAR>dir</VAR>
-aI<VAR>dir</VAR></CODE>.
<DT><CODE>-I-</CODE>
<DD>
<A NAME="IDX241"></A>
<A NAME="IDX242"></A>
Do not look for source files in the directory containing the source
file named in the command line.
Do not look for ALI or object files in the directory
where <CODE>gnatmake</CODE> was invoked.
<DT><CODE>-L<VAR>dir</VAR></CODE>
<DD>
<A NAME="IDX243"></A>
<A NAME="IDX244"></A>
Add directory <VAR>dir</VAR> to the list of directories in which the linker
will search for libraries. This is equivalent to
<CODE>-largs -L</CODE><VAR>dir</VAR>.
<DT><CODE>-nostdinc</CODE>
<DD>
<A NAME="IDX245"></A>
Do not look for source files in the system default directory.
<DT><CODE>-nostdlib</CODE>
<DD>
<A NAME="IDX246"></A>
Do not look for library files in the system default directory.
</DL>
<H2><A NAME="SEC70" HREF="gnat_ug_toc.html#TOC70">Mode switches for <CODE>gnatmake</CODE></A></H2>
<P>
The mode switches (referred to as <CODE>mode_switches</CODE>) allow the
inclusion of switches that are to be passed to the compiler itself, the
binder or the linker. The effect of a mode switch is to cause all
subsequent switches up to the end of the switch list, or up to the next
mode switch, to be interpreted as switches to be passed on to the
designated component of GNAT.
</P>
<DL COMPACT>
<DT><CODE>-cargs <VAR>switches</VAR></CODE>
<DD>
<A NAME="IDX247"></A>
Compiler switches. Here <VAR>switches</VAR> is a list of switches
that are valid switches for <CODE>gcc</CODE>. They will be passed on to
all compile steps performed by <CODE>gnatmake</CODE>.
<DT><CODE>-bargs <VAR>switches</VAR></CODE>
<DD>
<A NAME="IDX248"></A>
Binder switches. Here <VAR>switches</VAR> is a list of switches
that are valid switches for <CODE>gcc</CODE>. They will be passed on to
all bind steps performed by <CODE>gnatmake</CODE>.
<DT><CODE>-largs <VAR>switches</VAR></CODE>
<DD>
<A NAME="IDX249"></A>
Linker switches. Here <VAR>switches</VAR> is a list of switches
that are valid switches for <CODE>gcc</CODE>. They will be passed on to
all link steps performed by <CODE>gnatmake</CODE>.
</DL>
<H2><A NAME="SEC71" HREF="gnat_ug_toc.html#TOC71">Notes on the Command Line</A></H2>
<P>
This section contains some additional useful notes on the operation
of the <CODE>gnatmake</CODE> command.
</P>
<UL>
<LI>
<A NAME="IDX250"></A>
If <CODE>gnatmake</CODE> finds no ALI files, it recompiles the main program
and all other units required by the main program.
This means that <CODE>gnatmake</CODE>
can be used for the initial compile, as well as during subsequent steps of
the development cycle.
<LI>
If you enter <CODE>gnatmake <VAR>file</VAR>.adb</CODE>, where <TT>`<VAR>file</VAR>.adb'</TT>
is a subunit or body of a generic unit, <CODE>gnatmake</CODE> recompiles
<TT>`<VAR>file</VAR>.adb'</TT> (because it finds no ALI) and stops, issuing a
warning.
<LI>
In <CODE>gnatmake</CODE> the switch <CODE>-I</CODE>
is used to specify both source and
library file paths. Use <CODE>-aI</CODE>
instead if you just want to specify
source paths only and <CODE>-aO</CODE>
if you want to specify library paths
only.
<LI>
<CODE>gnatmake</CODE> examines both an ALI file and its corresponding object file
for consistency. If an ALI is more recent than its corresponding object,
or if the object file is missing, the corresponding source will be recompiled.
Note that <CODE>gnatmake</CODE> expects an ALI and the corresponding object file
to be in the same directory.
<LI>
<CODE>gnatmake</CODE> will ignore any files whose ALI file is write-protected.
This may conveniently be used to exclude standard libraries from
consideration and in particular it means that the use of the
<CODE>-f</CODE> switch will not recompile these files
unless <CODE>-a</CODE> is also specified.
<LI>
<CODE>gnatmake</CODE> has been designed to make the use of Ada libraries
particularly convenient. Assume you have an Ada library organized
as follows: <VAR>obj-dir</VAR> contains the objects and ALI files for
of your Ada compilation units,
whereas <VAR>include-dir</VAR> contains the
specs of these units, but no bodies. Then to compile a unit
stored in <CODE>main.adb</CODE>, which uses this Ada library you would just type
<PRE>
$ gnatmake -aI<VAR>include-dir</VAR> -aL<VAR>obj-dir</VAR> main
</PRE>
<LI>
Using <CODE>gnatmake</CODE> along with the
<CODE>-m (minimal recompilation)</CODE>
switch provides an
extremely powerful tool: you can freely update the comments/format of your
source files without having to recompile everything. Note, however, that
adding or deleting lines in a source files may render its debugging
info obsolete. If the file in question is a spec, the impact is rather
limited, as that debugging info will only be useful during the
elaboration phase of your program. For bodies the impact can be more
significant. In all events, your debugger will warn you if a source file
is more recent than the corresponding object, and therefore obsolescence of
debugging information will go unnoticed.
</UL>
<H2><A NAME="SEC72" HREF="gnat_ug_toc.html#TOC72">How <CODE>gnatmake</CODE> Works</A></H2>
<P>
Generally <CODE>gnatmake</CODE> automatically performs all necessary
recompilations and you don't need to worry about how it works. However,
it may be useful to have some basic understanding of the <CODE>gnatmake</CODE>
approach and in particular to understand how it uses the results of
previous compilations without incorrectly depending on them.
</P>
<P>
First a definition: an object file is considered <STRONG>up to date</STRONG> if the
corresponding ALI file exists and its time stamp predates that of the
object file and if all the source files listed in the
dependency section of this ALI file have time stamps matching those in
the ALI file. This means that neither the source file itself nor any
files that it depends on have been modified, and hence there is no need
to recompile this file.
</P>
<P>
<CODE>gnatmake</CODE> works by first checking if the specified main unit is up
to date. If so, no compilations are required for the main unit. If not,
<CODE>gnatmake</CODE> compiles the main program to build a new ALI file that
reflects the latest sources. Then the ALI file of the main unit is
examined to find all the source files on which the main program depends,
and <CODE>gnatmake</CODE> recursively applies the above procedure on all these files.
</P>
<P>
This process ensures that <CODE>gnatmake</CODE> only trusts the dependencies
in an existing ALI file if they are known to be correct. Otherwise it
always recompiles to determine a new, guaranteed accurate set of
dependencies. As a result the program is compiled "upside down" from what may
be more familiar as the required order of compilation in some other Ada
systems. In particular, clients are compiled before the units on which
they depend. The ability of GNAT to compile in any order is critical in
allowing an order of compilation to be chosen that guarantees that
<CODE>gnatmake</CODE> will recompute a correct set of new dependencies if
necessary.
</P>
<H2><A NAME="SEC73" HREF="gnat_ug_toc.html#TOC73">Examples of <CODE>gnatmake</CODE> Usage</A></H2>
<DL COMPACT>
<DT><CODE>gnatmake hello.adb</CODE>
<DD>
Compile all files necessary to bind and link the main program
<TT>`hello.adb'</TT> (containing unit <CODE>Hello</CODE>) and bind and link the
resulting object files to generate an executable file <TT>`hello'</TT>.
<DT><CODE>gnatmake -q Main_Unit -cargs -O2 -bargs -l</CODE>
<DD>
Compile all files necessary to bind and link the main program unit
<CODE>Main_Unit</CODE> (from file <TT>`main_unit.adb'</TT>). All compilations will
be done with optimization level 2 and the order of elaboration will be
listed by the binder. <CODE>gnatmake</CODE> will operate in quiet mode, not
displaying commands it is executing.
</DL>
<H2><A NAME="SEC74" HREF="gnat_ug_toc.html#TOC74">Gnatmake in makefiles</A></H2>
<P>
<A NAME="IDX251"></A>
<A NAME="IDX252"></A>
</P>
<P>
Complex project organizations can be handled in a very powerful way by
using GNU make combined with gnatmake. Here is for instance a Makefile
which allows to build each subsystem of a big project into a separate
shared library. Such a makefile allows to significantly reduce the link
time of very bug applications while maintaining a complete coherence at
each step of the build process.
</P>
<PRE>
## This Makefile is intended to be used with the following directory
## configuration:
## - The sources are split into a series of csc (computer software components)
## Each of these csc is put in its own directory.
## Their name are referenced by the directory names.
## They will be compiled into shared library (although this would also work
## with static libraries
## - The main program (and possibly other packages that do not belong to any
## csc is put in the top level directory (where the Makefile is).
## toplevel_dir __ first_csc (sources) __ lib (will contain the library)
## \_ second_csc (sources) __ lib (will contain the library)
## \_ ...
## Although this Makefile is build for shared library, it is easy to modify
## to build partial link objects instead (modify the lines with -shared and
## gnatlink below)
##
## With this makefile, you can change any file in the system or add any new
## file, and everything will be recompiled correctly (only the relevant shared
## objects will be recompiled, and the main program will be re-linked).
# The list of computer software component for your project
CSC_LIST=aa bb cc
# Name of the main program (no extension)
MAIN=main
# If we need to build objects with -fPIC, uncomment the following line
#NEED_FPIC=-fPIC
# The following variable should give the directory containing libgnat.so
# You can get this directory through 'gnatls -v'. This is usually the last
# directory in the Object_Path.
GLIB=...
# The directories for the libraries
# (This macro expands the list of CSC to the list of shared libraries, you
# could simply use the expanded form :
# LIB_DIR=aa/lib/libaa.so bb/lib/libbb.so cc/lib/libcc.so
LIB_DIR=${foreach dir,${CSC_LIST},${dir}/lib/lib${dir}.so}
${MAIN}: objects ${LIB_DIR}
gnatbind ${MAIN} ${CSC_LIST:%=-aO%/lib} -shared
gnatlink ${MAIN} ${CSC_LIST:%=-l%}
objects::
# recompile the sources
gnatmake -c -i ${MAIN}.adb ${NEED_FPIC} ${CSC_LIST:%=-I%}
# Note about the rules below: if your csc are not split into multiple
# directories, but simply by their name, you need to replace *.o and
# *.ali with the appropriate list of files
# Note: In a future version of GNAT, the following commands will be simplified
# by a new tool, gnatmlib
${LIB_DIR}:
mkdir -p ${dir $ }
cd ${dir $ }; gcc -shared -o ${notdir $ } ../*.o -L${GLIB} -lgnat
cd ${dir $ }; cp -f ../*.ali .
# The dependencies for the modules
aa/lib/libaa.so: aa/*.o
bb/lib/libbb.so: bb/*.o
bb/lib/libcc.so: cc/*.o
run::
LD_LIBRARY_PATH=pwd/aa/lib:pwd/bb/lib:pwd/cc/lib ./${MAIN}
clean::
${RM} -rf ${CSC_LIST:%=%/lib}
${RM} ${CSC_LIST:%=%/*.ali}
${RM} ${CSC_LIST:%=%/*.o}
${RM} *.o *.ali ${MAIN}
</PRE>
<H1><A NAME="SEC75" HREF="gnat_ug_toc.html#TOC75">Renaming Files Using <CODE>gnatchop</CODE></A></H1>
<P>
<A NAME="IDX253"></A>
</P>
<P>
This chapter discusses how to handle files with multiple units by using
the <CODE>gnatchop</CODE> utility. This utility is also useful in renaming
files to meet the standard GNAT default file naming conventions.
</P>
<UL>
<LI><A HREF="gnat_ug.html#SEC76">Handling Files with Multiple Units</A>
<LI><A HREF="gnat_ug.html#SEC77">Operating gnatchop in Compilation Mode</A>
<LI><A HREF="gnat_ug.html#SEC78">Command Line for gnatchop</A>
<LI><A HREF="gnat_ug.html#SEC79">Switches for gnatchop</A>
<LI><A HREF="gnat_ug.html#SEC80">Examples of gnatchop Usage</A>
</UL>
<H2><A NAME="SEC76" HREF="gnat_ug_toc.html#TOC76">Handling Files with Multiple Units</A></H2>
<P>
The basic compilation model of GNAT requires that a file submitted to the
compiler have only one unit and there be a strict correspondence
between the file name and the unit name.
</P>
<P>
The <CODE>gnatchop</CODE> utility allows both of these rules to be relaxed,
allowing GNAT to process files which contain multiple compilation units
and files with arbitrary file names. <CODE>gnatchop</CODE>
reads the specified file and generates one or more output files,
containing one unit per file. The unit and the file name correspond,
as required by GNAT.
</P>
<P>
If you want to permanently restructure a set of "foreign" files so that
they match the GNAT rules, and do the remaining development using the
GNAT structure, you can simply use <CODE>gnatchop</CODE> once, generate the
new set of files and work with them from that point on.
</P>
<P>
Alternatively, if you want to keep your files in the "foreign" format,
perhaps to maintain compatibility with some other Ada compilation
system, you can set up a procedure where you use <CODE>gnatchop</CODE> each
time you compile, regarding the source files that it writes as temporary
files that you throw away.
</P>
<H2><A NAME="SEC77" HREF="gnat_ug_toc.html#TOC77">Operating gnatchop in Compilation Mode</A></H2>
<P>
The basic function of <CODE>gnatchop</CODE> is to take a file with multiple units
and split it into separate files. The boundary between files is reasonably
clear, except for the issue of comments and pragmas. In default mode, the
rule is that any pragmas between units belong to the previous unit, except
that configuration pragmas always belong to the following unit. Any comments
belong to the following unit. These rules
almost always result in the right choice of
the split point without needing to mark it explicitly and most users will
find this default to be what they want. In this default mode it is incorrect to
submit a file containing only configuration pragmas, or one that ends in
configuration pragmas, to <CODE>gnatchop</CODE>.
</P>
<P>
However, using a special option to activate "compilation mode",
<CODE>gnatchop</CODE>
can perform another function, which is to provide exactly the semantics
required by the RM for handling of configuration pragmas in a compilation.
In the absence of configuration pragmas (at the main file level), this
option has no effect, but it causes such configuration pragmas to be handled
in a quite different manner.
</P>
<P>
First, in compilation mode, if <CODE>gnatchop</CODE> is given a file that consists of
only configuration pragmas, then this file is appended to the
<TT>`gnat.adc'</TT> file in the current directory. This behavior provides
the required behavior described in the RM for the actions to be taken
on submitting such a file to the compiler, namely that these pragmas
should apply to all subsequent compilations in the same compilation
environment. Using GNAT, the current directory, possibly containing a
<TT>`gnat.adc'</TT> file is the representation
of a compilation environment. For more information on the
<TT>`gnat.adc'</TT> file, see the section on handling of configuration
pragmas see section <A HREF="gnat_ug.html#SEC82">Handling of Configuration Pragmas</A>.
</P>
<P>
Second, in compilation mode, if <CODE>gnatchop</CODE>
is given a file that starts with
configuration pragmas, and contains one or more units, then these
configuration pragmas are prepended to each of the chopped files. This
behavior provides the required behavior described in the RM for the
actions to be taken on compiling such a file, namely that the pragmas
apply to all units in the compilation, but not to subsequently compiled
units.
</P>
<P>
Finally, if configuration pragmas appear between units, they are appended
to the previous unit. This results in the previous unit being illegal,
since the compiler does not accept configuration pragmas that follow
a unit. This provides the required RM behavior that forbids configuration
pragmas other than those preceding the first compilation unit of a
compilation.
</P>
<P>
For most purposes, <CODE>gnatchop</CODE> will be used in default mode. The
compilation mode described above is used only if you need exactly
accurate behavior with respect to compilations, and you have files
that contain multiple units and configuration pragmas. In this
circumstance the use of <CODE>gnatchop</CODE> with the compilation mode
switch provides the required behavior, and is for example the mode
in which GNAT processes the ACVC tests.
</P>
<H2><A NAME="SEC78" HREF="gnat_ug_toc.html#TOC78">Command Line for <CODE>gnatchop</CODE></A></H2>
<P>
The <CODE>gnatchop</CODE> command has the form:
</P>
<PRE>
$ gnatchop switches <VAR>file name</VAR> [<VAR>file name</VAR> <VAR>file name</VAR> ...] [<VAR>directory</VAR>]
</PRE>
<P>
The only required argument is the file name of the file to be chopped.
There are no restrictions on the form of this file name. The file itself
contains one or more Ada units, in normal GNAT format, concatenated
together. As shown, more than one file may be presented to be chopped.
</P>
<P>
When run in default mode, <CODE>gnatchop</CODE> generates one output file in
the current directory for each unit in each of the files.
</P>
<P>
<VAR>directory</VAR>, if specified, gives the name of the directory to which
the output files will be written. If it is not specified, all files are
written to the current directory.
</P>
<P>
For example, given a
file called <TT>`hellofiles'</TT> containing
</P>
<PRE>
<B>procedure</B> hello;
<B>with</B> Text_IO; <B>use</B> Text_IO;
<B>procedure</B> hello <B>is</B>
<B>begin</B>
Put_Line ("Hello");
<B>end</B> hello;
</PRE>
<P>
the command
</P>
<PRE>
$ gnatchop hellofiles
</PRE>
<P>
generates two files in the current directory, one called
<TT>`hello.ads'</TT> containing the single line that is the procedure spec,
and the other called <TT>`hello.adb'</TT> containing the remaining text. The
original file is not affected. The generated files can be compiled in
the normal manner.
</P>
<H2><A NAME="SEC79" HREF="gnat_ug_toc.html#TOC79">Switches for <CODE>gnatchop</CODE></A></H2>
<P>
<CODE>gnatchop</CODE> recognizes the following switches:
</P>
<DL COMPACT>
<DT><CODE>-c</CODE>
<DD>
<A NAME="IDX254"></A>
Causes <CODE>gnatchop</CODE> to operate in compilation mode, in which
configuration pragmas are handled according to strict RM rules. See
previous section for a full description of this mode.
<DT><CODE>-gnatxxx</CODE>
<DD>
This passes the given <CODE>-gnatxxx</CODE> switch to <CODE>gnat</CODE> which is
used to parse the given file. Not all <CODE>xxx</CODE> options make sense,
but for example, the use of <CODE>-gnati2</CODE> allows <CODE>gnatchop</CODE> to
process a source file that uses Latin-2 coding for identifiers.
<DT><CODE>-h</CODE>
<DD>
Causes <CODE>gnatchop</CODE> to generate a brief help summary to the standard
output file showing usage information.
<DT><CODE>-k<VAR>mm</VAR></CODE>
<DD>
<A NAME="IDX255"></A>
Limit generated file names to the specified number <CODE>mm</CODE>
of characters.
This is useful if the
resulting set of files is required to be interoperable with systems
which limit the length of file names.
No space is allowed between the <CODE>-k</CODE> and the numeric value. The numeric
value may be omitted in which case a default of <CODE>-k8</CODE>,
suitable for use
with DOS-like file systems, is used. If no <CODE>-k</CODE> switch
is present then
there is no limit on the length of file names.
<DT><CODE>-q</CODE>
<DD>
<A NAME="IDX256"></A>
Causes output of informational messages indicating the set of generated
files to be suppressed. Warnings and error messages are unaffected.
<DT><CODE>-r</CODE>
<DD>
<A NAME="IDX257"></A>
<A NAME="IDX258"></A>
Generate <CODE>Source_Reference</CODE> pragmas. Use this switch if the output
files are regarded as temporary and development is to be done in terms
of the original unchopped file. This switch causes
<CODE>Source_Reference</CODE> pragmas to be inserted into each of the
generated files to refers back to the original file name and line number.
The result is that all error messages refer back to the original
unchopped file.
In addition, the debugging information placed into the object file (when
the <CODE>-g</CODE> switch of <CODE>gcc</CODE> or <CODE>gnatmake</CODE> is specified) also
refers back to this original file so that tools like profilers and
debuggers will give information in terms of the original unchopped file.
If the original file to be chopped itself contains
a <CODE>Source_Reference</CODE>
pragma referencing a third file, then gnatchop respects
this pragma, and the generated <CODE>Source_Reference</CODE> pragmas
in the chopped file refer to the original file, with appropriate
line numbers. This is particularly useful when <CODE>gnatchop</CODE>
is used in conjunction with <CODE>gnatprep</CODE> to compile files that
contain preprocessing statements and multiple units.
<DT><CODE>-v</CODE>
<DD>
<A NAME="IDX259"></A>
Causes <CODE>gnatchop</CODE> to operate in verbose mode. The version
number and copyright notice are output, as well as exact copies of
the gnat1 commands spawned to obtain the chop control information.
<DT><CODE>-w</CODE>
<DD>
<A NAME="IDX260"></A>
Overwrite existing file names. Normally <CODE>gnatchop</CODE> regards it as a
fatal error if there is already a file with the same name as a
file it would otherwise output, in other words if the files to be
chopped contain duplicated units. This switch bypasses this
check, and causes all but the last instance of such duplicated
units to be skipped.
</DL>
<H2><A NAME="SEC80" HREF="gnat_ug_toc.html#TOC80">Examples of <CODE>gnatchop</CODE> Usage</A></H2>
<DL COMPACT>
<DT><CODE>gnatchop -w hello_s.ada ichbiah/files</CODE>
<DD>
Chops the source file <TT>`hello_s.ada'</TT>. The output files will be
placed in the directory <TT>`ichbiah/files'</TT>,
overwriting any
files with matching names in that directory (no files in the current
directory are modified).
<DT><CODE>gnatchop archive</CODE>
<DD>
Chops the source file <TT>`archive'</TT>
into the current directory. One
useful application of <CODE>gnatchop</CODE> is in sending sets of sources
around, for example in email messages. The required sources are simply
concatenated (for example, using a UNIX <CODE>cat</CODE>
command), and then
<CODE>gnatchop</CODE> is used at the other end to reconstitute the original
file names.
<DT><CODE>gnatchop file1 file2 file3 direc</CODE>
<DD>
Chops all units in files <TT>`file1'</TT>, <TT>`file2'</TT>, <TT>`file3'</TT>, placing
the resulting files in the directory <TT>`direc'</TT>. Note that if any units
occur more than once anywhere within this set of files, an error message
is generated, and no files are written. To override this check, use the
<CODE>-w</CODE> switch,
in which case the last occurrence in the last file will
be the one that is output, and earlier duplicate occurrences for a given
unit will be skipped.
</DL>
<H1><A NAME="SEC81" HREF="gnat_ug_toc.html#TOC81">Configuration Pragmas</A></H1>
<P>
<A NAME="IDX261"></A>
<A NAME="IDX262"></A>
</P>
<P>
In Ada 95, configuration pragmas include those pragmas described as
such in the Ada 95 Reference Manual, as well as
implementation-dependent pragmas that are configuration pragmas. See the
individual descriptions of pragmas in the GNAT Reference Manual for
details on these additional GNAT-specific configuration pragmas. Most
notably, the pragma <CODE>Source_File_Name</CODE>, which allows
specifying non-default names for source files, is a configuration
pragma.
</P>
<UL>
<LI><A HREF="gnat_ug.html#SEC82">Handling of Configuration Pragmas</A>
<LI><A HREF="gnat_ug.html#SEC83">The Configuration Pragmas file</A>
</UL>
<H2><A NAME="SEC82" HREF="gnat_ug_toc.html#TOC82">Handling of Configuration Pragmas</A></H2>
<P>
Configuration pragmas may either appear at the start of a compilation
unit, in which case they apply only to that unit, or they may apply to
all compilations performed in a given compilation environment.
</P>
<P>
GNAT also provides the <CODE>gnatchop</CODE> utility to provide an automatic
way to handle configuration pragmas following the semantics for
compilations (that is, files with multiple units), described in the RM.
See section see section <A HREF="gnat_ug.html#SEC77">Operating gnatchop in Compilation Mode</A> for details.
However, for most purposes, it will be more convenient to edit the
<TT>`gnat.adc'</TT> file that contains configuration pragmas directly,
as described in the following section.
</P>
<H2><A NAME="SEC83" HREF="gnat_ug_toc.html#TOC83">The Configuration Pragmas file</A></H2>
<P>
<A NAME="IDX263"></A>
</P>
<P>
In GNAT a compilation environment is defined by the current
directory at the time that a compile command is given. This current
directory is searched for a file whose name is <TT>`gnat.adc'</TT>. If
this file is present, it is expected to contain one or more
configuration pragmas that will be applied to the current compilation.
</P>
<P>
Configuration pragmas may be entered into the <TT>`gnat.adc'</TT> file
either by running <CODE>gnatchop</CODE> on a source file that consists only of
configuration pragmas, or more conveniently by
direct editing of the <TT>`gnat.adc'</TT> file, which is a standard format
source file.
</P>
<H1><A NAME="SEC84" HREF="gnat_ug_toc.html#TOC84">Elaboration Order Handling in GNAT</A></H1>
<P>
<A NAME="IDX264"></A>
<A NAME="IDX265"></A>
</P>
<UL>
<LI><A HREF="gnat_ug.html#SEC85">Elaboration Code in Ada 95</A>
<LI><A HREF="gnat_ug.html#SEC86">Checking the Elaboration Order in Ada 95</A>
<LI><A HREF="gnat_ug.html#SEC87">Controlling the Elaboration Order in Ada 95</A>
<LI><A HREF="gnat_ug.html#SEC88">Controlling Elaboration in GNAT - Internal Calls</A>
<LI><A HREF="gnat_ug.html#SEC89">Controlling Elaboration in GNAT - External Calls</A>
<LI><A HREF="gnat_ug.html#SEC90">Default Behavior in GNAT - Ensuring Safety</A>
<LI><A HREF="gnat_ug.html#SEC91">What to do if the Default Elaboration Behavior Fails</A>
<LI><A HREF="gnat_ug.html#SEC92">Elaboration for Access-to-Subprogram Values</A>
<LI><A HREF="gnat_ug.html#SEC93">Summary of Procedures for Elaboration Control</A>
</UL>
<P>
This chapter describes the handling of elaboration code in Ada 95 and
in GNAT, and discusses how the order of elaboration of program units can
be controlled in GNAT, either automatically or with explicit programming
features.
</P>
<H2><A NAME="SEC85" HREF="gnat_ug_toc.html#TOC85">Elaboration Code in Ada 95</A></H2>
<P>
Ada 95 provides rather general mechanisms for executing code at elaboration
time, that is to say before the main program starts executing. Such code arises
in three contexts:
</P>
<DL COMPACT>
<DT>Initializers for variables.
<DD>
Variables declared at the library level, in package specs or bodies, can
require initialization that is performed at elaboration time, as in:
<PRE>
Sqrt_Half : Float := Sqrt (0.5);
</PRE>
<DT>Package initialization code
<DD>
Code in a <CODE>BEGIN-END</CODE> section at the outer level of a package body is
executed as part of the package body elaboration code.
<DT>Library level task allocators
<DD>
Tasks that are declared using task allocators at the library level
start executing immediately and hence can execute at elaboration time.
</DL>
<P>
Subprogram calls are possible in any of these contexts, which means that
any arbitrary part of the program may be executed as part of the elaboration
code. It is even possible to write a program which does all its work at
elaboration time, with a null main program, although stylistically this
would usually be considered an inappropriate way to structure
a program.
</P>
<P>
An important concern arises in the context of elaboration code:
we have to be sure that it is executed in an appropriate order. What we
have is numerous sections of elaboration code, potentially one section
for each unit in the program. It is important that these execute
in the correct order. Correctness here means that, taking the above
example of the declaration of <CODE>Sqrt_Half</CODE>,
that if some other piece of
elaboration code references <CODE>Sqrt_Half</CODE>,
then it must run after the
section of elaboration code that contains the declaration of
<CODE>Sqrt_Half</CODE>.
</P>
<P>
There would never be any order of elaboration problem if we made a rule
that whenever you <CODE>with</CODE> a unit, you must elaborate both the spec and body
of that unit before elaborating the unit doing the <CODE>with</CODE>'ing:
</P>
<PRE>
<B>with</B> Unit_1;
<B>package</B> Unit_2 <B>is</B> ...
</PRE>
<P>
would require that both the body and spec of <CODE>Unit_1</CODE> be elaborated
before the spec of <CODE>Unit_2</CODE>. However, a rule like that would be far too
restrictive. In particular, it would make it impossible to have routines
in separate packages that were mutually recursive.
</P>
<P>
You might think that a clever enough compiler could look at the actual
elaboration code and determine an appropriate correct order of elaboration,
but in the general case, this is not possible. Consider the following
example.
</P>
<P>
In the body of <CODE>Unit_1</CODE>, we have a procedure <CODE>Func_1</CODE>
that references
the variable <CODE>Sqrt_1</CODE>, which is declared in the elaboration code
of the body of <CODE>Unit_1</CODE>:
</P>
<PRE>
Sqrt_1 : Float := Sqrt (0.1);
</PRE>
<P>
The elaboration code of the body of <CODE>Unit_1</CODE> also contains:
</P>
<PRE>
<B>if</B> expression_1 = 1 <B>then</B>
Q := Unit_2.Func_2;
<B>end if</B>;
</PRE>
<P>
<CODE>Unit_2</CODE> is exactly parallel,
it has a procedure <CODE>Func_2</CODE> that references
the variable <CODE>Sqrt_2</CODE>, which is declared in the elaboration code of
the body <CODE>Unit_2</CODE>:
</P>
<PRE>
Sqrt_2 : Float := Sqrt (0.1);
</PRE>
<P>
The elaboration code of the body of <CODE>Unit_2</CODE> also contains:
</P>
<PRE>
<B>if</B> expression_2 = 2 <B>then</B>
Q := Unit_1.Func_1;
<B>end if</B>;
</PRE>
<P>
Now the question is, which of the following orders of elaboration is
acceptable:
</P>
<PRE>
Spec of Unit_1
Spec of Unit_2
Body of Unit_1
Body of Unit_2
</PRE>
<P>
or
</P>
<PRE>
Spec of Unit_2
Spec of Unit_1
Body of Unit_2
Body of Unit_1
</PRE>
<P>
If you carefully analyze the flow here, you will see that you cannot tell
at compile time the answer to this question.
If <CODE>expression_1</CODE> is not equal to 1,
and <CODE>expression_2</CODE> is not equal to 2,
then either order is acceptable, because neither of the function calls is
executed. If both tests evaluate to true, then neither order is acceptable
and in fact there is no correct order.
</P>
<P>
If one of the two expressions is true, and the other is false, then one
of the above orders is correct, and the other is incorrect. For example,
if <CODE>expression_1</CODE> = 1 and <CODE>expression_2</CODE> /= 2,
then the call to <CODE>Func_2</CODE>
will occur, but not the call to <CODE>Func_1.</CODE>
This means that it is essential
to elaborate the body of <CODE>Unit_1</CODE> before
the body of <CODE>Unit_2</CODE>, so the first
order of elaboration is correct and the second is wrong.
</P>
<P>
By making <CODE>expression_1</CODE> and <CODE>expression_2</CODE>
depend on input data, or perhaps
the time of day, we can make it impossible for the compiler or binder
to figure out which of these expressions will be true, and hence it
is impossible to guarantee a safe order of elaboration at run time.
</P>
<H2><A NAME="SEC86" HREF="gnat_ug_toc.html#TOC86">Checking the Elaboration Order in Ada 95</A></H2>
<P>
In some languages that involve the same kind of elaboration problems,
e.g. Java and C++, the programmer is expected to worry about these
ordering problems himself, and it is common to
write a program in which an incorrect elaboration order gives
surprising results, because it references variables before they
are initialized.
Ada 95 is designed to be a safe language, and a programmer-beware approach is
clearly not sufficient. Consequently, the language provides three lines
of defense:
</P>
<DL COMPACT>
<DT>Standard rules
<DD>
Some standard rules restrict the possible choice of elaboration
order. In particular, if you <CODE>with</CODE> a unit, then its spec is always
elaborated before the unit doing the <CODE>with</CODE>. Similarly, a parent
spec is always elaborated before the child spec, and finally
a spec is always elaborated before its corresponding body.
<DT>Dynamic elaboration checks
<DD>
<A NAME="IDX266"></A>
Dynamic checks are made at run time, so that if some entity is accessed
before it is elaborated (typically by means of a subprogram call)
then the exception (<CODE>Program_Error</CODE>) is raised.
<DT>Elaboration control
<DD>
Facilities are provided for the programmer to specify the desired order
of elaboration.
</DL>
<P>
Let's look at these facilities in more detail. First, the rules for
dynamic checking. One possible rule would be simply to say that the
exception is raised if you access a variable which has not yet been
elaborated. The trouble with this approach is that it could require
expensive checks on every variable reference. Instead Ada 95 has two
rules which are a little more restrictive, but easier to check, and
easier to state:
</P>
<DL COMPACT>
<DT>Restrictions on calls
<DD>
A subprogram can only be called at elaboration time if its body
has been elaborated. The rules for elaboration given above guarantee
that the spec of the subprogram has been elaborated before the
call, but not the body. If this rule is violated, then the
exception <CODE>Program_Error</CODE> is raised.
<DT>Restrictions on instantiations
<DD>
A generic unit can only be instantiated if the body of the generic
unit has been elaborated. Again, the rules for elaboration given above
guarantee that the spec of the generic unit has been elaborated
before the instantiation, but not the body. if this rule is
violated, then the exception <CODE>Program_Error</CODE> is raised.
</DL>
<P>
The idea is that if the body has been elaborated, then any variables
it references must have been elaborated; by checking for the body being
elaborated we guarantee that none of its references causes any
trouble. As we noted above, this is a little too restrictive, because a
subprogram that has no non-local references in its body may in fact be safe
to call. However, it really would be unsafe to rely on this, because
it would mean that the caller was aware of details of the implementation
in the body. This goes against the basic tenets of Ada.
</P>
<P>
A plausible implementation can be described as follows.
A Boolean variable is associated with each subprogram
and each generic unit. This variable is initialized to False, and is set to
True at the point body is elaborated. Every call or instantiation checks the
variable, and raises <CODE>Program_Error</CODE> if the variable is False.
</P>
<H2><A NAME="SEC87" HREF="gnat_ug_toc.html#TOC87">Controlling the Elaboration Order in Ada 95</A></H2>
<P>
In the previous section we discussed the rules in Ada 95 which ensure
that <CODE>Program_Error</CODE> is raised if an incorrect elaboration order is
chosen. This prevents erroneous executions, but we need mechanisms to
specify a correct execution and avoid the exception altogether.
To achieve this, Ada 95 provides a number of features for controlling
the order of elaboration. We discuss these features in this section.
</P>
<P>
First, there are several ways of indicating to the compiler that a given
unit has no elaboration problems:
</P>
<DL COMPACT>
<DT>packages that do not require a body
<DD>
In Ada 95, a library package that does not require a body does not permit
a body. This means that if we have a such a package, as in:
<PRE>
<B>package</B> Definitions <B>is</B>
<B>generic</B>
<B>type</B> m <B>is new</B> integer;
<B>package</B> Subp <B>is</B>
<B>type</B> a <B>is array</B> (1 .. 10) <B>of</B> m;
<B>type</B> b <B>is array</B> (1 .. 20) <B>of</B> m;
<B>end</B> Subp;
<B>end</B> Definitions;
</PRE>
A package that <CODE>with</CODE>'s <CODE>Definitions</CODE> may safely instantiate
<CODE>Definitions.Subp</CODE> because the compiler can determine that there
definitely is no package body to worry about in this case
<DT>pragma Pure
<DD>
<A NAME="IDX267"></A>
<A NAME="IDX268"></A>
Places sufficient restrictions on a unit to guarantee that
no call to any subprogram in the unit can result in an
elaboration problem. This means that the compiler does not need
to worry about the point of elaboration of such units, and in
particular, does not need to check any calls to any subprograms
in this unit.
<DT>pragma Preelaborate
<DD>
<A NAME="IDX269"></A>
<A NAME="IDX270"></A>
This pragma places slightly less stringent restrictions on a unit than
does pragma Pure,
but these restrictions are still sufficient to ensure that there
are no elaboration problems with any calls to the unit.
<DT>pragma Elaborate_Body
<DD>
<A NAME="IDX271"></A>
<A NAME="IDX272"></A>
This pragma requires that the body of a unit be elaborated immediately
after its spec. Suppose a unit <CODE>A</CODE> has such a pragma,
and unit <CODE>B</CODE> does
a <CODE>with</CODE> of unit <CODE>A</CODE>. Recall that the standard rules require
the spec of unit <CODE>A</CODE>
to be elaborated before the <CODE>with</CODE>'ing unit; given the pragma in
<CODE>A</CODE>, we also know that the body of <CODE>A</CODE>
will be elaborated before <CODE>B</CODE>, so
that calls to <CODE>A</CODE> are safe and do not need a check.
</DL>
<P>
Note that,
unlike pragma <CODE>Pure</CODE> and pragma <CODE>Preelaborate</CODE>,
the use of
<CODE>Elaborate_Body</CODE> does not guarantee that the program is
free of elaboration problems, because it may not be possible
to satisfy the requested elaboration order.
Let's go back to the example with <CODE>Unit_1</CODE> and <CODE>Unit_2</CODE>.
If a programmer
marks <CODE>Unit_1</CODE> as <CODE>Elaborate_Body</CODE>,
and not <CODE>Unit_2,</CODE> then the order of
elaboration will be:
</P>
<PRE>
Spec of Unit_2
Spec of Unit_1
Body of Unit_1
Body of Unit_2
</PRE>
<P>
Now that means that the call to <CODE>Func_1</CODE> in <CODE>Unit_2</CODE>
need not be checked,
it must be safe. But the call to <CODE>Func_2</CODE> in
<CODE>Unit_1</CODE> may still fail if
<CODE>Expression_1</CODE> is equal to 1,
and the programmer must still take
responsibility for this not being the case.
</P>
<P>
If all units carry a pragma <CODE>Elaborate_Body</CODE>, then all problems are
eliminated, except for calls entirely within a body, which are
in any case fully under programmer control. However, using the pragma
everywhere is not always possible.
In particular, for our <CODE>Unit_1</CODE>/<CODE>Unit_2</CODE> example, if
we marked both of them as having pragma <CODE>Elaborate_Body</CODE>, then
clearly there would be no possible elaboration order.
</P>
<P>
The above pragmas allow a server to guarantee safe use by clients, and
clearly this is the preferable approach. Consequently a good rule in
Ada 95 is to mark units as <CODE>Pure</CODE> or <CODE>Preelaborate</CODE> if possible,
and if this is not possible,
mark them as <CODE>Elaborate_Body</CODE> if possible.
As we have seen, there are situation where neither of these
three pragmas can be used.
So we also provide methods for clients to control the
order of elaboration of the servers on which they depend:
</P>
<DL COMPACT>
<DT>pragma Elaborate (unit)
<DD>
<A NAME="IDX273"></A>
<A NAME="IDX274"></A>
This pragma is placed in the context clause, after a <CODE>with</CODE> statement,
and it requires that the body of the named unit be elaborated before
the unit in which the pragma occurs. The idea is to use this pragma
if the current unit calls at elaboration time, directly or indirectly,
some subprogram in the named unit.
<DT>pragma Elaborate_All (unit)
<DD>
<A NAME="IDX275"></A>
<A NAME="IDX276"></A>
This is a stronger version of the Elaborate pragma. Consider the
following example:
<PRE>
Unit A <CODE>with</CODE>'s unit B and calls B.Func in elaboration code
Unit B <CODE>with</CODE>'s unit C, and B.Func calls C.Func
</PRE>
Now if we put a pragma <CODE>Elaborate (B)</CODE>
in unit <CODE>A</CODE>, this ensures that the
body of <CODE>B</CODE> is elaborated before the call, but not the
body of <CODE>C</CODE>, so
the call to <CODE>C.Func</CODE> could still cause <CODE>Program_Error</CODE> to
be raised.
The effect of a pragma <CODE>Elaborate_All</CODE> is stronger, it requires
not only that the body of the named unit be elaborated before the
unit doing the <CODE>with</CODE>, but also the bodies of all units that the
named unit uses, following <CODE>with</CODE> links transitively. For example,
if we put a pragma <CODE>Elaborate_All (B)</CODE> in unit <CODE>A</CODE>,
then it requires
not only that the body of <CODE>B</CODE> be elaborated before <CODE>A</CODE>,
but also the
body of <CODE>C</CODE>, because <CODE>B</CODE> <CODE>with</CODE>'s <CODE>C</CODE>.
</DL>
<P>
We are now in a position to give a usage rule in Ada 95 for avoiding
elaboration problems, at least if dynamic dispatching and access to
subprogram values are not used. We will handle these cases separately
later.
</P>
<P>
The rule is simple. If a unit has elaboration code that can directly or
indirectly make a call to a subprogram in a <CODE>with</CODE>'ed unit, or instantiate
a generic unit in a <CODE>with</CODE>'ed unit,
then if the <CODE>with</CODE>'ed unit does not have
pragma Pure, Preelaborate, or Elaborate_Body, then the client should have
an Elaborate_All for the <CODE>with</CODE>'ed unit. By following this rule a client is
assured that calls can be made without risk of an exception.
If this rule is not followed, then a program may be in one of four
states:
</P>
<DL COMPACT>
<DT>No order exists
<DD>
No order of elaboration exists which follows the rules, taking into
account any Elaborate, Elaborate_All, or Elaborate_Body pragmas. In
this case, an Ada 95 compiler must diagnose the situation at bind
time, and refuse to build an executable program.
<DT>One or more orders exist, all incorrect
<DD>
One or more acceptable elaboration orders exists, and all of them
generate an elaboration order problem. In this case, the binder
can build an executable program, but Program_Error will be raised
when the program is run.
<DT>Several orders exist, some right, some incorrect
<DD>
One or more acceptable elaboration orders exists, and some of them
work, and some do not. The programmer has not controlled
the order of elaboration, so the binder may or may not pick one of
the correct orders, and the program may or may not raise an
exception when it is run. This is the worst case, because it means
that the program may fail when moved to another compiler, or even
another version of the same compiler.
<DT>One or more orders exists, all correct
<DD>
One ore more acceptable elaboration orders exist, and all of them
work. In this case the program runs successfully. This state of
affairs can be guaranteed by following the rule we gave above, but
may be true even if the rule is not followed.
</DL>
<P>
Note that one additional advantage of following our Elaborate_All rule
is that the program continues to stay in the ideal (all orders OK) state
even if maintenance
changes some bodies of some subprograms. Conversely, if a program that does
not follow this rule happens to be safe at some point, this state of affairs
may deteriorate silently as a result of maintenance changes.
</P>
<H2><A NAME="SEC88" HREF="gnat_ug_toc.html#TOC88">Controlling Elaboration in GNAT - Internal Calls</A></H2>
<P>
In the case of internal calls, i.e. calls within a single package, the
programmer has full control over the order of elaboration, and it is up
to the programmer to elaborate declarations in an appropriate order. For
example writing:
</P>
<PRE>
<B>function</B> One <B>return</B> Float;
Q : Float := One;
<B>function</B> One <B>return</B> Float <B>is</B>
<B>begin</B>
return 1.0;
<B>end</B> One;
</PRE>
<P>
will obviously raise Program_Error at run time, because function One will be
called before its body is elaborated. In this case GNAT will generate
a warning that the call will raise Program_Error:
</P>
<PRE>
1. procedure y is
2. function One return Float;
3.
4. Q : Float := One;
|
>>> warning: cannot call "One" before body is elaborated
>>> warning: Program_Error will be raised at run time
5.
6. function One return Float is
7. begin
8. return 1.0;
9. end One;
10.
11. begin
12. null;
13. end;
</PRE>
<P>
Note that in this particular case, it is likely that the call is safe, because
the function <CODE>One</CODE> does not access any global variables.
Nevertheless in Ada 95, we do not want the validity of the check to depend on
the contents of the body (think about the separate compilation case), so this
is still wrong, as we discussed in the previous sections.
</P>
<P>
The error is easily corrected by rearranging the declarations so that the
body of One appears before the declaration containing the call
(note that in Ada 95,
declarations can appear in any order, so there is no restriction that
would prevent this reordering, and if we write:
</P>
<PRE>
<B>function</B> One <B>return</B> Float;
<B>function</B> One <B>return</B> Float <B>is</B>
<B>begin</B>
return 1.0;
<B>end</B> One;
Q : Float := One;
</PRE>
<P>
then all is well, no warning is generated, and no
<CODE>Program_Error</CODE> exception
will be raised.
Things are more complicated when a chain of subprograms is executed:
</P>
<PRE>
<B>function</B> A <B>return</B> Integer;
<B>function</B> B <B>return</B> Integer;
<B>function</B> C <B>return</B> Integer;
<B>function</B> B <B>return</B> Integer <B>is begin return</B> A; <B>end</B>;
<B>function</B> C <B>return</B> Integer <B>is begin return</B> B; <B>end</B>;
X : Integer := C;
<B>function</B> A <B>return</B> Integer <B>is begin return</B> 1; <B>end</B>;
</PRE>
<P>
Now the call to <CODE>C</CODE>
at elaboration time in the declaration of <CODE>X</CODE> is correct, because
the body of <CODE>C</CODE> is already elaborated,
and the call to <CODE>B</CODE> within the body of
<CODE>C</CODE> is correct, but the call
to <CODE>A</CODE> within the body of <CODE>B</CODE> is incorrect, because the body
of <CODE>A</CODE> has not been elaborated, so <CODE>Program_Error</CODE>
will be raised on the call to <CODE>A</CODE>.
In this case GNAT will generate a
warning that <CODE>Program_Error</CODE> may be
raised at the point of the call. Let's look at the warning:
</P>
<PRE>
1. procedure x is
2. function A return Integer;
3. function B return Integer;
4. function C return Integer;
5.
6. function B return Integer is begin return A; end;
|
>>> warning: call to "A" before body is elaborated may
raise Program_Error
>>> warning: "B" called at line 7
>>> warning: "C" called at line 9
7. function C return Integer is begin return B; end;
8.
9. X : Integer := C;
10.
11. function A return Integer is begin return 1; end;
12.
13. begin
14. null;
15. end;
</PRE>
<P>
Note that the message here says "may raise", instead of the direct case,
where the message says "will be raised". That's because whether
<CODE>A</CODE> is
actually called depends in general on run-time flow of control.
For example, if the body of <CODE>B</CODE> said
</P>
<PRE>
<B>function</B> B <B>return</B> Integer <B>is</B>
<B>begin</B>
<B>if</B> some-condition-depending-on-input-data <B>then</B>
<B>return</B> A;
<B>else</B>
<B>return</B> 1;
<B>end if</B>;
<B>end</B> B;
</PRE>
<P>
then we could not know until run time whether the incorrect call to A would
actually occur, so <CODE>Program_Error</CODE> might
or might not be raised. It is possible for a compiler to
do a better job of analyzing bodies, to
determine whether or not <CODE>Program_Error</CODE>
might be raised, but it certainly
couldn't do a perfect job (that would require solving the halting problem
and is provably impossible), and because this is a warning anyway, it does
not seem worth the effort to do the analysis. Cases in which it
would be relevant are rare.
</P>
<P>
In practice, warnings of either of the forms given
above will usually correspond to
real errors, and should be examined carefully and eliminated.
In the rare case where a warning is bogus, it can be suppressed by any of
the following methods:
</P>
<UL>
<LI>
Compile with the <CODE>-gnatws</CODE> switch set
<LI>
Suppress <CODE>Elaboration_Checks</CODE> for the called subprogram
<LI>
Use pragma <CODE>Warnings_Off</CODE> to turn warnings off for the call
</UL>
<P>
For the internal elaboration check case,
GNAT by default generates the
necessary run-time checks to ensure
that <CODE>Program_Error</CODE> is raised if any
call fails an elaboration check. Of course this can only happen if a
warning has been issued as described above. The use of pragma
<CODE>Suppress (Elaboration_Checks)</CODE> may (but is not guaranteed) to suppress
some of these checks, meaning that it may be possible (but is not
guaranteed) for a program to be able to call a subprogram whose body
is not yet elaborated, without raising a <CODE>Program_Error</CODE> exception.
</P>
<H2><A NAME="SEC89" HREF="gnat_ug_toc.html#TOC89">Controlling Elaboration in GNAT - External Calls</A></H2>
<P>
The previous section discussed the case in which the execution of a
particular thread of elaboration code occurred entirely within a
single unit. This is the easy case to handle, because a programmer
has direct and total control over the order of elaboration, and
furthermore, checks need only be generated in cases which are rare
and which the compiler can easily detect.
The situation is more complex when separate compilation is taken into account.
Consider the following:
</P>
<PRE>
<B>package</B> Math <B>is</B>
<B>function</B> Sqrt (Arg : Float) <B>return</B> Float;
<B>end</B> Math;
<B>package body</B> Math <B>is</B>
<B>function</B> Sqrt (Arg : Float) <B>return</B> Float <B>is</B>
<B>begin</B>
...
<B>end</B> Sqrt;
<B>end</B> Math;
<B>with</B> Math;
<B>package</B> Stuff <B>is</B>
X : Float := Math.Sqrt (0.5);
<B>end</B> Stuff;
<B>with</B> Stuff;
<B>procedure</B> Main <B>is</B>
<B>begin</B>
...
<B>end</B> Main;
</PRE>
<P>
where <CODE>Main</CODE> is the main program. When this program is executed, the
elaboration code must first be executed, and one of the jobs of the
binder is to determine the order in which the units of a program are
to be elaborated. In this case we have four units: the spec and body
of <CODE>Math</CODE>,
the spec of <CODE>Stuff</CODE> and the body of <CODE>Main</CODE>).
In what order should the four separate sections of elaboration code
be executed?
</P>
<P>
There are some restrictions in the order of elaboration that the binder
can choose. In particular, if unit U has a <CODE>with</CODE>
for a package <CODE>X</CODE>, then you
are assured that the spec of <CODE>X</CODE>
is elaborated before U , but you are
not assured that the body of <CODE>X</CODE>
is elaborated before U.
This means that in the above case, the binder is allowed to choose the
order:
</P>
<PRE>
spec of Math
spec of Stuff
body of Math
body of Main
</PRE>
<P>
but that's not good, because now the call to <CODE>Math.Sqrt</CODE>
that happens during
the elaboration of the <CODE>Stuff</CODE>
spec happens before the body of <CODE>Math.Sqrt</CODE> is
elaborated, and hence causes <CODE>Program_Error</CODE> exception to be raised.
At first glance, one might say that the binder is misbehaving, because
obviously you want to elaborate the body of something you <CODE>with</CODE>
first, but
that is not a general rule that can be followed in all cases. Consider
</P>
<PRE>
<B>package</B> X <B>is</B> ...
<B>package</B> Y <B>is</B> ...
<B>with</B> X;
<B>package body</B> Y <B>is</B> ...
<B>with</B> Y;
<B>package body</B> X <B>is</B> ...
</PRE>
<P>
This is a common arrangement, and, apart from the order of elaboration
problems that might arise in connection with elaboration code, this works fine.
A rule that says that you must first elaborate the body of anything you
<CODE>with</CODE> cannot work in this case
(the body of <CODE>X</CODE> <CODE>with</CODE>'s <CODE>Y</CODE>,
which means you would have to
elaborate the body of <CODE>Y</CODE> first, but that <CODE>with</CODE>'s <CODE>X</CODE>,
which means
you have to elaborate the body of <CODE>X</CODE> first, but ... and we have a
loop that cannot be broken.
</P>
<P>
It is true that the binder can in many cases guess an order of elaboration
that is unlikely to cause a <CODE>Program_Error</CODE>
exception to be raised, and it tries to do so (in the
above example of <CODE>Math/Stuff/Spec</CODE>, the GNAT binder will
in fact always
elaborate the body of <CODE>Math</CODE> right after its spec, so all will be well).
</P>
<P>
However, a program that blindly relies on the binder to be helpful can
get into trouble, as we discussed in the previous sections, so
GNAT
provides a number of facilities for assisting the programmer in
developing programs that are robust with respect to elaboration order.
</P>
<H2><A NAME="SEC90" HREF="gnat_ug_toc.html#TOC90">Default Behavior in GNAT - Ensuring Safety</A></H2>
<P>
The default behavior in GNAT ensures elaboration safety. In its
default mode GNAT implements the
rule we previously described as the right approach. Let's restate it:
</P>
<P>
If a unit has elaboration code that can directly or indirectly make a
call to a subprogram in a <CODE>with</CODE>'ed unit, or instantiate a generic unit
in a <CODE>with</CODE>'ed unit, then if the <CODE>with</CODE>'ed unit
does not have pragma <CODE>Pure</CODE>,
<CODE>Preelaborate</CODE>, or <CODE>Elaborate_Body</CODE>,
then the client should have an
<CODE>Elaborate_All</CODE> for the <CODE>with</CODE>'ed unit. By following this rule a client
is assured that calls and instantiations can be made without risk of an exception.
</P>
<P>
In this mode GNAT traces all calls that are potentially made from
elaboration code, and put in any missing implicit <CODE>Elaborate_All</CODE>
pragmas.
The advantage of this approach is that no elaboration problems
are possible if the binder can find an elaboration order that is
consistent with these implicit <CODE>Elaborate_All</CODE> pragmas. The
disadvantage of this approach is that no such order may exist.
</P>
<P>
If the binder does not generate any diagnostics, then it means that it
has found an elaboration order that is guaranteed to be safe. However,
the binder may still be relying on implicitly generated
<CODE>Elaborate_All</CODE> pragmas so portability to other compilers than
GNAT is not guaranteed.
</P>
<P>
If it is important to guarantee portability, then the compilations should
use the
<CODE>-gnatwl</CODE>
(warn on elaboration problems) switch. This will cause warning messages
to be generated indicating the missing <CODE>Elaborate_All</CODE> pragmas.
Consider the following source program:
</P>
<PRE>
<B>with</B> k;
<B>package</B> j <B>is</B>
m : integer := k.r;
<B>end</B>;
</PRE>
<P>
where it is clear that there
should be a pragma <CODE>Elaborate_All</CODE>
for unit <CODE>k</CODE>. An implicit pragma will be generated, and it is
likely that the binder will be able to honor it. However,
it is safer to include the pragma explicitly in the source. If this
unit is compiled with the
<CODE>-gnatwl</CODE>
switch, then the compiler outputs a warning:
</P>
<PRE>
1. with k;
2. package j is
3. m : integer := k.r;
|
>>> warning: call to "r" may raise Program_Error
>>> warning: missing pragma Elaborate_All for "k"
4. end;
</PRE>
<P>
and these warnings can be used as a guide for supplying manually
the missing pragmas.
</P>
<H2><A NAME="SEC91" HREF="gnat_ug_toc.html#TOC91">What to do if the Default Elaboration Behavior Fails</A></H2>
<P>
If the binder cannot find an acceptable order, it outputs detailed
diagnostics. For example:
</P>
<PRE>
error: elaboration circularity detected
info: "proc (body)" must be elaborated before "pack (body)"
info: reason: Elaborate_All probably needed in unit "pack (body)"
info: recompile "pack (body)" with -gnatwl
info: for full details
info: "proc (body)"
info: is needed by its spec:
info: "proc (spec)"
info: which is withed by:
info: "pack (body)"
info: "pack (body)" must be elaborated before "proc (body)"
info: reason: pragma Elaborate in unit "proc (body)"
</PRE>
<P>
In this case we have a cycle that the binder cannot break. On the one
hand, there is an explicit pragma Elaborate in <CODE>proc</CODE> for
<CODE>pack</CODE>. This means that the body of <CODE>pack</CODE> must be elaborated
before the body of <CODE>proc</CODE>. On the other hand, there is elaboration
code in <CODE>pack</CODE> that calls a subprogram in <CODE>proc</CODE>. This means
that for maximum safety, there should really be a pragma
Elaborate_All in <CODE>pack</CODE> for <CODE>proc</CODE> which would require that
the body of <CODE>proc</CODE> be elaborated before the body of
<CODE>pack</CODE>. Clearly both requirements cannot be satisfied.
Faced with a circularity of this kind, you have three different options.
</P>
<DL COMPACT>
<DT>Fix the program
<DD>
The most desirable option from the point of view of long-term maintenance
is to rearrange the program so that the elaboration problems are avoided.
One useful technique is to place the elaboration code into separate
child packages. Another is to move some of the initialization code to
explicitly called subprograms, where the program controls the order
of initialization explicitly. Although this is the most desirable option,
it may be impractical and involve too much modification, especially in
the case of complex legacy code.
<DT>Perform dynamic checks
<DD>
If the compilations are done using the
<CODE>-gnatE</CODE>
(dynamic elaboration check) switch, then GNAT behaves in
a quite different manner. Dynamic checks are generated for all calls
that could possibly result in raising an exception. With this switch,
the compiler does not generate implicit <CODE>Elaborate_All</CODE> pragmas.
The behavior then is exactly as specified in the Ada 95 Reference Manual.
The binder will generate an executable program that may or may not
raise Program_Error, and then it is the programmer's job to ensure
that it does not raise an exception. Note that it is important to
compile all units with the switch, it cannot be used selectively.
<DT>Suppress checks
<DD>
The drawback of dynamic checks is that they generate a
significant overhead at run time, both in space and time. If you
are absolutely sure that your program cannot raise any elaboration
exceptions, then you can use the
<CODE>-f</CODE>
switch for the
<CODE>gnatbind</CODE>
step, or
<CODE>-bargs -f</CODE>
if you are using
<CODE>gnatmake</CODE>.
This switch tells the binder to ignore any implicit <CODE>Elaborate_All</CODE>
pragmas that were generated by the compiler, and suppresses any
circularity messages that they cause. The resulting executable will work
properly if there are no elaboration problems, but if there are some order of
elaboration problems they will not be detected, and unexpected
results may occur.
</DL>
<P>
It is hard to generalize on which of these three approaches should be
taken. Obviously if it is possible to fix the program so that the default
treatment works, this is preferable, but this may not always be practical.
It is certainly simple enough to use
<CODE>-gnatE</CODE>
or
<CODE>-f</CODE>
but the danger in either case is that, even if the GNAT binder
finds a correct elaboration order, it may not always do so,
and certainly a binder from another Ada compiler might not. A
combination of testing and analysis (for which the warnings generated
with the
<CODE>-gnatwl</CODE>
switch can be useful) must be used to ensure that the program is free
of errors. One switch that is useful in this testing is the
<CODE>-h (horrible elaboration order)</CODE>
switch for
<CODE>gnatbind</CODE>.
Normally the binder tries to find an order that has the best chance of
of avoiding elaboration problems. With this switch, the binder
plays a devil's advocate role, and tries to choose the order that
has the best chance of failing. If your program works even with this
switch, then it has a better chance of being error free, but this is still
not a guarantee.
</P>
<P>
For an example of this approach in action, consider the C-tests (executable
tests) from the ACVC suite. If these are compiled and run with the default
treatment, then all but one of them succeed without generating any error
diagnostics from the binder. However, there is one test that fails, and
this is not surprising, because the whole point of this test is to ensure
that the compiler can handle cases where it is impossible to determine
a correct order statically, and it checks that an exception is indeed
raised at run time.
</P>
<P>
This one test must be compiled and run using the
<CODE>-gnatE</CODE>
switch, and then it passes. Alternatively, the entire suite can
be run using this switch. It is never wrong to run with the dynamic
elaboration switch if your code is correct, and we assume that the
C-tests are indeed correct (it is less efficient, but efficiency is
not a factor in running the ACVC tests.)
</P>
<H2><A NAME="SEC92" HREF="gnat_ug_toc.html#TOC92">Elaboration for Access-to-Subprogram Values</A></H2>
<P>
<A NAME="IDX277"></A>
</P>
<P>
The introduction of access-to-subprogram types in Ada 95 complicates
the handling of elaboration. The trouble is that it becomes
impossible to tell at compile time which procedure
is being called. This means that it is not possible for the binder
to analyze the elaboration requirements in this case.
</P>
<P>
If at the point at which the access value is created, the body of the subprogram is
known to have been elaborated, then the access value is safe, and its use
does not require a check. This may be achieved by appropriate arrangement
of the order of declarations if the subprogram is in the current unit,
or, if the subprogram is in another unit, by using pragma
<CODE>Pure</CODE>, <CODE>Preelaborate</CODE>, or <CODE>Elaborate_Body</CODE>
on the referenced unit.
</P>
<P>
If the referenced body is not known to have been elaborated at the point
the access value is created, then any use of the access value must do a
dynamic check, and this dynamic check will fail and raise a
<CODE>Program_Error</CODE> exception if the body has not been elaborated yet.
GNAT will generate the necessary checks, and in addition, if the
<CODE>-gnatwl</CODE>
switch is set, will generate warnings that such checks are required.
</P>
<P>
The use of dynamic dispatching for tagged types similarly generates
a requirement for dynamic checks, and premature calls to any primitive
operation of a tagged type before the body of the operation has been elaborated,
will result in the raising of <CODE>Program_Error</CODE>.
</P>
<H2><A NAME="SEC93" HREF="gnat_ug_toc.html#TOC93">Summary of Procedures for Elaboration Control</A></H2>
<P>
<A NAME="IDX278"></A>
</P>
<P>
First, compile your program with the default options, using none of
the special elaboration control switches. If the binder successfully
binds your program, then you can be confident that, apart from issues
raised by the use of access-to-subprogram types and dynamic dispatching,
the program is free of elaboration errors. If it is important that the
program be portable, then use the
<CODE>-gnatwl</CODE>
switch to generate warnings about missing <CODE>Elaborate_All</CODE>
pragmas, and supply the missing pragmas.
</P>
<P>
If the program fails to bind using the default static elaboration
handling, then you can fix the program to eliminate the binder
message, or recompile the entire program with the
<CODE>-gnatE</CODE> switch to generate dynamic elaboration checks,
or, if you are sure there really are no elaboration problems,
use the
<CODE>-f</CODE>
switch for the binder to cause it to ignore implicit <CODE>Elaborate_All</CODE>
pragmas generated by the compiler.
</P>
<H1><A NAME="SEC94" HREF="gnat_ug_toc.html#TOC94">The cross-referencing tools <CODE>gnatxref</CODE> and <CODE>gnatfind</CODE></A></H1>
<P>
<A NAME="IDX279"></A>
<A NAME="IDX280"></A>
</P>
<P>
The compiler generates cross-referencing information (unless
you set the <SAMP>`-gnatx'</SAMP> switch), which are saved in the <TT>`.ali'</TT> files.
This information indicates where in the source each entity is declared and
referenced.
</P>
<P>
Before using any of these two tools, you need to compile successfully your
application, so that GNAT gets a chance to generate the cross-referencing
information.
</P>
<P>
The two tools <CODE>gnatxref</CODE> and <CODE>gnatfind</CODE> take advantage of this
information to provide the user with the capability to easily locate the
declaration and references to an entity. These tools are quite similar,
the difference being that <CODE>gnatfind</CODE> is intended for locating
definitions and/or references to a specified entity or entities, whereas
<CODE>gnatxref</CODE> is oriented to generating a full report of all
cross-references.
</P>
<P>
To use these tools, you must not compile your application using the
<SAMP>`-gnatx'</SAMP> switch on the <TT>`gnatmake'</TT> command line (See Info file `gnat_ug', node `The GNAT Make Program gnatmake'). Otherwise, cross-referencing
information will not be generated.
</P>
<UL>
<LI><A HREF="gnat_ug.html#SEC95">Gnatxref switches</A>
<LI><A HREF="gnat_ug.html#SEC96">Gnatfind switches</A>
<LI><A HREF="gnat_ug.html#SEC97">Project files</A>
<LI><A HREF="gnat_ug.html#SEC98">Regular expressions in gnatfind and gnatxref</A>
<LI><A HREF="gnat_ug.html#SEC99">Examples of gnatxref usage</A>
<LI><A HREF="gnat_ug.html#SEC102">Examples of gnatfind usage</A>
</UL>
<H2><A NAME="SEC95" HREF="gnat_ug_toc.html#TOC95">Gnatxref switches</A></H2>
<P>
The command lines for <CODE>gnatxref</CODE> is:
<PRE>
$ gnatxref [switches] sourcefile1 [sourcefile2 ...]
</PRE>
<P>
where
</P>
<DL COMPACT>
<DT><CODE>sourcefile1, sourcefile2</CODE>
<DD>
identifies the source files for which a report is to be generated. The
'with'ed units will be processed too. You must provide at least one file.
These file names are considered to be regular expressions, so for instance
specifying 'source*.adb' is the same as giving every file in the current
directory whose name starts with 'source' and whose extension is 'adb'.
</DL>
<P>
The switches can be :
<DL COMPACT>
<DT><CODE>-a</CODE>
<DD>
If this switch is present, <CODE>gnatfind</CODE> and <CODE>gnatxref</CODE> will parse
the read-only files found in the library search path. Otherwise, these files
will be ignored. This option can be used to protect Gnat sources or your own
libraries from being parsed, thus making <CODE>gnatfind</CODE> and <CODE>gnatxref</CODE>
much faster, and their output much smaller.
<DT><CODE>-aIDIR</CODE>
<DD>
When looking for source files also look in directory DIR. The order in which
source file search is undertaken is the same as for <TT>`gnatmake'</TT>.
<DT><CODE>-aODIR</CODE>
<DD>
When searching for library and object files, look in directory
DIR. The order in which library files are searched is the same as for
<TT>`gnatmake'</TT>.
<DT><CODE>-f</CODE>
<DD>
If this switch is set, the output file names will be preceded by their
directory (if the file was found in the search path). If this switch is
not set, the directory will not be printed.
<DT><CODE>-g</CODE>
<DD>
If this switch is set, information is output only for library-level
entities, ignoring local entities. The use of this switch may accelerate
<CODE>gnatfind</CODE> and <CODE>gnatxref</CODE>.
<DT><CODE>-IDIR</CODE>
<DD>
Equivalent to <SAMP>`-aODIR -aIDIR'</SAMP>.
<DT><CODE>-pFILE</CODE>
<DD>
Specify a project file to use See section <A HREF="gnat_ug.html#SEC97">Project files</A>.
By default, <CODE>gnatxref</CODE> and <CODE>gnatfind</CODE> will try to locate a
project file in the current directory.
If a project file is either specified or found by the tools, then the content
of the source directory and object directory lines are added as if they
had been specified respectively by <SAMP>`-aI'</SAMP>
and <SAMP>`-aO'</SAMP>.
<DT><CODE>-u</CODE>
<DD>
Output only unused symbols. This may be really useful if you give your
main compilation unit on the command line, as <CODE>gnatxref</CODE> will then
display every unused entity and 'with'ed package.
<DT><CODE>-v</CODE>
<DD>
Instead of producing the default output, <CODE>gnatxref</CODE> will generate a
<TT>`tags'</TT> file that can be used by vi. For examples how to use this
feature, see See section <A HREF="gnat_ug.html#SEC99">Examples of <CODE>gnatxref</CODE> usage</A>. The tags file is output
to the standard output, thus you will have to redirect it to a file.
</DL>
<P>
All these switches may be in any order on the command line, and may even
appear after the file names. They need not be separated by spaces, thus
you can say <SAMP>`gnatxref -ag'</SAMP> instead of
<SAMP>`gnatxref -a -g'</SAMP>.
</P>
<H2><A NAME="SEC96" HREF="gnat_ug_toc.html#TOC96">Gnatfind switches</A></H2>
<P>
The command line for <CODE>gnatfind</CODE> is:
</P>
<PRE>
$ gnatfind [switches] pattern[:sourcefile[:line[:column]]] [file1 file2 ...]
</PRE>
<P>
where
</P>
<DL COMPACT>
<DT><CODE>pattern</CODE>
<DD>
An entity will be output only if it matches the regular expression found
in <SAMP>`pattern'</SAMP>, see See section <A HREF="gnat_ug.html#SEC98">Regular expressions in gnatfind and gnatxref</A>.
Omitting the pattern is equivalent to specifying <SAMP>`*'</SAMP>, which
will match any entity. Note that if you do not provide a pattern, you
have to provide both a sourcefile and a line.
Entity names are given in Latin-1, with upper-lower case equivalence
for matching purposes. At the current time there is no support for
8-bit codes other than Latin-1, or for wide characters in identifiers.
<DT><CODE>sourcefile</CODE>
<DD>
<CODE>gnatfind</CODE> will look for references, bodies or declarations
of symbols referenced in <TT>`sourcefile'</TT>, at line <SAMP>`line'</SAMP>
and column <SAMP>`column'</SAMP>. See see section <A HREF="gnat_ug.html#SEC102">Examples of <CODE>gnatfind</CODE> usage</A>
for syntax examples.
<DT><CODE>line</CODE>
<DD>
is a decimal integer identifying the line number containing
the reference to the entity (or entities) to be located.
<DT><CODE>column</CODE>
<DD>
is a decimal integer identifying the exact location on the
line of the first character of the identifier for the
entity reference. Columns are numbered from 1.
<DT><CODE>file1 file2 ...</CODE>
<DD>
The search will be restricted to these files. If none are given, then
the search will be done for every library file in the search path.
These file must appear only after the pattern or sourcefile.
These file names are considered to be regular expressions, so for instance
specifying 'source*.adb' is the same as giving every file in the current
directory whose name starts with 'source' and whose extension is 'adb'.
Not that if you specify at least one file in this part, <CODE>gnatfind</CODE> may
sometimes not be able to find the body of the subprograms...
</DL>
<P>
At least one of 'sourcefile' or 'pattern' has to be present on
the command line.
</P>
<P>
The following switches are available:
<DL COMPACT>
<DT><CODE>-a</CODE>
<DD>
If this switch is present, <CODE>gnatfind</CODE> and <CODE>gnatxref</CODE> will parse
the read-only files found in the library search path. Otherwise, these files
will be ignored. This option can be used to protect Gnat sources or your own
libraries from being parsed, thus making <CODE>gnatfind</CODE> and <CODE>gnatxref</CODE>
much faster, and their output much smaller.
<DT><CODE>-aIDIR</CODE>
<DD>
When looking for source files also look in directory DIR. The order in which
source file search is undertaken is the same as for <TT>`gnatmake'</TT>.
<DT><CODE>-aODIR</CODE>
<DD>
When searching for library and object files, look in directory
DIR. The order in which library files are searched is the same as for
<TT>`gnatmake'</TT>.
<DT><CODE>-e</CODE>
<DD>
By default, <CODE>gnatfind</CODE> accept the simple regular expression set for
<SAMP>`pattern'</SAMP>. If this switch is set, then the pattern will be
considered as full Unix-style regular expression.
<DT><CODE>-f</CODE>
<DD>
If this switch is set, the output file names will be preceded by their
directory (if the file was found in the search path). If this switch is
not set, the directory will not be printed.
<DT><CODE>-g</CODE>
<DD>
If this switch is set, information is output only for library-level
entities, ignoring local entities. The use of this switch may accelerate
<CODE>gnatfind</CODE> and <CODE>gnatxref</CODE>.
<DT><CODE>-IDIR</CODE>
<DD>
Equivalent to <SAMP>`-aODIR -aIDIR'</SAMP>.
<DT><CODE>-pFILE</CODE>
<DD>
Specify a project file (see section <A HREF="gnat_ug.html#SEC97">Project files</A>) to use.
By default, <CODE>gnatxref</CODE> and <CODE>gnatfind</CODE> will try to locate a
project file in the current directory.
If a project file is either specified or found by the tools, then the content
of the source directory and object directory lines are added as if they
had been specified respectively by <SAMP>`-aI'</SAMP> and
<SAMP>`-aO'</SAMP>.
<DT><CODE>-r</CODE>
<DD>
By default, <CODE>gnatfind</CODE> will output only the information about the
declaration, body or type completion of the entities. If this switch is
set, the <CODE>gnatfind</CODE> will locate every reference to the entities in
the files specified on the command line (or in every file in the search
path if no file is given on the command line).
<DT><CODE>-s</CODE>
<DD>
If this switch is set, then <CODE>gnatfind</CODE> will output the content
of the Ada source file lines were the entity was found.
</DL>
<P>
All these switches may be in any order on the command line, and may even
appear after the file names. They need not be separated by spaces, thus
you can say <SAMP>`gnatxref -ag'</SAMP> instead of
<SAMP>`gnatxref -a -g'</SAMP>.
</P>
<P>
As stated previously, gnatfind will search in every directory in the
search path. You can force it to look only in the current directory if
you specify <CODE>*</CODE> at the end of the command line.
</P>
<H2><A NAME="SEC97" HREF="gnat_ug_toc.html#TOC97">Project files</A></H2>
<P>
The project files allows a programmer to specify how to compile its
application, where to find sources,... These files are used primarily by
the Emacs Ada mode, but they can also be used by the two tools
<CODE>gnatxref</CODE> and <CODE>gnatfind</CODE>.
</P>
<P>
A project file name must end with <TT>`.adp'</TT>. If a single one is
present in the current directory, then <CODE>gnatxref</CODE> and <CODE>gnatfind</CODE> will
extract the information from it. If multiple project files are found, none of
them is read, and you have to use the <SAMP>`-p'</SAMP> switch to specify the one
you want to use.
</P>
<P>
The following lines can be included, even though most of them have default
values which can be used in most cases.
The lines can be entered in any order in the file.
Except for <SAMP>`src_dir'</SAMP> and <SAMP>`obj_dir'</SAMP>, you can only have one instance of
each line. If you have multiple instances, only the last one is taken into
account.
</P>
<DL COMPACT>
<DT><SAMP>`src_dir=DIR [default: "./"]'</SAMP>
<DD>
specifies a directory where to look for source files. Multiple src_dir lines
can be specified and they will be searched in the order they
are specified.
<DT><SAMP>`obj_dir=DIR [default: "./"]'</SAMP>
<DD>
specifies a directory where to look for object and library files. Multiple
obj_dir lines can be specified and they will be searched in the order they
are specified
<DT><SAMP>`comp_opt=SWITCHES [default: ""]'</SAMP>
<DD>
creates a variable which can be referred to subsequently by using
the <SAMP>`${comp_opt}'</SAMP> notation. This is intended to store the default
switches given to <TT>`gnatmake'</TT> and <TT>`gcc'</TT>.
<DT><SAMP>`bind_opt=SWITCHES [default: ""]'</SAMP>
<DD>
creates a variable which can be referred to subsequently by using
the <SAMP>`${bind_opt}'</SAMP> notation. This is intended to store the default
switches given to <TT>`gnatbind'</TT>.
<DT><SAMP>`link_opt=SWITCHES [default: ""]'</SAMP>
<DD>
creates a variable which can be referred to subsequently by using
the <SAMP>`${link_opt}'</SAMP> notation. This is intended to store the default
switches given to <TT>`gnatlink'</TT>.
<DT><SAMP>`main=EXECUTABLE [default: ""]'</SAMP>
<DD>
specifies the name of the executable for the application. This variable can
be referred to in the following lines by using the <SAMP>`${main}'</SAMP> notation.
<DT><SAMP>`comp_cmd=COMMAND [default: "gcc -c -I${src_dir} -g -gnatq"]'</SAMP>
<DD>
specifies the command used to compile a single file in the application.
<DT><SAMP>`make_cmd=COMMAND [default: "gnatmake ${main} -aI${src_dir} -aO${obj_dir} -g -gnatq -cargs ${comp_opt} -bargs ${bind_opt} -largs ${link_opt}"]'</SAMP>
<DD>
specifies the command used to recompile the whole application.
<DT><SAMP>`run_cmd=COMMAND [default: "${main}"]'</SAMP>
<DD>
specifies the command used to run the application.
<DT><SAMP>`debug_cmd=COMMAND [default: "gdb ${main}"]'</SAMP>
<DD>
specifies the command used to debug the application
</DL>
<P>
<CODE>gnatxref</CODE> and <CODE>gnatfind</CODE> only take into account the <SAMP>`src_dir'</SAMP>
and <SAMP>`obj_dir'</SAMP> lines, and ignore the others.
</P>
<H2><A NAME="SEC98" HREF="gnat_ug_toc.html#TOC98">Regular expressions in gnatfind and gnatxref</A></H2>
<P>
As specified in the section about <CODE>gnatfind</CODE>, the pattern can be a
regular expression. Actually, there are to set of regular expressions
which are recognized by the program :
</P>
<DL COMPACT>
<DT><SAMP>`globbing patterns'</SAMP>
<DD>
These are the most usual regular expression. They are the same that you
generally used in a Unix shell command line, or in a DOS session.
Here is a more formal grammar :
<PRE>
regexp ::= term
term ::= elmt -- matches elmt
term ::= elmt elmt -- concatenation (elmt then elmt)
term ::= * -- any string of 0 or more characters
term ::= ? -- matches any character
term ::= [char {char}] -- matches any character listed
term ::= [char - char] -- matches any character in range
</PRE>
<DT><SAMP>`full regular expression'</SAMP>
<DD>
The second set of regular expressions is much more powerful. This is the
type of regular expressions recognized by utilities such a <TT>`grep'</TT>.
The following is the form of a regular expression, expressed in Ada
reference manual style BNF is as follows
<PRE>
regexp ::= term {| term} -- alternation (term or term ...)
term ::= item {item} -- concatenation (item then item)
item ::= elmt -- match elmt
item ::= elmt * -- zero or more elmt's
item ::= elmt + -- one or more elmt's
item ::= elmt ? -- matches elmt or nothing
elmt ::= nschar -- matches given character
elmt ::= [nschar {nschar}] -- matches any character listed
elmt ::= [^ nschar {nschar}] -- matches any character not listed
elmt ::= [char - char] -- matches chars in given range
elmt ::= \ char -- matches given character
elmt ::= . -- matches any single character
elmt ::= ( regexp ) -- parens used for grouping
char ::= any character, including special characters
nschar ::= any character except ()[].*+?^
</PRE>
Following are a few examples :
<DL COMPACT>
<DT><SAMP>`abcde|fghi'</SAMP>
<DD>
will match any of the two strings 'abcde' and 'fghi'.
<DT><SAMP>`abc*d'</SAMP>
<DD>
will match any string like 'abd', 'abcd', 'abccd', 'abcccd', and so on
<DT><SAMP>`[a-z]+'</SAMP>
<DD>
will match any string which has only lower-case characters in it (and at
least one character
</DL>
</DL>
<H2><A NAME="SEC99" HREF="gnat_ug_toc.html#TOC99">Examples of <CODE>gnatxref</CODE> usage</A></H2>
<H3><A NAME="SEC100" HREF="gnat_ug_toc.html#TOC100">General usage</A></H3>
<P>
For the following examples, we will consider the following units :
</P>
<PRE>
main.ads:
1: <B>with</B> Bar;
2: <B>package</B> Main <B>is</B>
3: <B>procedure</B> Foo (B : <B>in</B> Integer);
4: C : Integer;
5: <B>private</B>
6: D : Integer;
7: <B>end</B> Main;
main.adb:
1: <B>package body</B> Main <B>is</B>
2: <B>procedure</B> Foo (B : <B>in</B> Integer) <B>is</B>
3: <B>begin</B>
4: C := B;
5: D := B;
6: Bar.Print (B);
7: Bar.Print (C);
8: <B>end</B> Foo;
9: <B>end</B> Main;
bar.ads:
1: <B>package</B> Bar <B>is</B>
2: <B>procedure</B> Print (B : Integer);
3: <B>end</B> bar;
</PRE>
<DL COMPACT>
The first thing to do is to recompile your application (for instance, in
that case just by doing a <SAMP>`gnatmake main'</SAMP>, so that GNAT generates
the cross-referencing information.
You can then issue any of the following commands:
<DT><CODE>gnatxref main.adb</CODE>
<DD>
<CODE>gnatxref</CODE> generates cross-reference information for main.adb
and every unit 'with'ed by main.adb.
The output would be:
<PRE>
B Type: Integer
Decl: bar.ads 2:22
B Type: Integer
Decl: main.ads 3:20
Body: main.adb 2:20
Ref: main.adb 4:13 5:13 6:19
Bar Type: Unit
Decl: bar.ads 1:9
Ref: main.adb 6:8 7:8
main.ads 1:6
C Type: Integer
Decl: main.ads 4:5
Modi: main.adb 4:8
Ref: main.adb 7:19
D Type: Integer
Decl: main.ads 6:5
Modi: main.adb 5:8
Foo Type: Unit
Decl: main.ads 3:15
Body: main.adb 2:15
Main Type: Unit
Decl: main.ads 2:9
Body: main.adb 1:14
Print Type: Unit
Decl: bar.ads 2:15
Ref: main.adb 6:12 7:12
</PRE>
that is the entity <CODE>Main</CODE> is declared in main.ads, line 2, column 9,
its body is in main.adb, line 1, column 14 and is not referenced any where.
The entity <CODE>Print</CODE> is declared in bar.ads, line 2, column 15 and it
it referenced in main.adb, line 6 column 12 and line 7 column 12.
<DT><CODE>gnatxref package1.adb package2.ads</CODE>
<DD>
<CODE>gnatxref</CODE> will generates cross-reference information for
package1.adb, package2.ads and any other package 'with'ed by any
of these.
</DL>
<H3><A NAME="SEC101" HREF="gnat_ug_toc.html#TOC101">Using gnatxref with vi</A></H3>
<P>
<CODE>gnatxref</CODE> can generate a tags file output, which can be used
directly from <TT>`vi'</TT>. Note that the standard version of <TT>`vi'</TT>
will not work properly with overloaded symbols. Consider using another
free implementation of <TT>`vi'</TT>, such as <TT>`vim'</TT>.
</P>
<PRE>
$ gnatxref -v gnatfind.adb > tags
</PRE>
<P>
will generate the tags file for <CODE>gnatfind</CODE> itself (if the sources
are in the search path!).
</P>
<P>
From <TT>`vi'</TT>, you can then use the command <SAMP>`:tag <I>entity</I>'</SAMP>
(replacing <I>entity</I> by whatever you are looking for), and vi will
display a new file with the corresponding declaration of entity.
</P>
<H2><A NAME="SEC102" HREF="gnat_ug_toc.html#TOC102">Examples of <CODE>gnatfind</CODE> usage</A></H2>
<DL COMPACT>
<DT><CODE>gnatfind -f xyz:main.adb</CODE>
<DD>
Find declarations for all entities xyz referenced at least once in
main.adb. The references are search in every library file in the search
path.
The directories will be printed as well (as the <SAMP>`-f'</SAMP>
switch is set)
The output will look like:
<PRE>
directory/main.ads:106:14: xyz <= declaration
directory/main.adb:24:10: xyz <= body
directory/foo.ads:45:23: xyz <= declaration
</PRE>
that is to say, one of the entities xyz found in main.adb is declared at
line 12 of main.ads (and its body is in main.adb), and another one is
declared at line 45 of foo.ads
<DT><CODE>gnatfind -fs xyz:main.adb</CODE>
<DD>
This is the same command as the previous one, instead <CODE>gnatfind</CODE> will
display the content of the Ada source file lines.
The output will look like:
<PRE>
directory/main.ads:106:14: xyz <= declaration
procedure xyz;
directory/main.adb:24:10: xyz <= body
procedure xyz is
directory/foo.ads:45:23: xyz <= declaration
xyz : Integer;
</PRE>
This can make it easier to find exactly the location your are looking
for.
<DT><CODE>gnatfind -r "*x*":main.ads:123 foo.adb</CODE>
<DD>
Find references to all entities containing an x that are
referenced on line 123 of main.ads.
The references will be searched only in main.adb and foo.adb.
<DT><CODE>gnatfind main.ads:123</CODE>
<DD>
Find declarations and bodies for all entities that are referenced on
line 123 of main.ads.
This is the same as <CODE>gnatfind "*":main.adb:123</CODE>.
<DT><CODE>gnatfind mydir/main.adb:123:45</CODE>
<DD>
Find the declaration for the entity referenced at column 45 in
line 123 of file main.adb in directory mydir. Note that it
is usual to omit the identifier name when the column is given,
since the column position identifies a unique reference.
The column has to be the beginning of the identifier, and should not
point to any character in the middle of the identifier.
</DL>
<H1><A NAME="SEC103" HREF="gnat_ug_toc.html#TOC103">File Name Krunching Using <CODE>gnatkr</CODE></A></H1>
<P>
<A NAME="IDX281"></A>
</P>
<P>
This chapter discusses the method used by the compiler to shorten
the default file names chosen for Ada units so that they do not
exceed the maximum length permitted. It also describes the
<CODE>gnatkr</CODE> utility that can be used to determine the result of
applying this shortening.
<UL>
<LI><A HREF="gnat_ug.html#SEC104">About gnatkr</A>
<LI><A HREF="gnat_ug.html#SEC105">Using gnatkr</A>
<LI><A HREF="gnat_ug.html#SEC106">Krunching Method</A>
<LI><A HREF="gnat_ug.html#SEC107">Examples of gnatkr Usage</A>
</UL>
<H2><A NAME="SEC104" HREF="gnat_ug_toc.html#TOC104">About <CODE>gnatkr</CODE></A></H2>
<P>
The default file naming rule in GNAT
is that the file name must be derived from
the unit name. The exact default rule is as follows:
<UL>
<LI>
Take the unit name and replace all dots by hyphens.
<LI>
If such a replacement occurs in the
second character position of a name, and the first character is
a, g, s, or i then replace the dot by the character
~ (tilde)
instead of a minus.
</UL>
<P>
The reason for this exception is to avoid clashes
with the standard names for children of System, Ada, Interfaces,
and GNAT, which use the prefixes s- a- i- and g-
respectively.
</P>
<P>
The <CODE>-gnatk<VAR>nn</VAR></CODE>
switch of the compiler activates a "krunching"
circuit that limits file names to nn characters (where nn is a decimal
integer). For example, using OpenVMS,
where the maximum file name length is
39, the value of nn is usually set to 39, but if you want to generate
a set of files that would be usable if ported to a system with some
different maximum file length, then a different value can be specified.
The default value of 39 for OpenVMS need not be specified.
</P>
<P>
The <CODE>gnatkr</CODE> utility can be used to determine the krunched name for
a given file, when krunched to a specified maximum length.
</P>
<H2><A NAME="SEC105" HREF="gnat_ug_toc.html#TOC105">Using <CODE>gnatkr</CODE></A></H2>
<P>
The <CODE>gnatkr</CODE> command has the form
</P>
<PRE>
$ gnatkr <VAR>name</VAR> [<VAR>length</VAR>]
</PRE>
<P>
<VAR>name</VAR> can be an Ada name with dots or the GNAT name of the unit,
where the dots representing child units or subunit are replaced by
hyphens. The only confusion arises if a name ends in <CODE>.ads</CODE> or
<CODE>.adb</CODE>. <CODE>gnatkr</CODE> takes this to be an extension if there are
no other dots in the name and the whole name is in lowercase.
</P>
<P>
<VAR>length</VAR> represents the length of the krunched name. The default
when no argument is given is 8 characters. A length of zero stands for
unlimited, in other words do not chop except for system files which are
always 8.
</P>
<P>
The output is the krunched name. The output has an extension only if the
original argument was a file name with an extension.
</P>
<H2><A NAME="SEC106" HREF="gnat_ug_toc.html#TOC106">Krunching Method</A></H2>
<P>
The initial file name is determined by the name of the unit that the file
contains. The name is formed by taking the full expanded name of the
unit and replacing the separating dots with hyphens and
using lowercase
for all letters, except that a hyphen in the second character position is
replaced by a tilde if the first character is
a, i, g, or s.
The extension is <CODE>.ads</CODE> for a
specification and <CODE>.adb</CODE> for a body.
Krunching does not affect the extension, but the file name is shortened to
the specified length by following these rules:
</P>
<UL>
<LI>
The name is divided into segments separated by hyphens, tildes or
underscores and all hyphens, tildes, and underscores are
eliminated. If this leaves the name short enough, we are done.
<LI>
If the name is too long, the longest segment is located (left-most if there are two
of equal length), and shortened by dropping its last character. This is
repeated until the name is short enough.
As an example, consider the krunching of <TT>`our-strings-wide_fixed.adb'</TT>
to fit the name into 8 characters as required by some operating systems.
<PRE>
our-strings-wide_fixed 22
our strings wide fixed 19
our string wide fixed 18
our strin wide fixed 17
our stri wide fixed 16
our stri wide fixe 15
our str wide fixe 14
our str wid fixe 13
our str wid fix 12
ou str wid fix 11
ou st wid fix 10
ou st wi fix 9
ou st wi fi 8
Final file name: oustwifi.adb
</PRE>
<LI>
The file names for all predefined units are always krunched to eight
characters. The krunching of these predefined units uses the following
special prefix replacements:
<DL COMPACT>
<DT><TT>`ada-'</TT>
<DD>
replaced by <TT>`a-'</TT>
<DT><TT>`gnat-'</TT>
<DD>
replaced by <TT>`g-'</TT>
<DT><TT>`interfaces-'</TT>
<DD>
replaced by <TT>`i-'</TT>
<DT><TT>`system-'</TT>
<DD>
replaced by <TT>`s-'</TT>
</DL>
These system files have a hyphen in the second character position. That
is why normal user files replace such a character with a
tilde, to
avoid confusion with system file names.
As an example of this special rule, consider
<TT>`ada-strings-wide_fixed.adb'</TT>, which gets krunched as follows:
<PRE>
ada-strings-wide_fixed 22
a- strings wide fixed 18
a- string wide fixed 17
a- strin wide fixed 16
a- stri wide fixed 15
a- stri wide fixe 14
a- str wide fixe 13
a- str wid fixe 12
a- str wid fix 11
a- st wid fix 10
a- st wi fix 9
a- st wi fi 8
Final file name: a-stwifi.adb
</PRE>
</UL>
<P>
Of course no file shortening algorithm can guarantee uniqueness over all
possible unit names, and if file name krunching is used then it is your
responsibility to ensure that no name clashes occur. The utility
program <CODE>gnatkr</CODE> is supplied for conveniently determining the
krunched name of a file.
</P>
<H2><A NAME="SEC107" HREF="gnat_ug_toc.html#TOC107">Examples of <CODE>gnatkr</CODE> Usage</A></H2>
<PRE>
$ gnatkr very_long_unit_name.ads --> velounna.ads
$ gnatkr grandparent-parent-child.ads --> grparchi.ads
$ gnatkr Grandparent.Parent.Child --> grparchi
$ gnatkr very_long_unit_name.ads/count=6 --> vlunna.ads
$ gnatkr very_long_unit_name.ads/count=0 --> very_long_unit_name.ads
</PRE>
<H1><A NAME="SEC108" HREF="gnat_ug_toc.html#TOC108">Preprocessing Using <CODE>gnatprep</CODE></A></H1>
<P>
<A NAME="IDX282"></A>
</P>
<P>
The <CODE>gnatprep</CODE> utility provides
a simple preprocessing capability for Ada programs.
It is designed for use with GNAT, but is not dependent on any special
features of GNAT.
</P>
<UL>
<LI><A HREF="gnat_ug.html#SEC109">Using gnatprep</A>
<LI><A HREF="gnat_ug.html#SEC110">Switches for gnatprep</A>
<LI><A HREF="gnat_ug.html#SEC111">Form of definitions file</A>
<LI><A HREF="gnat_ug.html#SEC112">Form of input text for gnatprep</A>
</UL>
<H2><A NAME="SEC109" HREF="gnat_ug_toc.html#TOC109">Using <CODE>gnatprep</CODE></A></H2>
<P>
To call <CODE>gnatprep</CODE> use
</P>
<PRE>
$ gnatprep [-bcrsu] [-Dsymbol=value] infile outfile [deffile]
</PRE>
<P>
where
<DL COMPACT>
<DT><CODE>infile</CODE>
<DD>
is the full name of the input file, which is an Ada source
file containing preprocessor directives.
<DT><CODE>outfile</CODE>
<DD>
is the full name of the output file, which is an Ada source
in standard Ada form. When used with GNAT, this file name will
normally have an ads or adb suffix.
<DT><CODE>deffile</CODE>
<DD>
is the full name of a text file containing definitions of
symbols to be referenced by the preprocessor. This argument is
optional, and can be replaced by the use of the <CODE>-D</CODE> switch.
<DT><CODE>switches</CODE>
<DD>
is an optional sequence of switches as described in the next section.
</DL>
<H2><A NAME="SEC110" HREF="gnat_ug_toc.html#TOC110">Switches for <CODE>gnatprep</CODE></A></H2>
<DL COMPACT>
<DT><CODE>-b</CODE>
<DD>
Causes both preprocessor lines and the lines deleted by
preprocessing to be replaced by blank lines in the output source file,
preserving line numbers in the output file.
<DT><CODE>-c</CODE>
<DD>
Causes both preprocessor lines and the lines deleted
by preprocessing to be retained in the output source as comments marked
with the special string "--! ". This option will result in line numbers
being preserved in the output file.
<DT><CODE>-Dsymbol=value</CODE>
<DD>
Defines a new symbol, associated with value. If no value is given on the
command line, then symbol is considered to be <CODE>True</CODE>. This switch
can be used in place of a definition file.
<DT><CODE>-r</CODE>
<DD>
Causes a <CODE>Source_Reference</CODE> pragma to be generated that
references the original input file, so that error messages will use
the file name of this original file. The use of this switch implies
that preprocessor lines are not to be removed from the file, so its
use will force <CODE>-b</CODE> mode if
<CODE>-c</CODE>
has not been specified explicitly.
Note that if the file to be preprocessed contains multiple units, then
it will be necessary to <CODE>gnatchop</CODE> the output file from
<CODE>gnatprep</CODE>. If a <CODE>Source_Reference</CODE> pragma is present
in the preprocessed file, it will be respected by
<CODE>gnatchop -r</CODE>
so that the final chopped files will correctly refer to the original
input source file for <CODE>gnatprep</CODE>.
<DT><CODE>-s</CODE>
<DD>
Causes a sorted list of symbol names and values to be
listed on the standard output file.
<DT><CODE>-u</CODE>
<DD>
Causes undefined symbols to be treated as having the value FALSE in the context
of a preprocessor test. In the absence of this option, an undefined symbol in
a <CODE>#if</CODE> or <CODE>#elsif</CODE> test will be treated as an error.
</DL>
<P>
Note: if neither <CODE>-b</CODE> nor <CODE>-c</CODE> is present,
then preprocessor lines and
deleted lines are completely removed from the output, unless -r is
specified, in which case -b is assumed.
</P>
<H2><A NAME="SEC111" HREF="gnat_ug_toc.html#TOC111">Form of definitions file</A></H2>
<P>
The definitions file contains lines of the form
</P>
<PRE>
symbol := value
</PRE>
<P>
where symbol is an identifier, following normal Ada (case-insensitive)
rules for its syntax, and value is one of the following:
</P>
<UL>
<LI>
Empty, corresponding to a null substitution
<LI>
A string literal using normal Ada syntax
<LI>
Any sequence of characters from the set
(letters, digits, period, underline).
</UL>
<P>
Comment lines may also appear in the definitions file, starting with
the usual <CODE>--</CODE>,
and comments may be added to the definitions lines.
</P>
<H2><A NAME="SEC112" HREF="gnat_ug_toc.html#TOC112">Form of input text for <CODE>gnatprep</CODE></A></H2>
<P>
The input text may contain preprocessor conditional inclusion lines,
as well as general symbol substitution sequences.
The preprocessor conditional inclusion commands have the form
</P>
<PRE>
#if <I>expression</I> [then]
lines
#elsif <I>expression</I> [then]
lines
#elsif <I>expression</I> [then]
lines
...
#else
lines
#end if;
</PRE>
<P>
In this example, <I>expression</I> is defined by the following grammar:
<PRE>
<I>expression</I> ::= <symbol>
<I>expression</I> ::= <symbol> = "<value>"
<I>expression</I> ::= <symbol> = <symbol>
<I>expression</I> ::= <symbol> 'Defined
<I>expression</I> ::= not <I>expression</I>
<I>expression</I> ::= <I>expression</I> and <I>expression</I>
<I>expression</I> ::= <I>expression</I> or <I>expression</I>
<I>expression</I> ::= <I>expression</I> and then <I>expression</I>
<I>expression</I> ::= <I>expression</I> or else <I>expression</I>
<I>expression</I> ::= ( <I>expression</I> )
</PRE>
<P>
For the first test (<I>expression</I> ::= <symbol>) the symbol must have
either the value true or false, that is to say the right-hand of the
symbol definition must be one of the (case-insensitive) literals
<CODE>True</CODE> or <CODE>False</CODE>. If the value is true, then the
corresponding lines are included, and if the value is false, they are
excluded.
</P>
<P>
The test (<I>expression</I> ::= <symbol> <CODE>'Defined</CODE>) is true only if
the symbol has been defined in the definition file or by a <CODE>-D</CODE>
switch on the command line. Otherwise, the test is false.
</P>
<P>
The equality tests are case insensitive, as are all the preprocessor lines.
</P>
<P>
If the symbol referenced is not defined in the symbol definitions file,
then the effect depends on whether or not switch <CODE>-u</CODE>
is specified. If so, then the symbol is treated as if it had the value
false and the test fails. If this switch is not specified, then
it is an error to reference an undefined symbol. It is also an error to
reference a symbol that is defined with a value other than <CODE>True</CODE>
or <CODE>False</CODE>.
</P>
<P>
The use of the not operator inverts the sense of this logical test, so
that the lines are included only if the symbol is not defined.
The <CODE>then</CODE> keyword is optional as shown
</P>
<P>
The <CODE>#</CODE> must be in column one, but otherwise the format is free form.
Spaces or tabs may appear between the <CODE>#</CODE> and the keyword. The keywords
and the symbols are case insensitive as in normal Ada code. Comments
may be used on a preprocessor line, but other than that, no other
tokens may appear on a preprocessor line.
Any number of <CODE>elsif</CODE> clauses can be present, including none at all.
The <CODE>else</CODE> is optional, as in Ada.
</P>
<P>
The <CODE>#</CODE> marking the start of a preprocessor line must be the first
non-blank character on the line, i.e. it must be preceded only by
spaces or horizontal tabs.
</P>
<P>
Symbol substitution outside of preprocessor lines is obtained by using
the sequence
</P>
<PRE>
$symbol
</PRE>
<P>
anywhere within a source line, except in a comment. The identifier
following the <CODE>$</CODE> must match one of the symbols defined in the symbol
definition file, and the result is to substitute the value of the
symbol in place of <CODE>$symbol</CODE> in the output file.
</P>
<H1><A NAME="SEC113" HREF="gnat_ug_toc.html#TOC113">The GNAT library browser <CODE>gnatls</CODE></A></H1>
<P>
<A NAME="IDX283"></A>
<A NAME="IDX284"></A>
</P>
<P>
<CODE>gnatls</CODE> is a tool that outputs information about compiled
units. It gives the relationship between objects, unit names and source
files. It can also be used to check the source dependencies of a unit
as well as various characteristics.
</P>
<UL>
<LI><A HREF="gnat_ug.html#SEC114">Running gnatls</A>
<LI><A HREF="gnat_ug.html#SEC115">Switches for gnatls</A>
<LI><A HREF="gnat_ug.html#SEC116">Examples of gnatls Usage</A>
</UL>
<H2><A NAME="SEC114" HREF="gnat_ug_toc.html#TOC114">Running <CODE>gnatls</CODE></A></H2>
<P>
The <CODE>gnatls</CODE> command has the form
</P>
<PRE>
$ gnatls switches <VAR>object_or_ali_file</VAR>
</PRE>
<P>
The main argument is the list of object or <TT>`ali'</TT> files
(see section <A HREF="gnat_ug.html#SEC21">The Ada Library Information Files</A>)
for which information is requested.
</P>
<P>
In normal mode, without additional option, <CODE>gnatls</CODE> produces a
four-column listing. Each line represents information for a specific
object. The first column gives the full path of the object, the second
column gives the name of the principal unit in this object, the third
column gives the status of the source and the fourth column gives the
full path of the source representing this unit.
Here is a simple example of use:
</P>
<PRE>
$ gnatls *.o
./demo1.o demo1 DIF demo1.adb
./demo2.o demo2 OK demo2.adb
./hello.o h1 OK hello.adb
./instr-child.o instr.child MOK instr-child.adb
./instr.o instr OK instr.adb
./tef.o tef DIF tef.adb
./text_io_example.o text_io_example OK text_io_example.adb
./tgef.o tgef DIF tgef.adb
</PRE>
<P>
The first line can be interpreted as follows: the main unit which is
contained in
object file <TT>`demo1.o'</TT> is demo1, whose main source is in
<TT>`demo1.adb'</TT>. Furthermore, the version of the source used for the
compilation of demo1 has been modified (DIF). Each source file has a status
qualifier which can be:
</P>
<DL COMPACT>
<DT><CODE>OK (unchanged)</CODE>
<DD>
The version of the source file used for the compilation of the
specified unit corresponds exactly to the actual source file.
<DT><CODE>MOK (slightly modified)</CODE>
<DD>
The version of the source file used for the compilation of the
specified unit differs from the actual source file but not enough to
require recompilation. If you use gnatmake with the qualifier
<CODE>-m (minimal recompilation)</CODE>, a file marked
MOK will not be recompiled.
<DT><CODE>DIF (modified)</CODE>
<DD>
No version of the source found on the path corresponds to the source
used to build this object.
<DT><CODE>??? (file not found)</CODE>
<DD>
No source file was found for this unit.
<DT><CODE>HID (hidden, unchanged version not first on PATH)</CODE>
<DD>
The version of the source that corresponds exactly to the source used
for compilation has been found on the path but it is hidden by another
version of the same source that has been modified.
</DL>
<H2><A NAME="SEC115" HREF="gnat_ug_toc.html#TOC115">Switches for <CODE>gnatls</CODE></A></H2>
<P>
<CODE>gnatls</CODE> recognizes the following switches:
</P>
<DL COMPACT>
<DT><CODE>-a</CODE>
<DD>
<A NAME="IDX285"></A>
Consider all units, including those of the predefined Ada library.
Especially useful with <CODE>-d</CODE>.
<DT><CODE>-d</CODE>
<DD>
<A NAME="IDX286"></A>
List sources from which specified units depend on.
<DT><CODE>-h</CODE>
<DD>
<A NAME="IDX287"></A>
Output the list of options.
<DT><CODE>-o</CODE>
<DD>
<A NAME="IDX288"></A>
Only output information about object files.
<DT><CODE>-s</CODE>
<DD>
<A NAME="IDX289"></A>
Only output information about source files.
<DT><CODE>-u</CODE>
<DD>
<A NAME="IDX290"></A>
Only output information about compilation units.
<DT><CODE>-aO<VAR>dir</VAR></CODE>
<DD>
<DT><CODE>-aI<VAR>dir</VAR></CODE>
<DD>
<DT><CODE>-I<VAR>dir</VAR></CODE>
<DD>
<DT><CODE>-I-</CODE>
<DD>
<DT><CODE>-nostdinc</CODE>
<DD>
Source and Object path manipulation. Same meaning as the equivalent
$ gnatmake flags section <A HREF="gnat_ug.html#SEC69">Switches for <CODE>gnatmake</CODE></A>
<DT><CODE>-v</CODE>
<DD>
<A NAME="IDX291"></A>
Verbose mode. Output the complete source and object paths. Do not use
the default column layout but instead use long format giving as much as
information possible on each requested units, including special
characteristics such as:
<DL COMPACT>
<DT><CODE>Preelaborable</CODE>
<DD>
The unit is preelaborable in the Ada 95 sense.
<DT><CODE>No_Elab_Code</CODE>
<DD>
No elaboration code has been produced by the compiler for this unit.
<DT><CODE>Pure</CODE>
<DD>
The unit is pure in the Ada 95 sense.
<DT><CODE>Elaborate_Body</CODE>
<DD>
The unit contains a pragma Elaborate_Body.
<DT><CODE>Remote_Types</CODE>
<DD>
The unit contains a pragma Remote_Types.
<DT><CODE>Shared_Passive</CODE>
<DD>
The unit contains a pragma Shared_Passive.
<DT><CODE>Predefined</CODE>
<DD>
This unit is part of the predefined environment and cannot be modified
by the user.
<DT><CODE>Remote_Call_Interface</CODE>
<DD>
The unit contains a pragma Remote_Call_Interface.
</DL>
</DL>
<H2><A NAME="SEC116" HREF="gnat_ug_toc.html#TOC116">Example of <CODE>gnatls</CODE> Usage</A></H2>
<P>
Example of using the verbose switch. Note how the source and
object paths are affected by the -I switch.
</P>
<PRE>
$ gnatls -v -I.. demo1.o
GNATLS 3.10w (970212) Copyright 1999 Free Software Foundation, Inc.
Source Search Path:
<Current_Directory>
../
/home/comar/local/adainclude/
Object Search Path:
<Current_Directory>
../
/home/comar/local/lib/gcc-lib/mips-sni-sysv4/2.7.2/adalib/
./demo1.o
Unit =>
Name => demo1
Kind => subprogram body
Flags => No_Elab_Code
Source => demo1.adb modified
</PRE>
<P>
The following is an example of use of the dependency list.
Note the use of the -s switch
which gives a straight list of source files. This can be useful for
building specialized scripts.
</P>
<PRE>
$ gnatls -d demo2.o
./demo2.o demo2 OK demo2.adb
OK gen_list.ads
OK gen_list.adb
OK instr.ads
OK instr-child.ads
$ gnatls -d -s -a demo1.o
demo1.adb
/home/comar/local/adainclude/ada.ads
/home/comar/local/adainclude/a-finali.ads
/home/comar/local/adainclude/a-filico.ads
/home/comar/local/adainclude/a-stream.ads
/home/comar/local/adainclude/a-tags.ads
gen_list.ads
gen_list.adb
/home/comar/local/adainclude/gnat.ads
/home/comar/local/adainclude/g-io.ads
instr.ads
/home/comar/local/adainclude/system.ads
/home/comar/local/adainclude/s-exctab.ads
/home/comar/local/adainclude/s-finimp.ads
/home/comar/local/adainclude/s-finroo.ads
/home/comar/local/adainclude/s-secsta.ads
/home/comar/local/adainclude/s-stalib.ads
/home/comar/local/adainclude/s-stoele.ads
/home/comar/local/adainclude/s-stratt.ads
/home/comar/local/adainclude/s-tasoli.ads
/home/comar/local/adainclude/s-unstyp.ads
/home/comar/local/adainclude/unchconv.ads
</PRE>
<H1><A NAME="SEC117" HREF="gnat_ug_toc.html#TOC117">Rebuilding the GNAT Library</A></H1>
<P>
<A NAME="IDX292"></A>
</P>
<P>
It may be useful to recompile the GNAT library in various contexts, the
most important one being the use of partition wide configuration pragmas
such as Normalize_Scalar. A special Makefile called
<CODE>Makefile.adalib</CODE> is provided to that effect and can be found in
the directory containing the GNAT library. The location of this
directory depends on how the GNAT environment has been installed and can
be located with the command
</P>
<PRE>
$ gnatls -v
</PRE>
<P>
The last line of the Object Search Path usually contains the
gnat library. This Makefile contains its own documentation and in
particular the set of instructions needed to rebuild a new library and
to use it.
</P>
<H1><A NAME="SEC118" HREF="gnat_ug_toc.html#TOC118">Finding memory problems with <CODE>gnatmem</CODE></A></H1>
<P>
<A NAME="IDX293"></A>
</P>
<P>
<CODE>gnatmem</CODE>, is a tool that monitors dynamic allocation and
deallocation activity in a program, and displays information about
incorrect deallocations and possible sources of memory leaks. Gnatmem
provides three type of information:
<UL>
<LI>
General information concerning memory management, such as the total
number of allocations and deallocations, the amount of allocated
memory and the high water mark, i.e. the largest amount of allocated
memory in the course of program execution.
<LI>
Backtraces for all incorrect deallocations, that is to say deallocations
which do not correspond to a valid allocation.
<LI>
Information on each allocation that is potentially the origin of a memory
leak.
</UL>
<UL>
<LI><A HREF="gnat_ug.html#SEC119">Running gnatmem</A>
<LI><A HREF="gnat_ug.html#SEC120">Switches for gnatmem</A>
<LI><A HREF="gnat_ug.html#SEC121">Examples of gnatmem Usage</A>
<LI><A HREF="gnat_ug.html#SEC122">Implementation note</A>
</UL>
<H2><A NAME="SEC119" HREF="gnat_ug_toc.html#TOC119">Running <CODE>gnatmem</CODE></A></H2>
<P>
The <CODE>gnatmem</CODE> command has the form
</P>
<PRE>
$ gnatmem [n] [-o file] user_program [program_arg]*
or
$ gnatmem [n] -i file
</PRE>
<P>
Gnatmem must be supplied with the executable to examine, followed by its
run-time inputs. For example, if a program is executed with the command:
<PRE>
$ my_program arg1 arg2
</PRE>
<P>
then it can be run under <CODE>gnatmem</CODE> control using the command:
<PRE>
$ gnatmem my_program arg1 arg2
</PRE>
<P>
The program is transparently executed under the control of the debugger
section <A HREF="gnat_ug.html#SEC149">The GNAT Debugger GDB</A>. This does not affect the behavior
of the program, except for sensitive real-time programs. When the program
has completed execution, <CODE>gnatmem</CODE> outputs a report containing general
allocation/deallocation information and potential memory leak.
For better results, the user program should be compiled with
debugging options section <A HREF="gnat_ug.html#SEC35">Switches for <CODE>gcc</CODE></A>.
</P>
<P>
Here is a simple example of use:
</P>
<P>
*************** debut cc
<PRE>
$ gnatmem test_gm
Global information
------------------
Total number of allocations : 45
Total number of deallocations : 6
Final Water Mark (non freed mem) : 11.29 Kilobytes
High Water Mark : 11.40 Kilobytes
.
.
.
Allocation Root # 2
-------------------
Number of non freed allocations : 11
Final Water Mark (non freed mem) : 1.16 Kilobytes
High Water Mark : 1.27 Kilobytes
Backtrace :
test_gm.adb:23 test_gm.alloc
.
.
.
</PRE>
<P>
The first block of output give general information. In this case, the
Ada construct "new" was executed 45 times, and only 6 calls to an
unchecked deallocation routine occurred.
</P>
<P>
Subsequent paragraphs display information on all allocation roots.
An allocation
root is a specific point in the execution of the program that generates some
dynamic allocation, such as a "new" construct. This root is represented
by an execution backtrace (or subprogram call stack). By default the
backtrace depth for allocations roots is 1, so that a root corresponds
exactly to a source location. The backtrace can be made deeper, to make
the root more specific.
</P>
<H2><A NAME="SEC120" HREF="gnat_ug_toc.html#TOC120">Switches for <CODE>gnatmem</CODE></A></H2>
<P>
<CODE>gnatmem</CODE> recognizes the following switches:
</P>
<DL COMPACT>
<DT><CODE><CODE>-q</CODE></CODE>
<DD>
<A NAME="IDX294"></A>
Quiet. Gives the minimum output needed to identify the origin of the
memory leaks. Omit statistical information.
<DT><CODE><CODE>n</CODE></CODE>
<DD>
<A NAME="IDX295"></A>
N is an integer literal (usually between 1 and 10) which controls the
depth of the backtraces defining allocation root. The default value for
N is 1. The deeper the backtrace, the more precise the localization of
the root. Note that the total number of roots can depend on this
parameter.
<DT><CODE><CODE>-o file</CODE></CODE>
<DD>
<A NAME="IDX296"></A>
Direct the gdb output to the specified file. The gdb script used
to generate this output is also saved in the file <TT>`gnatmem.tmp'</TT>.
<DT><CODE><CODE>-i file</CODE></CODE>
<DD>
<A NAME="IDX297"></A>
Do the <CODE>gnatmem</CODE>
processing starting from <CODE>file</CODE> which has been generated
by a previous call to <CODE>gnatmem</CODE>
with the -o switch. This is useful for
post mortem processing.
</DL>
<H2><A NAME="SEC121" HREF="gnat_ug_toc.html#TOC121">Example of <CODE>gnatmem</CODE> Usage</A></H2>
<P>
The first example shows the use of <CODE>gnatmem</CODE>
on a simple leaking program.
Suppose that we have the following Ada program:
</P>
<PRE>
<B>with</B> Unchecked_Deallocation;
<B>procedure</B> Test_Gm <B>is</B>
<B>type</B> T <B>is array</B> (1..1000) <B>of</B> Integer;
<B>type</B> Ptr <B>is access</B> T;
<B>procedure</B> Free <B>is new</B> Unchecked_Deallocation (T, Ptr);
A : Ptr;
<B>procedure</B> My_Alloc <B>is</B>
<B>begin</B>
A := <B>new</B> T;
<B>end</B> My_Alloc;
<B>procedure</B> My_DeAlloc <B>is</B>
B : Ptr := A;
<B>begin</B>
Free (B);
<B>end</B> My_DeAlloc;
<B>begin</B>
My_Alloc;
<B>for</B> I <B>in</B> 1 .. 5 <B>loop</B>
<B>for</B> J <B>in</B> I .. 5 <B>loop</B>
My_Alloc;
<B>end loop</B>;
My_Dealloc;
<B>end loop</B>;
<B>end</B>;
</PRE>
<P>
The program needs to be compiled with debugging option:
</P>
<PRE>
$ gnatmake -g test_gm
</PRE>
<P>
<CODE>gnatmem</CODE> is invoked simply with
<PRE>
$ gnatmem test_gm
</PRE>
<P>
which produces the following output:
</P>
<PRE>
Global information
------------------
Total number of allocations : 18
Total number of deallocations : 5
Final Water Mark (non freed mem) : 53.00 Kilobytes
High Water Mark : 56.90 Kilobytes
Allocation Root # 1
-------------------
Number of non freed allocations : 11
Final Water Mark (non freed mem) : 42.97 Kilobytes
High Water Mark : 46.88 Kilobytes
Backtrace :
test_gm.adb:11 test_gm.my_alloc
Allocation Root # 2
-------------------
Number of non freed allocations : 1
Final Water Mark (non freed mem) : 10.02 Kilobytes
High Water Mark : 10.02 Kilobytes
Backtrace :
s-secsta.adb:81 system.secondary_stack.ss_init
Allocation Root # 3
-------------------
Number of non freed allocations : 1
Final Water Mark (non freed mem) : 12 Bytes
High Water Mark : 12 Bytes
Backtrace :
s-secsta.adb:181 system.secondary_stack.ss_init
</PRE>
<P>
Note that the GNAT run time contains itself a certain number of
allocations that have no corresponding deallocation,
as shown here for root #2 and root
#1. This is a normal behavior when the number of non freed allocations
is one, it locates dynamic data structures that the run time needs for
the complete lifetime of the program. Note also that there is only one
allocation root in the user program with a single line back trace:
test_gm.adb:11 test_gm.my_alloc, whereas a careful analysis of the
program shows that 'My_Alloc' is called at 2 different points in the
source (line 21 and line 24). If those two allocation roots need to be
distinguished, the backtrace depth parameter can be used:
</P>
<PRE>
$ gnatmem 3 test_gm
</PRE>
<P>
which will give the following output:
</P>
<PRE>
Global information
------------------
Total number of allocations : 18
Total number of deallocations : 5
Final Water Mark (non freed mem) : 53.00 Kilobytes
High Water Mark : 56.90 Kilobytes
Allocation Root # 1
-------------------
Number of non freed allocations : 10
Final Water Mark (non freed mem) : 39.06 Kilobytes
High Water Mark : 42.97 Kilobytes
Backtrace :
test_gm.adb:11 test_gm.my_alloc
test_gm.adb:24 test_gm
b_test_gm.c:52 main
Allocation Root # 2
-------------------
Number of non freed allocations : 1
Final Water Mark (non freed mem) : 10.02 Kilobytes
High Water Mark : 10.02 Kilobytes
Backtrace :
s-secsta.adb:81 system.secondary_stack.ss_init
s-secsta.adb:283 <system__secondary_stack___elabb>
b_test_gm.c:33 adainit
Allocation Root # 3
-------------------
Number of non freed allocations : 1
Final Water Mark (non freed mem) : 3.91 Kilobytes
High Water Mark : 3.91 Kilobytes
Backtrace :
test_gm.adb:11 test_gm.my_alloc
test_gm.adb:21 test_gm
b_test_gm.c:52 main
Allocation Root # 4
-------------------
Number of non freed allocations : 1
Final Water Mark (non freed mem) : 12 Bytes
High Water Mark : 12 Bytes
Backtrace :
s-secsta.adb:181 system.secondary_stack.ss_init
s-secsta.adb:283 <system__secondary_stack___elabb>
b_test_gm.c:33 adainit
</PRE>
<P>
The allocation root #1 of the first example has been split in 2 roots #1
and #3 thanks to the more precise associated backtrace.
</P>
<H2><A NAME="SEC122" HREF="gnat_ug_toc.html#TOC122">Implementation note</A></H2>
<P>
<CODE>gnatmem</CODE> executes the user program under the control of <CODE>gdb</CODE> using
a script that sets breakpoints and gathers information on each dynamic
allocation and deallocation. The output of the script is then analyzed
by <CODE>gnatmem</CODE>
in order to locate memory leaks and their origin in the
program. Gnatmem works by recording each address returned by the
allocation procedure (<CODE>__gnat_malloc</CODE>)
along with the backtrace at the
allocation point. On each deallocation, the deallocated address is
matched with the corresponding allocation. At the end of the processing,
the unmatched allocations are considered potential leaks. All the
allocations associated with the same backtrace are grouped together and
form an allocation root. The allocation roots are then sorted so that
those with the biggest number of unmatched allocation are printed
first. A delicate aspect of this technique is to distinguish between the
data produced by the user program and the data produced by the gdb
script. Currently, on systems that allow probing the terminal, the gdb
command "tty" is used to force the program output to be redirected to the
current terminal while the gdb output is directed to a file or to a
pipe in order to be processed subsequently by <CODE>gnatmem</CODE>.
</P>
<H1><A NAME="SEC123" HREF="gnat_ug_toc.html#TOC123">ASIS-Based Tools</A></H1>
<P>
Some of the tools distributed with GNAT are based on the ASIS implementation
for GNAT (ASIS-for-GNAT). Binary executables for such tools do not require
ASIS-for-GNAT to be around and they have a command-line interface similar to
other GNAT tools. The main specific feature of ASIS-based tools is that they
process tree output files.
</P>
<UL>
<LI><A HREF="gnat_ug.html#SEC124">The ASIS Implementation for GNAT (ASIS-for-GNAT)</A>
<LI><A HREF="gnat_ug.html#SEC125">Tree Files</A>
</UL>
<H2><A NAME="SEC124" HREF="gnat_ug_toc.html#TOC124">The ASIS Implementation for GNAT (ASIS-for-GNAT)</A></H2>
<P>
<A NAME="IDX298"></A>
<A NAME="IDX299"></A>
</P>
<P>
The ASIS implementation for GNAT, called ASIS-for-GNAT, is the implementation
if the Ada Semantic Interface Specification (ASIS). It is a separate product
which is not included in the standard GNAT distribution. However, the
binary executables for tools created on top of ASIS-for-GNAT do not require
ASIS-for-GNAT installed on your system and they can be used for a standard
GNAT distribution along with other GNAT tools
</P>
<H2><A NAME="SEC125" HREF="gnat_ug_toc.html#TOC125">Tree Files</A></H2>
<P>
<A NAME="IDX300"></A>
<A NAME="IDX301"></A>
</P>
<P>
The ASIS implementation for GNAT is based on tree output files (or, simply,
tree files). A tree file stores a snapshot of the compiler internal data
structures in the very end of a successful compilation. It contains all the
syntactical and semantic information about the unit being compiled and all the
units upon which it depends semantically. ASIS-for-GNAT (and, therefore, any
tool based on its top) processes tree files, extracts this information from it
and converts it into the format prescribing by the ASIS definition.
</P>
<P>
To use some ASIS-based tools, a user should take care of producing the right
set of tree files for the tool, some other ASIS tools produce a needed set of
tree files themselves.
</P>
<P>
GNAT produces a tree file if -gnatt option is set when calling gcc. ASIS needs
tree files created in "compile-only" GNAT mode set by -gnatc gcc switch. Names
of the tree files are obtained by replacing 'd' with 't' in the extension of
the name of the source file being compiled.
</P>
<P>
Therefore, to produce a tree file for the body of a procedure Foo contained in
the source file named 'foo.adb', you can compile it using
</P>
<PRE>
$ gcc -c -gnatc -gnatt foo.adb
</PRE>
<P>
and you will get the tree file named 'foo.atb' as a result of this
compilation.
</P>
<H1><A NAME="SEC126" HREF="gnat_ug_toc.html#TOC126">Creating Sample Bodies Using <CODE>gnatstub</CODE></A></H1>
<P>
<A NAME="IDX302"></A>
</P>
<P>
<CODE>gnatstub</CODE> creates body samples - that is, empty but compilable bodies for
library unit declarations.
</P>
<P>
<CODE>gnatstub</CODE> is an ASIS-based tool, but it creates a needed tree
file itself, so it can be considered as a usual command-line utility
program when using with GNAT.
</P>
<P>
To create a body sampler, <CODE>gnatstub</CODE> has to compile the library
unit declaration. Therefore, bodies can be created only for legal
library units. Moreover, if a library unit depends semantically upon
units located not only in the current directory, you have to provide
a source search path when calling gnatstub, see the description of
gnatstub switches below.
</P>
<UL>
<LI><A HREF="gnat_ug.html#SEC127">Running gnatstub</A>
<LI><A HREF="gnat_ug.html#SEC128">Switches for gnatstub</A>
</UL>
<H2><A NAME="SEC127" HREF="gnat_ug_toc.html#TOC127">Running <CODE>gnatstub</CODE></A></H2>
<P>
<CODE>gnatstub</CODE> has the command-line interface of the form
</P>
<PRE>
$ gnatstub [switches] filename [directory]
</PRE>
<P>
where
<DL COMPACT>
<DT><CODE>filename</CODE>
<DD>
is the name of a source file containing a library unit declaration to
create a body for. This name should follow the GNAT file name
conventions. No crunching is allowed for this file name. The file
name may contain the path information.
<DT><CODE>directory</CODE>
<DD>
indicates the directory to place a sample body (default is the
current directory)
<DT><CODE>switches</CODE>
<DD>
is an optional sequence of switches as described in the next section
</DL>
<H2><A NAME="SEC128" HREF="gnat_ug_toc.html#TOC128">Switches for <CODE>gnatstub</CODE></A></H2>
<DL COMPACT>
<DT><CODE>-f</CODE>
<DD>
Replace an existing body file (if any) with a body sample. If the
destination directory already contains a file which name has a form
of the body file for the argument spec file, gnatstub replaces it
with the body sample if <CODE>-f</CODE> switch is set or leaves it intact
otherwise.
<DT><CODE>-hs</CODE>
<DD>
Put in body sample the comment header from the source of the library unit
declaration ("comment header" is all the comments preceding the compilation
unit).
<DT><CODE>-hg</CODE>
<DD>
Put in body sample a sample comment header
<DT><CODE>-IDIR</CODE>
<DD>
<DT><CODE>-I-</CODE>
<DD>
These switches have just the same meaning as in calls to gcc or
gnatmake. They are used to define the source search path in the call
to gcc issued by gnatstub to compile an argument source file to
create a tree file.
<DT><CODE>-i<VAR>n</VAR></CODE>
<DD>
(<VAR>n</VAR> is a decimal natural number). Sets the indentation level in the
generated body sample to n, '-i0' means "no indentation",
the default indentation is 3.
<DT><CODE>-k</CODE>
<DD>
Do not remove the tree file: as default, after creating the body
sampler gnatstub removes from the current directory the tree file
created for the argument source file. <CODE>-k</CODE> prevents deleting the
tree file.
<DT><CODE>-l<VAR>n</VAR></CODE>
<DD>
(<VAR>n</VAR> is a decimal positive number) Sets maximum line length in a
body sample to n, the default line length is 78.
<DT><CODE>-q</CODE>
<DD>
Quiet mode: gnatstub does not generate a confirmation when a body is
successfully created or a message when a body is not required for an
argument unit.
<DT><CODE>-r</CODE>
<DD>
Reuse the tree file (if any) instead of creating it: instead of
creating the tree file for the library unit declaration, gnatstub
tries to find it in the current directory and to use it for creating
a body. If the tree file is not found, no body is created. <CODE>-r</CODE>
also implies <CODE>-k</CODE>, whether or not
<CODE>-k</CODE> is set explicitly.
<DT><CODE>-t</CODE>
<DD>
Overwrite the existing tree file: if the current directory already
contains the file which, according to the GNAT file name rules should
be considered as a tree file for the argument source file, gnatstub
will refuse to create the tree file needed to create a body sampler,
unless <CODE>-t</CODE> option is set
<DT><CODE>-v</CODE>
<DD>
Verbose mode: gnatstub generates version information.
</DL>
<H1><A NAME="SEC129" HREF="gnat_ug_toc.html#TOC129">Minimizing Executables for Ada Programs Using <CODE>gnatelim</CODE></A></H1>
<P>
<A NAME="IDX303"></A>
</P>
<UL>
<LI><A HREF="gnat_ug.html#SEC130">About gnatelim</A>
<LI><A HREF="gnat_ug.html#SEC131">Eliminate pragma</A>
<LI><A HREF="gnat_ug.html#SEC132">Preparing Tree and Bind Files for gnatelim</A>
<LI><A HREF="gnat_ug.html#SEC133">Running gnatelim</A>
<LI><A HREF="gnat_ug.html#SEC134">Correcting the List of Eliminate Pragmas</A>
<LI><A HREF="gnat_ug.html#SEC135">Making your Executables smaller</A>
<LI><A HREF="gnat_ug.html#SEC136">Summary of the gnatelim Usage Cycle</A>
</UL>
<H2><A NAME="SEC130" HREF="gnat_ug_toc.html#TOC130">About <CODE>gnatelim</CODE></A></H2>
<P>
When a program shares a set of Ada
packages with other programs, it may happen that this program uses
only a fraction of the subprograms defined in these packages. The code
created for those unused subprograms increases the size of the executable.
</P>
<P>
<CODE>gnatelim</CODE> is a utility tracking unused subprograms in an Ada
program. Its output consists of a list of <CODE>Eliminate</CODE> pragmas
marking all the subprograms that are declared, but never called in a
given program. <CODE>Eliminate</CODE> is a GNAT-specific pragma, it is
described in the next section. By placing the list of
<CODE>Eliminate</CODE> pragmas in the GNAT configuration file
<TT>`gnat.adc'</TT> and recompiling your program, you may decrease the
size of its executable, because the compiler will not generate code
for those unused subprograms.
</P>
<P>
<CODE>gnatelim</CODE> is an ASIS-based tool, and it needs as its input data
a set of tree files representing all the components of a program to
process. It also needs a bind file for a main subprogram. (See
section <A HREF="gnat_ug.html#SEC132">Preparing Tree and Bind Files for <CODE>gnatelim</CODE></A> for full details)
</P>
<H2><A NAME="SEC131" HREF="gnat_ug_toc.html#TOC131"><CODE>Eliminate</CODE> pragma</A></H2>
<P>
<A NAME="IDX304"></A>
</P>
<P>
The syntax of Eliminate pragma is
</P>
<PRE>
<B>pragma</B> Eliminate (Library_Unit_Name, Subprogram_Name);
</PRE>
<DL COMPACT>
<DT><CODE>Library_Unit_Name</CODE>
<DD>
full expanded Ada name of a library unit
<DT><CODE>Subprogram_Name</CODE>
<DD>
a simple or expanded name of a subprogram declared within this
compilation unit
</DL>
<P>
The effect of an Eliminate pragma placed in the GNAT configuration
file <TT>`gnat.adc'</TT> is:
</P>
<UL>
<LI>
If the subprogram denoted by <CODE>Subprogram_Name</CODE> is declared within
the library unit having <CODE>Library_Unit_Name</CODE> as its defining program
unit name, then the compiler will not generate code for this subprogram.
It applies to all overloaded subprograms denoted by
<CODE>Subprogram_Name</CODE>.
<LI>
If a subprogram mentioned in some <CODE>Eliminate</CODE> pragma as unused is
actually used (called) in a program, then the compiler will produce a
diagnosis in place where it is called.
</UL>
<H2><A NAME="SEC132" HREF="gnat_ug_toc.html#TOC132">Preparing Tree and Bind Files for <CODE>gnatelim</CODE></A></H2>
<P>
<CODE>gnatelim</CODE> can process only full Ada programs (partitions) and
it needs a set of tree files representing the whole program
(partition) to be presented in the current directory. It also needs a
bind file for the main subprogram of the program (partition) to be
presented in the current directory.
</P>
<P>
Let <CODE>Main_Prog</CODE> be the name of a main subprogram, and suppose
this subprogram is in a file named <TT>`main_prog.ads'</TT> or
<TT>`main_prog.adb'</TT>.
</P>
<P>
To create a minimal set of tree files covering the whole program, call
<CODE>gnatmake</CODE> for this program as follows:
</P>
<PRE>
$ gnatmake -c -f -gnatc -gnatt Main_Prog
</PRE>
<P>
The <CODE>-c gnatmake</CODE> option turns off the bind and link phases,
which are impossible anyway, because sources are compiled with
<CODE>-gnatc</CODE> option, which turns off code generation.
</P>
<P>
the <CODE>-f</CODE> gnatmake option is used to force
recompilation of all the needed sources.
</P>
<P>
To create a bind file for <CODE>gnatelim</CODE>, run <CODE>gnatbind</CODE> for
the main subprogram. <CODE>gnatelim</CODE> can work with either an Ada or a C
bind file, if both are present, it works with the Ada bind file.
To avoid problems with creating a consistent data for
<CODE>gnatelim</CODE>, it is advised to use the following procedure. It creates all
the data needed by <CODE>gnatelim</CODE> from scratch and therefore
guarantees their consistency:
</P>
<OL>
<LI>
creating a bind file:
<PRE>
$ gnatmake -c Main_Prog
$ gnatbind main_prog
</PRE>
<LI>
creating a set of tree files:
<PRE>
$ gnatmake -f -c -gnatc -gnatt Main_Prog
</PRE>
</OL>
<P>
Note, that <CODE>gnatelim</CODE> needs neither object nor ALI files, so they
can be deleted at this stage.
</P>
<H2><A NAME="SEC133" HREF="gnat_ug_toc.html#TOC133">Running <CODE>gnatelim</CODE></A></H2>
<P>
gnatelim has the following command-line interface:
</P>
<PRE>
$ gnatelim [options] name
</PRE>
<P>
<CODE>name</CODE> should be a full expanded Ada name of a main subprogram
of a program (partition).
</P>
<P>
gnatelim options:
</P>
<DL COMPACT>
<DT><CODE>-v</CODE>
<DD>
Verbose mode: gnatelim version information is printed (in the form of Ada
comments) to the standard output file. Various debugging information and
information reflecting some details of the analysis doing by gnatelim are
output to the standard error file.
<DT><CODE>-a</CODE>
<DD>
Will also indicate subprograms from the GNAT runtime that could be
eliminated.
<DT><CODE>-m</CODE>
<DD>
Will check if tree files are missing for an accurate result.
</DL>
<P>
<CODE>gnatelim</CODE> directs its output to the standard output,
so to produce a proper GNAT configuration file
<TT>`gnat.adc'</TT>, redirection can be used:
</P>
<PRE>
$ gnatelim Main_Prog > gnat.adc
</PRE>
<P>
or
</P>
<PRE>
$ gnatelim Main_Prog >> gnat.adc
</PRE>
<P>
In order to append the gnatelim output to the existing contents of
<TT>`gnat.adc'</TT>.
</P>
<H2><A NAME="SEC134" HREF="gnat_ug_toc.html#TOC134">Correcting the List of Eliminate Pragmas</A></H2>
<P>
It may happen that <CODE>gnatelim</CODE> try to eliminate subprograms which
cannot really be eliminated because they are actually called in the
program although this only happens in very rare cases. In this case, the
compiler will generate an error message of the form:
</P>
<PRE>
file.adb:106:07: cannot call eliminated subprogram "My_Prog"
</PRE>
<P>
You have to correct the <TT>`gnat.adc'</TT> file manually by suppressing
the faulty Eliminate pragmas. It is advised to recompile your program
from scratch after that, because you need a consistent
<TT>`gnat.adc'</TT> file during the complete compilation in order to get
an meaningful result.
</P>
<H2><A NAME="SEC135" HREF="gnat_ug_toc.html#TOC135">Making your Executables smaller</A></H2>
<P>
To get a smaller executable for your program, you have to recompile
the program completely, having the <TT>`gnat.adc'</TT> file with a set of
<CODE>Eliminate</CODE> pragmas created by <CODE>gnatelim</CODE> in your current
directory:
</P>
<PRE>
$ gnatmake -f Main_Prog
</PRE>
<P>
(you will need <CODE>-f</CODE> option for gnatmake to
recompile everything
with the set of pragmas <CODE>Eliminate</CODE> you have got from
<CODE>gnatelim</CODE>).
</P>
<P>
Be aware that a set of <CODE>Eliminate</CODE> pragmas is specific to each
program. Therefore, it is not advised to merge sets of <CODE>Eliminate</CODE>
pragmas created for different programs in one <TT>`gnat.adc'</TT> file.
</P>
<H2><A NAME="SEC136" HREF="gnat_ug_toc.html#TOC136">Summary of the gnatelim Usage Cycle</A></H2>
<P>
Here is a summary of the steps to be taken in order to reduce the size of
your executables with <CODE>gnatelim</CODE>. You may use
other GNAT options to control the optimization level,
to produce the debugging information, to set search path, etc.
</P>
<OL>
<LI>
Produce a bind file and a set of tree files
<PRE>
$ gnatmake -c Main_Prog
$ gnatbind main_prog
$ gnatmake -f -c -gnatc -gnatt Main_Prog
</PRE>
<LI>
Generate a list of <CODE>Eliminate</CODE> pragmas
<PRE>
$ gnatelim Main_Prog >[>] gnat.adc
</PRE>
<LI>
Recompile the application
<PRE>
$ gnatmake -f Main_Prog
</PRE>
</OL>
<H1><A NAME="SEC137" HREF="gnat_ug_toc.html#TOC137">Other Utility Programs</A></H1>
<P>
This chapter discusses some other utility programs available in the Ada
environment.
</P>
<UL>
<LI><A HREF="gnat_ug.html#SEC138">Using Other Utility Programs With GNAT</A>
<LI><A HREF="gnat_ug.html#SEC139">The gnatpsys Utility Program</A>
<LI><A HREF="gnat_ug.html#SEC140">The gnatpsta Utility Program</A>
<LI><A HREF="gnat_ug.html#SEC141">The External Symbol Naming Scheme of GNAT</A>
<LI><A HREF="gnat_ug.html#SEC142">Ada Mode for emacs</A>
<LI><A HREF="gnat_ug.html#SEC146">Converting Ada files to html using gnathtml</A>
<LI><A HREF="gnat_ug.html#SEC147">Installing gnathtml</A>
</UL>
<H2><A NAME="SEC138" HREF="gnat_ug_toc.html#TOC138">Using Other Utility Programs With GNAT</A></H2>
<P>
The object files generated by GNAT are in standard system format and in
particular the debugging information uses this format. This means
programs generated by GNAT can be used with existing utilities that
depend on these formats.
</P>
<P>
In general, any utility program that works with C will also often work with
Ada programs generated by GNAT. This includes software utilities such as
gprof (a profiling program), gdb (the FSF debugger), and utilities such
as Purify.
</P>
<H2><A NAME="SEC139" HREF="gnat_ug_toc.html#TOC139">The <CODE>gnatpsys</CODE> Utility Program</A></H2>
<P>
Many of the definitions in package System are implementation-dependent.
Furthermore, although the source of the package System is available
for inspection, it uses special attributes for parameterizing many of
the critical values, so the source is not informative for the casual user.
</P>
<P>
The <CODE>gnatpsys</CODE> utility is designed to deal with this situation.
It is an Ada program that dynamically determines the
values of all the relevant parameters in System, and prints them
out in the form of an Ada source listing for System, displaying all
the values of interest. This output is generated to
<TT>`stdout'</TT>.
</P>
<P>
To determine the value of any parameter in package System, simply
run <CODE>gnatpsys</CODE> with no qualifiers or arguments, and examine
the output. This is preferable to consulting documentation, because
you know that the values you are getting are the actual ones provided
by the executing system.
</P>
<H2><A NAME="SEC140" HREF="gnat_ug_toc.html#TOC140">The <CODE>gnatpsta</CODE> Utility Program</A></H2>
<P>
Many of the definitions in package Standard are implementation-dependent.
However, the source of this package does not exist as an Ada source
file, so these values cannot be determined by inspecting the source.
They can be determined by examining in detail the coding of
<TT>`cstand.adb'</TT> which creates the image of Standard in the compiler,
but this is awkward and requires a great deal of internal knowledge
about the system.
</P>
<P>
The <CODE>gnatpsta</CODE> utility is designed to deal with this situation.
It is an Ada program that dynamically determines the
values of all the relevant parameters in Standard, and prints them
out in the form of an Ada source listing for Standard, displaying all
the values of interest. This output is generated to
<TT>`stdout'</TT>.
</P>
<P>
To determine the value of any parameter in package Standard, simply
run <CODE>gnatpsta</CODE> with no qualifiers or arguments, and examine
the output. This is preferable to consulting documentation, because
you know that the values you are getting are the actual ones provided
by the executing system.
</P>
<H2><A NAME="SEC141" HREF="gnat_ug_toc.html#TOC141">The External Symbol Naming Scheme of GNAT</A></H2>
<P>
In order to interpret the output from GNAT, when using tools that are
originally intended for use with other languages, it is useful to
understand the conventions used to generate link names from the Ada
entity names.
</P>
<P>
All link names are in all lowercase letters. With the exception of library
procedure names, the mechanism used is simply to use the full expanded
Ada name with dots replaced by double underscores. For example, suppose
we have the following package spec:
</P>
<PRE>
<B>package</B> QRS <B>is</B>
MN : Integer;
<B>end</B> QRS;
</PRE>
<P>
The variable <CODE>MN</CODE> has a full expanded Ada name of <CODE>QRS.MN</CODE>, so
the corresponding link name is <CODE>qrs__mn</CODE>.
<A NAME="IDX305"></A>
Of course if a <CODE>pragma Export</CODE> is used this may be overridden:
</P>
<PRE>
<B>package</B> Exports <B>is</B>
Var1 : Integer;
<B>pragma</B> Export (Var1, C, External_Name => "var1_name");
Var2 : Integer;
<B>pragma</B> Export (Var2, C, Link_Name => "var2_link_name");
<B>end</B> Exports;
</PRE>
<P>
In this case, the link name for <VAR>Var1</VAR> is <VAR>var1_name</VAR>, and the
link name for <VAR>Var2</VAR> is <VAR>var2_link_name</VAR>.
</P>
<P>
<A NAME="IDX306"></A>
One exception occurs for library level procedures. A potential ambiguity
arises between the required name <CODE>_main</CODE> for the C main program,
and the name we would otherwise assign to an Ada library level procedure
called <CODE>Main</CODE> (which might well not be the main program).
</P>
<P>
To avoid this ambiguity, we attach the prefix <CODE>_ada_</CODE> to such
names. So if we have a library level procedure such as
</P>
<PRE>
<B>procedure</B> Hello (S : String);
</PRE>
<P>
the external name of this procedure will be <VAR>_ada_hello</VAR>.
</P>
<H2><A NAME="SEC142" HREF="gnat_ug_toc.html#TOC142">Ada Mode for <CODE>emacs</CODE></A></H2>
<P>
The Emacs mode for programming in Ada (both, Ada83 and Ada95) helps the
user in understanding existing code and facilitates writing new code. It
furthermore provides some utility functions for easier integration of
standard Emacs features when programming in Ada.
</P>
<H2><A NAME="SEC143" HREF="gnat_ug_toc.html#TOC143">General features:</A></H2>
<UL>
<LI>
Full Integrated Development Environment :
@itemize @bullet
@item
support of 'project files' for the configuration (directories,
compilation options,...)
@item
compiling and stepping through error messages.
@item
running and debugging your applications within Emacs.
@end itemize
<LI>
easy to use for beginners by pull-down menus,
<LI>
user configurable by many user-option variables.
</UL>
<H2><A NAME="SEC144" HREF="gnat_ug_toc.html#TOC144">Ada mode features that help understanding code:</A></H2>
<UL>
<LI>
functions for easy and quick stepping through Ada code,
<LI>
getting cross reference information for identifiers (e.g. find the
defining place by a keystroke),
<LI>
displaying an index menu of types and subprograms and move point to
the chosen one,
<LI>
automatic color highlighting of the various entities in Ada code.
</UL>
<H2><A NAME="SEC145" HREF="gnat_ug_toc.html#TOC145">Emacs support for writing Ada code:</A></H2>
<UL>
<LI>
switching between spec and body files with possible
autogeneration of body files,
<LI>
automatic formating of subprograms parameter lists.
<LI>
automatic smart indentation according to Ada syntax,
<LI>
automatic completion of identifiers,
<LI>
automatic casing of identifiers, keywords, and attributes,
<LI>
insertion of statement templates,
<LI>
filling comment paragraphs like filling normal text,
</UL>
<P>
For more information, please see See section <A HREF="gnat_ug.html#SEC142">Ada Mode for <CODE>emacs</CODE></A>.
</P>
<H2><A NAME="SEC146" HREF="gnat_ug_toc.html#TOC146">Converting Ada files to html using gnathtml</A></H2>
<P>
This <CODE>Perl</CODE> script allows Ada source files to be browsed using
standard Web browsers. For installation procedure, see the section
See section <A HREF="gnat_ug.html#SEC147">Installing gnathtml</A>.
</P>
<P>
Ada reserved keywords are highlighted in a bold font and Ada comments in
a blue font. Unless your program was compiled with the gcc <CODE>-gnatx</CODE>
switch to suppress the generation of cross-referencing information, user
defined variables and types will appear in a different color; you will
be able to click on any identifier and go to its declaration.
</P>
<P>
The command line is as follow:
<PRE>
$ perl gnathtml.pl [switches] ada-files
</PRE>
<P>
You can pass it as many Ada files as you want. <CODE>gnathtml</CODE> will generate
an html file for every ada file, and a global file called <TT>`index.htm'</TT>.
This file is an index of every identifier defined in the files.
</P>
<P>
The available switches are the following ones :
</P>
<DL COMPACT>
<DT><CODE>-83</CODE>
<DD>
<A NAME="IDX307"></A>
Only the subset on the Ada 83 keywords will be highlighted, not the full
Ada 95 keywords set.
<DT><CODE>-cc <VAR>color</VAR></CODE>
<DD>
This options allows you to change the color used for comments. The default
value is green. The color argument can be any name accepted by html.
<DT><CODE>-d</CODE>
<DD>
<A NAME="IDX308"></A>
If the ada files depend on some other files (using for instance the
<CODE>with</CODE> command, the latter will also be converted to html.
Only the files in the user project will be converted to html, not the files
in the runtime library itself.
<DT><CODE>-D</CODE>
<DD>
This command is the same as -d above, but <CODE>gnathtml</CODE> will also look
for files in the runtime library, and generate html files for them.
<DT><CODE>-f</CODE>
<DD>
<A NAME="IDX309"></A>
By default, gnathtml will generate html links only for global entities
('with'ed units, global variables and types,...). If you specify the
<CODE>-f</CODE> on the command line, then links will be generated for local
entities too.
<DT><CODE>-l <VAR>number</VAR></CODE>
<DD>
<A NAME="IDX310"></A>
If this switch is provided and <VAR>number</VAR> is not 0, then <CODE>gnathtml</CODE>
will number the html files every <VAR>number</VAR> line.
<DT><CODE>-I <VAR>dir</VAR></CODE>
<DD>
<A NAME="IDX311"></A>
Specify a directory to search for library files (<TT>`.ali'</TT> files) and
source files. You can provide several -I switches on the command line,
and the directories will be parsed in the order of the command line.
<DT><CODE>-o <VAR>dir</VAR></CODE>
<DD>
<A NAME="IDX312"></A>
Specify the output directory for html files. By default, gnathtml will
saved the generated html files in a subdirectory named <TT>`html/'</TT>.
<DT><CODE>-p <VAR>file</VAR></CODE>
<DD>
<A NAME="IDX313"></A>
If you are using Emacs and the most recent Emacs Ada mode, which provides
a full Integrated Development Environment for compiling, checking,
running and debugging applications, you may be using <TT>`.adp'</TT> files
to give the directories where Emacs can find sources and object files.
Using this switch, you can tell gnathtml to use these files. This allows
you to get an html version of your application, even if it is spread
over multiple directories.
<DT><CODE>-sc <VAR>color</VAR></CODE>
<DD>
This options allows you to change the color used for symbol definitions.
The default value is red. The color argument can be any name accepted by html.
</DL>
<H2><A NAME="SEC147" HREF="gnat_ug_toc.html#TOC147">Installing gnathtml</A></H2>
<P>
<CODE>Perl</CODE> needs to be installed on your machine to run this script.
<CODE>Perl</CODE> is freely available for almost every architecture and
Operating System via the Internet.
</P>
<P>
On Unix systems, you may want to modify the first line of the script
<CODE>gnathtml</CODE>, to explicitly tell the Operating system where Perl
is. The syntax of this line is :
<PRE>
#!full_path_name_to_perl
</PRE>
<P>
Alternatively, you may run the script using the following command line:
</P>
<PRE>
$ perl gnathtml.pl [switches] files
</PRE>
<H1><A NAME="SEC148" HREF="gnat_ug_toc.html#TOC148">Running and Debugging Ada Programs</A></H1>
<P>
<A NAME="IDX314"></A>
</P>
<P>
This chapter discusses how to debug Ada programs. An incorrect Ada program
may be handled in three ways by the GNAT compiler:
</P>
<OL>
<LI>
The illegality may be a violation of the static semantics of Ada. In
that case GNAT diagnoses the constructs in the program that are illegal.
It is then a straightforward matter for the user to modify those parts of
the program.
<LI>
The illegality may be a violation of the dynamic semantics of Ada. In
that case the program compiles and executes, but may generate incorrect
results, or may terminate abnormally with some exception.
<LI>
When presented with a program that contains convoluted errors, GNAT
itself may terminate abnormally without providing full diagnostics on
the incorrect user program.
</OL>
<UL>
<LI><A HREF="gnat_ug.html#SEC149">The GNAT Debugger GDB</A>
<LI><A HREF="gnat_ug.html#SEC150">Running GDB</A>
<LI><A HREF="gnat_ug.html#SEC151">Introduction to GDB Commands</A>
<LI><A HREF="gnat_ug.html#SEC152">Using Ada Expressions</A>
<LI><A HREF="gnat_ug.html#SEC153">Calling User-Defined Subprograms</A>
<LI><A HREF="gnat_ug.html#SEC154">Ada Exceptions</A>
<LI><A HREF="gnat_ug.html#SEC155">Ada Tasks</A>
<LI><A HREF="gnat_ug.html#SEC156">Debugging Generic Units</A>
<LI><A HREF="gnat_ug.html#SEC157">GNAT Abnormal Termination</A>
<LI><A HREF="gnat_ug.html#SEC158">Naming Conventions for GNAT Source Files</A>
<LI><A HREF="gnat_ug.html#SEC159">Getting Internal Debugging Information</A>
</UL>
<P>
<A NAME="IDX315"></A>
<A NAME="IDX316"></A>
</P>
<H2><A NAME="SEC149" HREF="gnat_ug_toc.html#TOC149">The GNAT Debugger GDB</A></H2>
<P>
GDB is a general purpose, platform-independent debugger that can be used to
debug mixed-language programs compiled with GCC, and in particular
is capable of debugging Ada programs compiled with GNAT. The latest
versions of GDB are Ada-aware and can handle complex Ada data structures.
The manual <CITE>Debugging with GDB</CITE>
contains full details on the usage of GDB, including a section on its usage
on programs. This manual should be consulted for full details. The section
that follows is a brief introduction to the philosophy and use of GDB.
</P>
<P>
When GNAT programs are compiled, the compiler optionally writes debugging
information into the generated object file, including information on
line numbers, and on declared types and variables. This information is
separate from the generated code. It makes the object files considerably
larger, but it does not add to the size of the actual executable that
will be loaded into memory, and has no impact on run-time performance. The
generation of debug information is triggered by the use of the
-g switch in the gcc or gnatmake command used to carry out
the compilations. It is important to emphasize that the use of these
options does not change the generated code.
</P>
<P>
The debugging information is written in standard system
formats that are used
by many tools, including debuggers and profilers. The format of the
information is typically designed to describe C types and semantics,
but GNAT implements a translation scheme which allows full details about
Ada types and variables to be encoded into these standard C
formats. Details of this encoding scheme may be found in the file
exp_dbug.ads in the GNAT source distribution. However, the
details of this encoding are, in general, of no interest to a user, since GDB
automatically performs the necessary decoding.
</P>
<P>
When a program is bound and linked, the debugging information is
collected from the object files, and stored in the executable image of
the program. Again, this process significantly increases the size
of the generated executable file,
but it does not increase the size of the
executable program itself. Furthermore, if this program
is run in the normal manner, it runs exactly as if the debug
information were not present, and takes no more actual memory.
</P>
<P>
However, if the program is run under control of GDB, the debugger is activated.
The image of the program is loaded, at which point it is ready to run.
If a run command is
given, then the program will run exactly as it would have if GDB
were not present. This is a crucial part of the GDB design philosophy.
GDB is entirely non-intrusive until a breakpoint is encountered.
If no breakpoint is ever hit, the program will run exactly as it
would if no debugger were present. When a breakpoint is hit,
GDB accesses the debugging information and can respond to user
commands to inspect variables, and more generally to report on the state of
execution.
</P>
<H2><A NAME="SEC150" HREF="gnat_ug_toc.html#TOC150">Running GDB</A></H2>
<P>
The debugger can be launched directly and simply from emacs which allows
to browse and modify directly the source code during the debugging
session, See section <A HREF="gnat_ug.html#SEC142">Ada Mode for <CODE>emacs</CODE></A>. Here is described the basic use of
GDB is text mode.
</P>
<P>
The command to run GDB is
</P>
<PRE>
$ gdb program
</PRE>
<P>
where <CODE>program</CODE> is the name of the executable file. This
activates the debugger and results in a prompt for debugger commands.
The simplest command is simply <CODE>run</CODE>, which causes the program to run
exactly as if the debugger were not present. The following section
describes some of the additional commands that can be given to GDB.
</P>
<H2><A NAME="SEC151" HREF="gnat_ug_toc.html#TOC151">Introduction to GDB Commands</A></H2>
<P>
GDB contains a large repertoire of commands. The manual
<CITE>Debugging with GDB</CITE>
includes extensive documentation on the use
of these commands, together with examples of their use. Furthermore,
the command <VAR>help</VAR> invoked from within GDB activates a simple help
facility which summarizes the available commands and their options.
In this section we summarize a few of the most commonly
used commands to give an idea of what GDB is about. You should create
a simple program with debugging information and experiment with the use of
these GDB commands on the program as you read through the following section.
</P>
<DL COMPACT>
<DT><CODE>set args <VAR>arguments</VAR></CODE>
<DD>
The <VAR>arguments</VAR> list above is a list of arguments to be passed to
the program on a subsequent run command, just as though the arguments
had been entered on a normal invocation of the program. The <CODE>set args</CODE>
command is not needed if the program does not require arguments.
<DT><CODE>run</CODE>
<DD>
The <CODE>run</CODE> command causes execution of the program to start from the
beginning. If the program is already running, that is to say if you
are currently positioned at a breakpoint,
then a prompt will ask for confirmation that you want
to abandon the current execution and restart.
<DT><CODE>breakpoint <VAR>location</VAR></CODE>
<DD>
The breakpoint command sets a breakpoint, that is to say a point at which
execution will halt and GDB will await further commands. <VAR>location</VAR> is
either a line number within a file, given in the format <CODE>file:linenumber</CODE>,
or it is the name of a subprogram. If you request that a breakpoint be set on
a subprogram that is overloaded, a prompt will ask you to specify on which of
those subprograms you want to breakpoint. You can also
specify that all of them should be breakpointed. If the program is run
and execution encounters the breakpoint, then the program
stops and GDB signals that the breakpoint was encountered by printing the
line of code before which the program is halted.
<DT><CODE>breakpoint exception <VAR>name</VAR></CODE>
<DD>
A special form of the breakpoint command which breakpoints whenever
exception <VAR>name</VAR> is raised.
If <VAR>name</VAR> is omitted,
then a breakpoint will occur when any exception is raised.
<DT><CODE>print <VAR>expression</VAR></CODE>
<DD>
This will print the value of the given expression. Most simple
Ada expression formats are properly handled by GDB, so the expression
can contain function calls, variables, operators, and attribute references.
<DT><CODE>continue</CODE>
<DD>
Continues execution following a breakpoint, until the next breakpoint or the
termination of the program.
<DT><CODE>step</CODE>
<DD>
Executes a single line after a breakpoint. If the next statement is a subprogram
call, execution continues into (the first statement of) the
called subprogram.
<DT><CODE>next</CODE>
<DD>
Executes a single line. If this line is a subprogram call, executes and
returns from the call.
<DT><CODE>list</CODE>
<DD>
Lists a few lines around the current source location. In practice, it
is usually more convenient to have a separate edit window open with the
relevant source file displayed. Successive applications of this command
print subsequent lines. The command can be given an argument which is a
line number, in which case it displays a few lines around the specified one.
<DT><CODE>backtrace</CODE>
<DD>
Displays a backtrace of the call chain. This command is typically
used after a breakpoint has occurred, to examine the sequence of calls that
leads to the current breakpoint. The display includes one line for each
activation record (frame) corresponding to an active subprogram.
<DT><CODE>up</CODE>
<DD>
At a breakpoint, GDB can display the values of variables local
to the current frame. The command <CODE>up</CODE> can be used to
examine the contents of other active frames, by moving the focus up
the stack, that is to say from callee to caller, one frame at a time.
<DT><CODE>down</CODE>
<DD>
Moves the focus of GDB down from the frame currently being examined to the
frame of its callee (the reverse of the previous command),
<DT><CODE>frame <VAR>n</VAR></CODE>
<DD>
Inspect the frame with the given number. The value 0 denotes the frame
of the current breakpoint, that is to say the top of the call stack.
</DL>
<P>
The above list is a very short introduction to the commands that
GDB provides. Important additional capabilities, including conditional
breakpoints, the ability to execute command sequences on a breakpoint,
the ability to debug at the machine instruction level and many other
features are described in detail in <CITE>Debugging with GDB</CITE>.
Note that most commands can be abbreviated
(for example, c for continue, bt for backtrace).
</P>
<H2><A NAME="SEC152" HREF="gnat_ug_toc.html#TOC152">Using Ada Expressions</A></H2>
<P>
<A NAME="IDX317"></A>
</P>
<P>
GDB supports a fairly large subset of Ada expression syntax, with some
extensions. The philosophy behind the design of this subset is
</P>
<UL>
<LI>
That GDB should provide basic literals and access to operations for
arithmetic, dereferencing, field selection, indexing, and subprogram calls,
leaving more sophisticated computations to subprograms written into the
program (which therefore may be called from GDB).
<LI>
That type safety and strict adherence to Ada language restrictions
are not particularly important to the GDB user.
<LI>
That brevity is important to the GDB user.
</UL>
<P>
Thus, for brevity, the debugger acts as if there were
implicit <CODE>with</CODE> and <CODE>use</CODE> clauses in effect for all user-written
packages, thus making it unnecessary to fully qualify most names with
their packages, regardless of context. Where this causes ambiguity,
GDB asks the user's intent.
</P>
<P>
For details on the supported Ada syntax <CITE>Debugging with GDB</CITE>.
</P>
<H2><A NAME="SEC153" HREF="gnat_ug_toc.html#TOC153">Calling User-Defined Subprograms</A></H2>
<P>
An important capability of GDB is the ability to call user-defined
subprograms while debugging. This is achieved simply by entering
a subprogram call statement in the form:
</P>
<PRE>
call subprogram-name (parameters)
</PRE>
<P>
The keyword <CODE>call</CODE> can be omitted in the normal case where the
<CODE>subprogram-name</CODE> does not coincide with any of the predefined
GDB commands.
</P>
<P>
The effect is to invoke the given subprogram, passing it the
list of parameters that is supplied. The parameters can be expressions and
can include variables from the program being debugged. The
subprogram must be defined
at the library level within your program, and GDB will call the
subprogram within the environment of your program execution (which
means that the subprogram is free to access or even modify variables
within your program).
</P>
<P>
The most important use of this facility is in allowing the inclusion of
debugging routines that are tailored to particular data structures
in your program. Such debugging routines can be written to provide a suitably
high-level description of an abstract type, rather than a low-level dump
of its physical layout. After all, the standard
GDB <CODE>print</CODE> command only knows the physical layout of your
types, not their abstract meaning. Debugging routines can provide information
at the desired semantic level and are thus enormously useful.
</P>
<P>
For example, when debugging GNAT itself, it is crucial to have access to
the contents of the tree nodes used to represent the program internally.
But tree nodes are represented simply by an integer value (which in turn
is an index into a table of nodes).
Using the <CODE>print</CODE> command on a tree node would simply print this integer
value, which is not very useful. But the PN routine (defined in file
treepr.adb in the GNAT sources) takes a tree node as input, and displays
a useful high level representation of the tree node, which includes the
syntactic category of the node, its position in the source, the integers
that denote descendant nodes and parent node, as well as varied
semantic information. To study this example in more detail, you might want to
look at the body of the PN procedure in the stated file.
</P>
<H2><A NAME="SEC154" HREF="gnat_ug_toc.html#TOC154">Breaking on Ada Exceptions</A></H2>
<P>
<A NAME="IDX318"></A>
</P>
<P>
You can set breakpoints that trip when your program raises
selected exceptions.
</P>
<DL COMPACT>
<DT><CODE>break exception</CODE>
<DD>
Set a breakpoint that trips whenever (any task in the) program raises
any exception.
<DT><CODE>break exception <VAR>name</VAR></CODE>
<DD>
Set a breakpoint that trips whenever (any task in the) program raises
the exception <VAR>name</VAR>.
<DT><CODE>break exception unhandled</CODE>
<DD>
Set a breakpoint that trips whenever (any task in the) program raises an
exception for which there is no handler.
<DT><CODE>info exceptions</CODE>
<DD>
<DT><CODE>info exceptions <VAR>regexp</VAR></CODE>
<DD>
The <CODE>info exceptions</CODE> command permits the user to examine all defined
exceptions within Ada programs. With a regular expression, <VAR>regexp</VAR>, as
argument, prints out only those exceptions whose name matches <VAR>regexp</VAR>.
</DL>
<H2><A NAME="SEC155" HREF="gnat_ug_toc.html#TOC155">Ada Tasks</A></H2>
<P>
<A NAME="IDX319"></A>
</P>
<P>
GDB allows the following task-related commands:
</P>
<DL COMPACT>
<DT><CODE>info tasks</CODE>
<DD>
This command shows a list of current Ada tasks, as in the following example:
<PRE>
(gdb) info tasks
ID TID P-ID Thread Pri State Name
1 8088000 0 807e000 15 Child Activation Wait main_task
2 80a4000 1 80ae000 15 Accept/Select Wait b
3 809a800 1 80a4800 15 Child Activation Wait a
* 4 80ae800 3 80b8000 15 Running c
</PRE>
In this listing, the asterisk before the first task indicates it to be the
currently running task. The first column lists the task ID that is used
to refer to tasks in the following commands.
<DT><CODE>break <VAR>linespec</VAR> task <VAR>taskid</VAR></CODE>
<DD>
<DT><CODE>break <VAR>linespec</VAR> task <VAR>taskid</VAR> if ...</CODE>
<DD>
<A NAME="IDX320"></A>
These commands are like the <CODE>break ... thread ...</CODE>.
<VAR>linespec</VAR> specifies source lines.
Use the qualifier <SAMP>`task <VAR>taskid</VAR>'</SAMP> with a breakpoint command
to specify that you only want GDB to stop the program when a
particular Ada task reaches this breakpoint. <VAR>taskid</VAR> is one of the
numeric task identifiers assigned by GDB, shown in the first
column of the <SAMP>`info tasks'</SAMP> display.
If you do not specify <SAMP>`task <VAR>taskid</VAR>'</SAMP> when you set a
breakpoint, the breakpoint applies to <EM>all</EM> tasks of your
program.
You can use the <CODE>task</CODE> qualifier on conditional breakpoints as
well; in this case, place <SAMP>`task <VAR>taskid</VAR>'</SAMP> before the
breakpoint condition (before the <CODE>if</CODE>).
<DT><CODE>task <VAR>taskno</VAR></CODE>
<DD>
<A NAME="IDX321"></A>
This command allows to switch to the task referred by <VAR>taskno</VAR>. In
particular, This allows to browse the backtrace of the specified
task. It is advised to switch back to the original task before
continuing execution otherwise the scheduling of the program may be
perturbated.
</DL>
<P>
For more detailed information on the tasking support <CITE>Debugging with GDB</CITE>.
</P>
<H2><A NAME="SEC156" HREF="gnat_ug_toc.html#TOC156">Debugging Generic Units</A></H2>
<P>
<A NAME="IDX322"></A>
</P>
<P>
GNAT always uses code expansion for generic instantiation. This means that
each time an instantiation occurs, a complete copy of the original code is
made, with appropriate substitutions of formals by actuals.
</P>
<P>
It is not possible to refer to the original generic entities in GDB, but it
is always possible to debug a particular instance of a generic, by using
the appropriate expanded names. For example, if we have
</P>
<PRE>
<B>procedure</B> g <B>is</B>
<B>generic package</B> k <B>is</B>
<B>procedure</B> kp (v1 : <B>in out</B> integer);
<B>end</B> k;
<B>package body</B> k <B>is</B>
<B>procedure</B> kp (v1 : <B>in out</B> integer) <B>is</B>
<B>begin</B>
v1 := v1 + 1;
<B>end</B> kp;
<B>end</B> k;
<B>package</B> k1 <B>is new</B> k;
<B>package</B> k2 <B>is new</B> k;
var : integer := 1;
<B>begin</B>
k1.kp (var);
k2.kp (var);
k1.kp (var);
k2.kp (var);
<B>end</B>;
</PRE>
<P>
Then to break on a call to procedure kp in the k2 instance, simply
use the command:
</P>
<PRE>
(gdb) break g.k2.kp
</PRE>
<P>
When the breakpoint occurs, you can step through the code of the
instance in the normal manner and examine the values of local variables, as for
other units.
</P>
<H2><A NAME="SEC157" HREF="gnat_ug_toc.html#TOC157">GNAT Abnormal Termination</A></H2>
<P>
<A NAME="IDX323"></A>
</P>
<P>
When presented with programs that contain serious errors in syntax
or semantics,
GNAT may on rare occasions experience problems in operation, such
as aborting with a
segmentation fault or illegal memory access, raising an internal
exception, or terminating abnormally. In such cases, you can activate
various features of GNAT that can help you pinpoint the construct in your
program that is the likely source of the problem.
</P>
<P>
The following strategies are presented in increasing order of
difficulty, corresponding to your programming skills and your
familiarity with compiler internals.
</P>
<OL>
<LI>
Run <CODE>gcc</CODE> with the <CODE>-gnatf</CODE> and <CODE>-gnate</CODE> switches. The first
switch causes all errors on a given line to be reported. In its absence,
only the first error on a line is displayed.
The <CODE>-gnate</CODE> switch causes errors to be displayed as soon as they
are encountered, rather than after compilation is terminated. If GNAT
terminates prematurely, the last error message displayed is likely to
pinpoint the culprit.
<LI>
Run <CODE>gcc</CODE> with the <CODE>-v (verbose)</CODE> switch. In this mode,
<CODE>gcc</CODE> produces ongoing information about the progress of the
compilation and provides the name of each procedure as code is
generated. This switch allows you to find which Ada procedure was being
compiled when it encountered a code generation problem.
<LI>
<A NAME="IDX324"></A>
Run <CODE>gcc</CODE> with the <CODE>-gnatdc</CODE> switch. This is a GNAT specific
switch that does for the front-end what <CODE>-v</CODE> does for the back end.
The system prints the name of each unit, either a compilation unit or
nested unit, as it is being analyzed.
<LI>
Finally, you can start
<CODE>gdb</CODE> directly on the <CODE>gnat1</CODE> executable. <CODE>gnat1</CODE> is the
front-end of GNAT, and can be run independently (normally it is just
called from <CODE>gcc</CODE>). You can use <CODE>gdb</CODE> on <CODE>gnat1</CODE> as you
would on a C program (but see section <A HREF="gnat_ug.html#SEC149">The GNAT Debugger GDB</A> for caveats). The
<CODE>where</CODE> command is the first line of attack; the variable
<CODE>lineno</CODE> (seen by <CODE>print lineno</CODE>), used by the second phase of
<CODE>gnat1</CODE> and by the <CODE>gcc</CODE> backend, indicates the source line at
which the execution stopped, and <CODE>input_file name</CODE> indicates the name of
the source file.
</OL>
<H2><A NAME="SEC158" HREF="gnat_ug_toc.html#TOC158">Naming Conventions for GNAT Source Files</A></H2>
<P>
In order to examine the workings of the GNAT system, the following
brief description of its organization may be helpful:
</P>
<UL>
<LI>
Files with prefix <TT>`sc'</TT> contain the lexical scanner.
<LI>
All files prefixed with <TT>`par'</TT> are components of the parser. The
numbers correspond to chapters of the Ada 95 Reference Manual. For example,
parsing of select statements can be found in <TT>`par-ch9.adb'</TT>.
<LI>
All files prefixed with <TT>`sem'</TT> perform semantic analysis. The
numbers correspond to chapters of the Ada standard. For example, all
issues involving context clauses can be found in <TT>`sem_ch10.adb'</TT>. In
addition, some features of the language require sufficient special processing
to justify their own semantic files: sem_aggr for aggregates, sem_disp for
dynamic dispatching, etc.
<LI>
All files prefixed with <TT>`exp'</TT> perform normalization and
expansion of the intermediate representation (abstract syntax tree, or AST).
these files use the same numbering scheme as the parser and semantics files.
For example, the construction of record initialization procedures is done in
<TT>`exp_ch3.adb'</TT>.
<LI>
The files prefixed with <TT>`bind'</TT> implement the binder, which
verifies the consistency of the compilation, determines an order of
elaboration, and generates the bind file.
<LI>
The files <TT>`atree.ads'</TT> and <TT>`atree.adb'</TT> detail the low-level
data structures used by the front-end.
<LI>
The files <TT>`sinfo.ads'</TT> and <TT>`sinfo.adb'</TT> detail the structure of
the abstract syntax tree as produced by the parser.
<LI>
The files <TT>`einfo.ads'</TT> and <TT>`einfo.adb'</TT> detail the attributes of
all entities, computed during semantic analysis.
<LI>
Library management issues are dealt with in files with prefix
<TT>`lib'</TT>.
<LI>
<A NAME="IDX325"></A>
<A NAME="IDX326"></A>
Ada files with the prefix <TT>`a-'</TT> are children of <CODE>Ada</CODE>, as
defined in Annex A.
<LI>
<A NAME="IDX327"></A>
<A NAME="IDX328"></A>
Files with prefix <TT>`i-'</TT> are children of <CODE>Interfaces</CODE>, as
defined in Annex B.
<LI>
<A NAME="IDX329"></A>
Files with prefix <TT>`s-'</TT> are children of <CODE>System</CODE>. This includes
both language-defined children and GNAT run-time routines.
<LI>
<A NAME="IDX330"></A>
Files with prefix <TT>`g-'</TT> are children of <CODE>GNAT</CODE>. These are useful
general-purpose packages, fully documented in their specifications. All
the other <TT>`.c'</TT> files are modifications of common <CODE>gcc</CODE> files.
</UL>
<H2><A NAME="SEC159" HREF="gnat_ug_toc.html#TOC159">Getting Internal Debugging Information</A></H2>
<P>
Most compilers have internal debugging switches and modes. GNAT
does also, except GNAT internal debugging switches and modes are not
secret. A summary and full description of all the compiler and binder
debug flags are in the file <TT>`debug.adb'</TT>. You must obtain the
sources of the compiler to see the full detailed effects of these flags.
</P>
<P>
The switches that print the source of the program (reconstructed from
the internal tree) are of general interest for user programs, as are the
options to print
the full internal tree, and the entity table (the symbol table
information). The reconstructed source provides a readable version of the
program after the front-end has completed analysis and expansion, and is useful
when studying the performance of specific constructs. For example, constraint
checks are indicated, complex aggregates are replaced with loops and
assignments, and tasking primitives are replaced with run-time calls.
</P>
<H1><A NAME="SEC160" HREF="gnat_ug_toc.html#TOC160">Performance Considerations</A></H1>
<P>
<A NAME="IDX331"></A>
</P>
<P>
The GNAT system provides a number of options that allow a trade-off
between
</P>
<UL>
<LI>
performance of the generated code
<LI>
speed of compilation
<LI>
minimization of dependences and recompilation
<LI>
the degree of run-time checking.
</UL>
<P>
The defaults (if no options are selected) aim at improving the speed
of compilation and minimizing dependences, at the expense of performance
of the generated code:
</P>
<UL>
<LI>
no optimization
<LI>
no inlining of subprogram calls
<LI>
all run-time checks enabled except overflow and elaboration checks
</UL>
<P>
These options are suitable for most program development purposes. This
chapter describes how you can modify these choices.
</P>
<UL>
<LI><A HREF="gnat_ug.html#SEC161">Controlling Run-time Checks</A>
<LI><A HREF="gnat_ug.html#SEC162">Optimization Levels</A>
<LI><A HREF="gnat_ug.html#SEC163">Inlining of Subprograms</A>
</UL>
<H2><A NAME="SEC161" HREF="gnat_ug_toc.html#TOC161">Controlling Run-time Checks</A></H2>
<P>
By default, GNAT produces all run-time checks, except arithmetic overflow
checking for integer operations (that includes division by zero) and checks
for access before elaboration on subprogram calls.
<A NAME="IDX332"></A>
<A NAME="IDX333"></A>
Two gnat switches, <CODE>-gnatp</CODE> and <CODE>-gnato</CODE> allow this default to
be modified. See section <A HREF="gnat_ug.html#SEC39">Run-time Checks</A>.
</P>
<P>
Our experience is that the default is suitable for most development
purposes.
</P>
<P>
We treat integer overflow specially because these
are quite expensive and in our experience are not as important as other
run-time checks in the development process.
</P>
<P>
Elaboration checks are off by default, and also not needed by default, since
GNAT uses a static elaboration analysis approach that avoids the need for
run-time checking. This manual contains a full chapter discussing the issue
of elaboration checks, and if the default is not satisfactory for your use,
you should read this chapter.
</P>
<P>
<A NAME="IDX334"></A>
<A NAME="IDX335"></A>
<A NAME="IDX336"></A>
<A NAME="IDX337"></A>
<A NAME="IDX338"></A>
Note that the setting of the switches controls the default setting of
the checks. They may be modified using either <CODE>pragma Suppress</CODE> (to
remove checks) or <CODE>pragma Unsuppress</CODE> (to add back suppressed
checks) in the program source.
</P>
<H2><A NAME="SEC162" HREF="gnat_ug_toc.html#TOC162">Optimization Levels</A></H2>
<P>
<A NAME="IDX339"></A>
</P>
<P>
The default is optimization off. This results in the fastest compile
times, but GNAT makes absolutely no attempt to optimize, and the
generated programs are considerably larger and slower than when
optimization is enabled. You can use the
<CODE>-O<VAR>n</VAR></CODE> switch, where <VAR>n</VAR> is an integer from 0 to 3,
on the <CODE>gcc</CODE> command line to control the optimization level:
</P>
<DL COMPACT>
<DT><CODE>-O0</CODE>
<DD>
no optimization (the default)
<DT><CODE>-O1</CODE>
<DD>
medium level optimization
<DT><CODE>-O2</CODE>
<DD>
full optimization
<DT><CODE>-O3</CODE>
<DD>
full optimization, and also attempt automatic inlining of small
subprograms within a unit (see section <A HREF="gnat_ug.html#SEC163">Inlining of Subprograms</A>).
</DL>
<P>
Higher optimization levels perform more global transformations on the
program and apply more expensive analysis algorithms in order to generate
faster and more compact code. The price in compilation time, and the
resulting improvement in execution time,
both depend on the particular application and the hardware environment.
You should experiment to find the best level for your application.
</P>
<P>
Note: Unlike some other compilation systems, <CODE>gcc</CODE> has
been tested extensively at all optimization levels. There are some bugs
which appear only with optimization turned on, but there have also been
bugs which show up only in <EM>unoptimized</EM> code. Selecting a lower
level of optimization does not improve the reliability of the code
generator, which in practice is highly reliable at all optimization
levels.
</P>
<H2><A NAME="SEC163" HREF="gnat_ug_toc.html#TOC163">Inlining of Subprograms</A></H2>
<P>
A call to a subprogram in the current unit is inlined if all the
following conditions are met:
</P>
<UL>
<LI>
The optimization level is at least <CODE>-O1</CODE>.
<LI>
The called subprogram is suitable for inlining: It must be small enough
and not contain nested subprograms or anything else that <CODE>gcc</CODE>
cannot support in inlined subprograms.
<LI>
The call occurs after the definition of the body of the subprogram.
<LI>
<A NAME="IDX340"></A>
Either <CODE>pragma Inline</CODE> applies to the subprogram or it is
small and automatic inlining (optimization level <CODE>-O3</CODE>) is
specified.
</UL>
<P>
Calls to subprograms in <CODE>with</CODE>'ed units are normally not inlined.
To achieve this level of inlining, the following conditions must all be
true:
</P>
<UL>
<LI>
The optimization level is at least <CODE>-O1</CODE>.
<LI>
The called subprogram is suitable for inlining: It must be small enough
and not contain nested subprograms or anything else <CODE>gcc</CODE> cannot
support in inlined subprograms.
<LI>
The call appears in a body (not in a package spec).
<LI>
There is a <CODE>pragma Inline</CODE> for the subprogram.
<LI>
<A NAME="IDX341"></A>
The <CODE>-gnatn</CODE> switch
is used in the <CODE>gcc</CODE> command line
</UL>
<P>
Note that specifying the <CODE>-gnatn</CODE> switch causes additional
compilation dependencies. Consider the following:
</P>
<PRE>
<B>package</B> R <B>is</B>
<B>procedure</B> Q;
<B>pragma</B> Inline (Q);
<B>end</B> R;
<B>package body</B> R <B>is</B>
...
<B>end</B> R;
<B>with</B> R;
<B>procedure</B> Main <B>is</B>
<B>begin</B>
...
R.Q;
<B>end</B> Main;
</PRE>
<P>
With the default behavior (no <CODE>-gnatn</CODE> switch specified), the
compilation of the <CODE>Main</CODE> procedure depends only on its own source,
<TT>`main.adb'</TT>, and the spec of the package in file <TT>`r.ads'</TT>. This
means that editing the body of <CODE>R</CODE> does not require recompiling
<CODE>Main</CODE>.
</P>
<P>
On the other hand, the call <CODE>R.Q</CODE> is not inlined under these
circumstances. If the <CODE>-gnatn</CODE> switch is present when <CODE>Main</CODE>
is compiled, the call will be inlined if the body of <CODE>Q</CODE> is small
enough, but now <CODE>Main</CODE> depends on the body of <CODE>R</CODE> in
<TT>`r.adb'</TT> as well as on the spec. This means that if this body is edited,
the main program must be recompiled. Note that this extra dependency
occurs whether or not the call is in fact inlined by <CODE>gcc</CODE>.
</P>
<P>
<A NAME="IDX342"></A>
Note: The <CODE>-fno-inline</CODE> switch
can be used to prevent
all inlining. This switch overrides all other conditions and ensures
that no inlining occurs. The extra dependences resulting from
<CODE>-gnatn</CODE> will still be active, even if
this switch is used to suppress the resulting inlining actions.
</P>
<H1><A NAME="SEC164" HREF="gnat_ug_toc.html#TOC164">Index</A></H1>
<P>
<H2>-</H2>
<DIR>
<LI><A HREF="gnat_ug.html#IDX213"><CODE>--GCC=compiler_name</CODE> (<CODE>gnatlink</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX217"><CODE>--GCC=compiler_name</CODE> (<CODE>gnatmake</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX218"><CODE>--GNATBIND=binder_name</CODE> (<CODE>gnatmake</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX219"><CODE>--GNATLINK=linker_name</CODE> (<CODE>gnatmake</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX214"><CODE>--LINK=</CODE> (<CODE>gnatlink</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX307"><CODE>-83</CODE> (<CODE>gnathtml</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX182"><CODE>-A</CODE> (<CODE>gnatbind</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX203"><CODE>-A</CODE> (<CODE>gnatlink</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX285"><CODE>-a</CODE> (<CODE>gnatls</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX239"><CODE>-A</CODE> (<CODE>gnatmake</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX220"><CODE>-a</CODE> (<CODE>gnatmake</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX235"><CODE>-aI</CODE> (<CODE>gnatmake</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX236"><CODE>-aL</CODE> (<CODE>gnatmake</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX237"><CODE>-aO</CODE> (<CODE>gnatmake</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX79"><CODE>-B</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX78"><CODE>-b</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX172"><CODE>-b</CODE> (<CODE>gnatbind</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX212"><CODE>-B</CODE> (<CODE>gnatlink</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX211"><CODE>-b</CODE> (<CODE>gnatlink</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX248"><CODE>-bargs</CODE> (<CODE>gnatmake</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX80"><CODE>-c</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX183"><CODE>-C</CODE> (<CODE>gnatbind</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX189"><CODE>-c</CODE> (<CODE>gnatbind</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX254"><CODE>-c</CODE> (<CODE>gnatchop</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX204"><CODE>-C</CODE> (<CODE>gnatlink</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX221"><CODE>-c</CODE> (<CODE>gnatmake</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX247"><CODE>-cargs</CODE> (<CODE>gnatmake</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX308"><CODE>-d</CODE> (<CODE>gnathtml</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX286"><CODE>-d</CODE> (<CODE>gnatls</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX184"><CODE>-e</CODE> (<CODE>gnatbind</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX180"><CODE>-f</CODE> (<CODE>gnatbind</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX309"><CODE>-f</CODE> (<CODE>gnathtml</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX222"><CODE>-f</CODE> (<CODE>gnatmake</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX342"><CODE>-fno-inline</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX81"><CODE>-g</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX206"><CODE>-g</CODE> (<CODE>gnatlink</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX136"><CODE>-gnat83</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX139"><CODE>-gnat95</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX111"><CODE>-gnata</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX98"><CODE>-gnatb</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX134"><CODE>-gnatc</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX154"><CODE>-gnatD</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX324"><CODE>-gnatdc</CODE> switch</A>
<LI><A HREF="gnat_ug.html#IDX128"><CODE>-gnatE</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX103"><CODE>-gnate</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX100"><CODE>-gnatf</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX153"><CODE>-gnatG</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX141"><CODE>-gnatg</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX144"><CODE>-gnati</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX146"><CODE>-gnatk</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX96"><CODE>-gnatl</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX99"><CODE>-gnatm</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX31"><CODE>-gnatn</CODE> switch</A>
<LI><A HREF="gnat_ug.html#IDX147"><CODE>-gnatn</CODE> (<CODE>gcc</CODE>)</A>, <A HREF="gnat_ug.html#IDX341"><CODE>-gnatn</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX124"><CODE>-gnato</CODE> (<CODE>gcc</CODE>)</A>, <A HREF="gnat_ug.html#IDX333"><CODE>-gnato</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX120"><CODE>-gnatp</CODE> (<CODE>gcc</CODE>)</A>, <A HREF="gnat_ug.html#IDX332"><CODE>-gnatp</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX102"><CODE>-gnatq</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX109"><CODE>-gnatR</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX140"><CODE>-gnatr</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX132"><CODE>-gnats</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX148"><CODE>-gnatt</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX97"><CODE>-gnatU</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX151"><CODE>-gnatu</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX94"><CODE>-gnatv</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX145"><CODE>-gnatW</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX105"><CODE>-gnatwe</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX107"><CODE>-gnatwl</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX106"><CODE>-gnatws</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX108"><CODE>-gnatwu</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX110"><CODE>-gnatx</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX181"><CODE>-h</CODE> (<CODE>gnatbind</CODE>)</A>, <A HREF="gnat_ug.html#IDX185"><CODE>-h</CODE> (<CODE>gnatbind</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX287"><CODE>-h</CODE> (<CODE>gnatls</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX84"><CODE>-I-</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX241"><CODE>-I-</CODE> (<CODE>gnatmake</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX82"><CODE>-I</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX311"><CODE>-I</CODE> (<CODE>gnathtml</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX240"><CODE>-I</CODE> (<CODE>gnatmake</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX223"><CODE>-i</CODE> (<CODE>gnatmake</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX297"><CODE>-i</CODE> (<CODE>gnatmem</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX224"><CODE>-j</CODE> (<CODE>gnatmake</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX255"><CODE>-k</CODE> (<CODE>gnatchop</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX226"><CODE>-k</CODE> (<CODE>gnatmake</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX186"><CODE>-l</CODE> (<CODE>gnatbind</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX310"><CODE>-l</CODE> (<CODE>gnathtml</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX243"><CODE>-L</CODE> (<CODE>gnatmake</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX249"><CODE>-largs</CODE> (<CODE>gnatmake</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX174"><CODE>-M</CODE> (<CODE>gnatbind</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX173"><CODE>-m</CODE> (<CODE>gnatbind</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX229"><CODE>-M</CODE> (<CODE>gnatmake</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX227"><CODE>-m</CODE> (<CODE>gnatmake</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX190"><CODE>-n</CODE> (<CODE>gnatbind</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX207"><CODE>-n</CODE> (<CODE>gnatlink</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX230"><CODE>-n</CODE> (<CODE>gnatmake</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX245"><CODE>-nostdinc</CODE> (<CODE>gnatmake</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX246"><CODE>-nostdlib</CODE> (<CODE>gnatmake</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX87"><CODE>-O</CODE> (<CODE>gcc</CODE>)</A>, <A HREF="gnat_ug.html#IDX339"><CODE>-O</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX86"><CODE>-o</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX188"><CODE>-o</CODE> (<CODE>gnatbind</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX187"><CODE>-O</CODE> (<CODE>gnatbind</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX312"><CODE>-o</CODE> (<CODE>gnathtml</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX210"><CODE>-o</CODE> (<CODE>gnatlink</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX288"><CODE>-o</CODE> (<CODE>gnatls</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX231"><CODE>-o</CODE> (<CODE>gnatmake</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX296"><CODE>-o</CODE> (<CODE>gnatmem</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX313"><CODE>-p</CODE> (<CODE>gnathtml</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX256"><CODE>-q</CODE> (<CODE>gnatchop</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX232"><CODE>-q</CODE> (<CODE>gnatmake</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX294"><CODE>-q</CODE> (<CODE>gnatmem</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX257"><CODE>-r</CODE> (<CODE>gnatchop</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX88"><CODE>-S</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX169"><CODE>-s</CODE> (<CODE>gnatbind</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX289"><CODE>-s</CODE> (<CODE>gnatls</CODE>)</A>, <A HREF="gnat_ug.html#IDX291"><CODE>-s</CODE> (<CODE>gnatls</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX178"><CODE>-t</CODE> (<CODE>gnatbind</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX290"><CODE>-u</CODE> (<CODE>gnatls</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX209"><CODE>-v -v</CODE> (<CODE>gnatlink</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX90"><CODE>-V</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX89"><CODE>-v</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX171"><CODE>-v</CODE> (<CODE>gnatbind</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX259"><CODE>-v</CODE> (<CODE>gnatchop</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX208"><CODE>-v</CODE> (<CODE>gnatlink</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX233"><CODE>-v</CODE> (<CODE>gnatmake</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX260"><CODE>-w</CODE> (<CODE>gnatchop</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX177"><CODE>-we</CODE> (<CODE>gnatbind</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX175"><CODE>-ws</CODE> (<CODE>gnatbind</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX91"><CODE>-Wuninitialized</CODE> (<CODE>gcc</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX170"><CODE>-x</CODE> (<CODE>gnatbind</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX194"><CODE>-z</CODE> (<CODE>gnatbind</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX234"><CODE>-z</CODE> (<CODE>gnatmake</CODE>)</A>
</DIR>
<H2>_</H2>
<DIR>
<LI><A HREF="gnat_ug.html#IDX165">__gnat_finalize</A>
<LI><A HREF="gnat_ug.html#IDX164">__gnat_initialize</A>
<LI><A HREF="gnat_ug.html#IDX306">_main</A>
</DIR>
<H2>a</H2>
<DIR>
<LI><A HREF="gnat_ug.html#IDX117">Access before elaboration</A>
<LI><A HREF="gnat_ug.html#IDX277">Access-to-subprogram</A>
<LI><A HREF="gnat_ug.html#IDX137">ACVC, Ada 83 tests</A>
<LI><A HREF="gnat_ug.html#IDX198">Ada</A>, <A HREF="gnat_ug.html#IDX325">Ada</A>
<LI><A HREF="gnat_ug.html#IDX135">Ada 83 compatibility</A>
<LI><A HREF="gnat_ug.html#IDX1">Ada 95 Language Reference Manual</A>
<LI><A HREF="gnat_ug.html#IDX317">Ada expressions</A>
<LI><A HREF="gnat_ug.html#IDX16">Ada.Characters.Latin_1</A>
<LI><A HREF="gnat_ug.html#IDX161">Ada.Command_Line</A>
<LI><A HREF="gnat_ug.html#IDX163">Ada.Command_Line.Set_Exit_Status</A>
<LI><A HREF="gnat_ug.html#IDX155">ADA_INCLUDE_PATH</A>
<LI><A HREF="gnat_ug.html#IDX197">ADA_OBJECTS_PATH</A>
<LI><A HREF="gnat_ug.html#IDX192">adafinal</A>
<LI><A HREF="gnat_ug.html#IDX191">adainit</A>
<LI><A HREF="gnat_ug.html#IDX326">Annex A</A>
<LI><A HREF="gnat_ug.html#IDX328">Annex B</A>
<LI><A HREF="gnat_ug.html#IDX159">argc</A>
<LI><A HREF="gnat_ug.html#IDX160">argv</A>
<LI><A HREF="gnat_ug.html#IDX298">ASIS</A>
<LI><A HREF="gnat_ug.html#IDX299">ASIS-for-GNAT</A>
<LI><A HREF="gnat_ug.html#IDX112">Assert</A>
<LI><A HREF="gnat_ug.html#IDX114">Assertions</A>
</DIR>
<H2>b</H2>
<DIR>
<LI><A HREF="gnat_ug.html#IDX48">Binder output file</A>
<LI><A HREF="gnat_ug.html#IDX193">Binder, multiple input files</A>
<LI><A HREF="gnat_ug.html#IDX168">Body_Version</A>
<LI><A HREF="gnat_ug.html#IDX320">breakpoints and tasks</A>
</DIR>
<H2>c</H2>
<DIR>
<LI><A HREF="gnat_ug.html#IDX60">C</A>
<LI><A HREF="gnat_ug.html#IDX63">C++</A>
<LI><A HREF="gnat_ug.html#IDX50">Calling Conventions</A>
<LI><A HREF="gnat_ug.html#IDX130">Check, elaboration</A>
<LI><A HREF="gnat_ug.html#IDX126">Check, overflow</A>
<LI><A HREF="gnat_ug.html#IDX119">Checks, access before elaboration</A>
<LI><A HREF="gnat_ug.html#IDX118">Checks, division by zero</A>
<LI><A HREF="gnat_ug.html#IDX122">Checks, suppressing</A>
<LI><A HREF="gnat_ug.html#IDX57">COBOL</A>
<LI><A HREF="gnat_ug.html#IDX20">code page 437</A>
<LI><A HREF="gnat_ug.html#IDX21">code page 850</A>
<LI><A HREF="gnat_ug.html#IDX92">Combining GNAT switches</A>
<LI><A HREF="gnat_ug.html#IDX5">Compilation model</A>
<LI><A HREF="gnat_ug.html#IDX261">Configuration pragmas</A>
<LI><A HREF="gnat_ug.html#IDX53">Convention, Ada</A>
<LI><A HREF="gnat_ug.html#IDX55">Convention, Asm</A>
<LI><A HREF="gnat_ug.html#IDX56">Convention, Assembler</A>
<LI><A HREF="gnat_ug.html#IDX62">Convention, C</A>
<LI><A HREF="gnat_ug.html#IDX65">Convention, C++</A>
<LI><A HREF="gnat_ug.html#IDX59">Convention, COBOL</A>
<LI><A HREF="gnat_ug.html#IDX68">Convention, Fortran</A>
<LI><A HREF="gnat_ug.html#IDX70">Convention, Stdcall</A>
<LI><A HREF="gnat_ug.html#IDX72">Convention, Stubbed</A>
<LI><A HREF="gnat_ug.html#IDX2">Conventions</A>
<LI><A HREF="gnat_ug.html#IDX9">CR</A>
</DIR>
<H2>d</H2>
<DIR>
<LI><A HREF="gnat_ug.html#IDX113">Debug</A>
<LI><A HREF="gnat_ug.html#IDX315">debugger</A>
<LI><A HREF="gnat_ug.html#IDX314">debugging</A>
<LI><A HREF="gnat_ug.html#IDX205">Debugging information, including</A>
<LI><A HREF="gnat_ug.html#IDX152">Debugging options</A>
<LI><A HREF="gnat_ug.html#IDX228">Dependencies, producing list</A>
<LI><A HREF="gnat_ug.html#IDX216">Dependency rules</A>
<LI><A HREF="gnat_ug.html#IDX116">Division by zero</A>
</DIR>
<H2>e</H2>
<DIR>
<LI><A HREF="gnat_ug.html#IDX273">Elaborate</A>
<LI><A HREF="gnat_ug.html#IDX275">Elaborate_All</A>
<LI><A HREF="gnat_ug.html#IDX271">Elaborate_Body</A>
<LI><A HREF="gnat_ug.html#IDX129">Elaboration checks</A>, <A HREF="gnat_ug.html#IDX266">Elaboration checks</A>
<LI><A HREF="gnat_ug.html#IDX265">Elaboration control</A>, <A HREF="gnat_ug.html#IDX278">Elaboration control</A>
<LI><A HREF="gnat_ug.html#IDX73">Elaboration order control</A>
<LI><A HREF="gnat_ug.html#IDX304">Eliminate</A>
<LI><A HREF="gnat_ug.html#IDX12">End of source file</A>
<LI><A HREF="gnat_ug.html#IDX101">Error messages, suppressing</A>
<LI><A HREF="gnat_ug.html#IDX24">EUC Coding</A>
<LI><A HREF="gnat_ug.html#IDX318">exceptions</A>
<LI><A HREF="gnat_ug.html#IDX305">Export</A>
</DIR>
<H2>f</H2>
<DIR>
<LI><A HREF="gnat_ug.html#IDX11">FF</A>
<LI><A HREF="gnat_ug.html#IDX25">File names</A>
<LI><A HREF="gnat_ug.html#IDX49">Foreign Languages</A>
<LI><A HREF="gnat_ug.html#IDX66">Fortran</A>
</DIR>
<H2>g</H2>
<DIR>
<LI><A HREF="gnat_ug.html#IDX316">GDB</A>
<LI><A HREF="gnat_ug.html#IDX138">Generic formal parameters</A>
<LI><A HREF="gnat_ug.html#IDX29">Generics</A>, <A HREF="gnat_ug.html#IDX322">Generics</A>
<LI><A HREF="gnat_ug.html#IDX201">GNAT</A>, <A HREF="gnat_ug.html#IDX330">GNAT</A>
<LI><A HREF="gnat_ug.html#IDX323">GNAT Abnormal Termination</A>
<LI><A HREF="gnat_ug.html#IDX4">GNAT compilation model</A>
<LI><A HREF="gnat_ug.html#IDX74">GNAT library</A>
<LI><A HREF="gnat_ug.html#IDX27"><TT>`gnat.adc'</TT></A>, <A HREF="gnat_ug.html#IDX263"><TT>`gnat.adc'</TT></A>
<LI><A HREF="gnat_ug.html#IDX77">gnat1</A>
<LI><A HREF="gnat_ug.html#IDX196">gnat_argc</A>
<LI><A HREF="gnat_ug.html#IDX195">gnat_argv</A>
<LI><A HREF="gnat_ug.html#IDX162">gnat_exit_status</A>
<LI><A HREF="gnat_ug.html#IDX157">gnatbind</A>
<LI><A HREF="gnat_ug.html#IDX253">gnatchop</A>
<LI><A HREF="gnat_ug.html#IDX303">gnatelim</A>
<LI><A HREF="gnat_ug.html#IDX280">gnatfind</A>
<LI><A HREF="gnat_ug.html#IDX281">gnatkr</A>
<LI><A HREF="gnat_ug.html#IDX202">gnatlink</A>
<LI><A HREF="gnat_ug.html#IDX283">gnatls</A>
<LI><A HREF="gnat_ug.html#IDX215">gnatmake</A>
<LI><A HREF="gnat_ug.html#IDX293">gnatmem</A>
<LI><A HREF="gnat_ug.html#IDX282">gnatprep</A>
<LI><A HREF="gnat_ug.html#IDX302">gnatstub</A>
<LI><A HREF="gnat_ug.html#IDX34">Gnatvsn</A>
<LI><A HREF="gnat_ug.html#IDX279">gnatxref</A>
<LI><A HREF="gnat_ug.html#IDX252">gnu make</A>
</DIR>
<H2>h</H2>
<DIR>
<LI><A HREF="gnat_ug.html#IDX8">HT</A>
</DIR>
<H2>i</H2>
<DIR>
<LI><A HREF="gnat_ug.html#IDX30">Inline</A>
<LI><A HREF="gnat_ug.html#IDX75">Inlining</A>
<LI><A HREF="gnat_ug.html#IDX200">Interfaces</A>, <A HREF="gnat_ug.html#IDX327">Interfaces</A>
<LI><A HREF="gnat_ug.html#IDX51">Interfacing to Ada</A>
<LI><A HREF="gnat_ug.html#IDX54">Interfacing to Assembler</A>
<LI><A HREF="gnat_ug.html#IDX61">Interfacing to C</A>
<LI><A HREF="gnat_ug.html#IDX64">Interfacing to C++</A>
<LI><A HREF="gnat_ug.html#IDX58">Interfacing to COBOL</A>
<LI><A HREF="gnat_ug.html#IDX67">Interfacing to Fortran</A>
<LI><A HREF="gnat_ug.html#IDX150">Internal trees, writing to file</A>
</DIR>
<H2>l</H2>
<DIR>
<LI><A HREF="gnat_ug.html#IDX6">Latin-1</A>, <A HREF="gnat_ug.html#IDX15">Latin-1</A>
<LI><A HREF="gnat_ug.html#IDX17">Latin-2</A>
<LI><A HREF="gnat_ug.html#IDX18">Latin-3</A>
<LI><A HREF="gnat_ug.html#IDX19">Latin-4</A>
<LI><A HREF="gnat_ug.html#IDX10">LF</A>
<LI><A HREF="gnat_ug.html#IDX292">library</A>
<LI><A HREF="gnat_ug.html#IDX284">library browser</A>
<LI><A HREF="gnat_ug.html#IDX244">Linker libraries</A>
<LI><A HREF="gnat_ug.html#IDX46">Linker_Option</A>
</DIR>
<H2>m</H2>
<DIR>
<LI><A HREF="gnat_ug.html#IDX127">Machine_Overflows</A>
<LI><A HREF="gnat_ug.html#IDX251">makefile</A>
<LI><A HREF="gnat_ug.html#IDX47">Mixed Language Programming</A>
<LI><A HREF="gnat_ug.html#IDX133">Multiple units, syntax checking</A>
</DIR>
<H2>n</H2>
<DIR>
<LI><A HREF="gnat_ug.html#IDX295"><CODE>n</CODE> (<CODE>gnatmem</CODE>)</A>
<LI><A HREF="gnat_ug.html#IDX76">No code generated</A>
</DIR>
<H2>o</H2>
<DIR>
<LI><A HREF="gnat_ug.html#IDX264">Order of elaboration</A>
<LI><A HREF="gnat_ug.html#IDX52">Other Ada compilers</A>
<LI><A HREF="gnat_ug.html#IDX125">Overflow checks</A>, <A HREF="gnat_ug.html#IDX334">Overflow checks</A>
</DIR>
<H2>p</H2>
<DIR>
<LI><A HREF="gnat_ug.html#IDX225">Parallel make</A>
<LI><A HREF="gnat_ug.html#IDX331">performance</A>
<LI><A HREF="gnat_ug.html#IDX43">pragma Elaborate</A>, <A HREF="gnat_ug.html#IDX274">pragma Elaborate</A>
<LI><A HREF="gnat_ug.html#IDX44">pragma Elaborate_All</A>, <A HREF="gnat_ug.html#IDX276">pragma Elaborate_All</A>
<LI><A HREF="gnat_ug.html#IDX37">pragma Elaborate_Body</A>, <A HREF="gnat_ug.html#IDX272">pragma Elaborate_Body</A>
<LI><A HREF="gnat_ug.html#IDX340">pragma Inline</A>
<LI><A HREF="gnat_ug.html#IDX39">pragma Preelaborate</A>, <A HREF="gnat_ug.html#IDX270">pragma Preelaborate</A>
<LI><A HREF="gnat_ug.html#IDX38">pragma Pure</A>, <A HREF="gnat_ug.html#IDX267">pragma Pure</A>
<LI><A HREF="gnat_ug.html#IDX40">pragma Remote_Call_Interface</A>
<LI><A HREF="gnat_ug.html#IDX41">pragma Remote_Types</A>
<LI><A HREF="gnat_ug.html#IDX42">pragma Shared_Passive</A>
<LI><A HREF="gnat_ug.html#IDX337">pragma Suppress</A>
<LI><A HREF="gnat_ug.html#IDX338">pragma Unsuppress</A>
<LI><A HREF="gnat_ug.html#IDX262">Pragmas, configuration</A>
<LI><A HREF="gnat_ug.html#IDX269">Preelaborate</A>
<LI><A HREF="gnat_ug.html#IDX35">Priority</A>
<LI><A HREF="gnat_ug.html#IDX268">Pure</A>
</DIR>
<H2>r</H2>
<DIR>
<LI><A HREF="gnat_ug.html#IDX250">Recompilation, by <CODE>gnatmake</CODE></A>
<LI><A HREF="gnat_ug.html#IDX83">RTL</A>, <A HREF="gnat_ug.html#IDX85">RTL</A>
</DIR>
<H2>s</H2>
<DIR>
<LI><A HREF="gnat_ug.html#IDX238">Search paths, for <CODE>gnatmake</CODE></A>
<LI><A HREF="gnat_ug.html#IDX23">Shift JIS Coding</A>
<LI><A HREF="gnat_ug.html#IDX13">Source file, end</A>
<LI><A HREF="gnat_ug.html#IDX242">Source files, suppressing search</A>
<LI><A HREF="gnat_ug.html#IDX158">Source files, use by binder</A>
<LI><A HREF="gnat_ug.html#IDX26">Source_File_Name pragma</A>
<LI><A HREF="gnat_ug.html#IDX258">Source_Reference</A>
<LI><A HREF="gnat_ug.html#IDX32">Standard</A>, <A HREF="gnat_ug.html#IDX33">Standard</A>, <A HREF="gnat_ug.html#IDX143">Standard</A>
<LI><A HREF="gnat_ug.html#IDX69">Stdcall</A>
<LI><A HREF="gnat_ug.html#IDX93">stderr</A>
<LI><A HREF="gnat_ug.html#IDX95">stdout</A>
<LI><A HREF="gnat_ug.html#IDX45">Stringt</A>
<LI><A HREF="gnat_ug.html#IDX71">Stubbed</A>
<LI><A HREF="gnat_ug.html#IDX142">Style</A>
<LI><A HREF="gnat_ug.html#IDX115">Style checking</A>
<LI><A HREF="gnat_ug.html#IDX14">SUB</A>
<LI><A HREF="gnat_ug.html#IDX28">Subunits</A>
<LI><A HREF="gnat_ug.html#IDX123">Suppress</A>, <A HREF="gnat_ug.html#IDX335">Suppress</A>
<LI><A HREF="gnat_ug.html#IDX121">Suppressing checks</A>
<LI><A HREF="gnat_ug.html#IDX199">System</A>, <A HREF="gnat_ug.html#IDX329">System</A>
<LI><A HREF="gnat_ug.html#IDX156">System.IO</A>
<LI><A HREF="gnat_ug.html#IDX166">System.Task_Specific_Data</A>
</DIR>
<H2>t</H2>
<DIR>
<LI><A HREF="gnat_ug.html#IDX321">task switching</A>
<LI><A HREF="gnat_ug.html#IDX319">tasks</A>
<LI><A HREF="gnat_ug.html#IDX179">Time stamp errors, in binder</A>
<LI><A HREF="gnat_ug.html#IDX300">tree file</A>
<LI><A HREF="gnat_ug.html#IDX301">tree output file</A>
<LI><A HREF="gnat_ug.html#IDX3">Typographical conventions</A>
</DIR>
<H2>u</H2>
<DIR>
<LI><A HREF="gnat_ug.html#IDX36">Uname</A>
<LI><A HREF="gnat_ug.html#IDX131">Unsuppress</A>, <A HREF="gnat_ug.html#IDX336">Unsuppress</A>
<LI><A HREF="gnat_ug.html#IDX22">Upper-Half Coding</A>
</DIR>
<H2>v</H2>
<DIR>
<LI><A HREF="gnat_ug.html#IDX167">Version</A>
<LI><A HREF="gnat_ug.html#IDX7">VT</A>
</DIR>
<H2>w</H2>
<DIR>
<LI><A HREF="gnat_ug.html#IDX104">Warning messages</A>
<LI><A HREF="gnat_ug.html#IDX176">Warnings</A>
<LI><A HREF="gnat_ug.html#IDX149">Writing internal trees</A>
</DIR>
</P>
<P><HR><P>
This document was generated on 2 July 1999 using the
<A HREF="http://wwwcn.cern.ch/dci/texi2html/">texi2html</A>
translator version 1.51.</P>
</BODY>
</HTML>
|