1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
|
/* Target-dependent code for MIPS systems running NetBSD.
Copyright 2002 Free Software Foundation, Inc.
Contributed by Wasabi Systems, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "gdbcore.h"
#include "regcache.h"
#include "target.h"
#include "value.h"
#include "osabi.h"
#include "nbsd-tdep.h"
#include "mipsnbsd-tdep.h"
#include "solib-svr4.h"
/* Conveniently, GDB uses the same register numbering as the
ptrace register structure used by NetBSD/mips. */
void
mipsnbsd_supply_reg (char *regs, int regno)
{
int i;
for (i = 0; i <= PC_REGNUM; i++)
{
if (regno == i || regno == -1)
{
if (CANNOT_FETCH_REGISTER (i))
supply_register (i, NULL);
else
supply_register (i, regs + (i * MIPS_REGSIZE));
}
}
}
void
mipsnbsd_fill_reg (char *regs, int regno)
{
int i;
for (i = 0; i <= PC_REGNUM; i++)
if ((regno == i || regno == -1) && ! CANNOT_STORE_REGISTER (i))
regcache_collect (i, regs + (i * MIPS_REGSIZE));
}
void
mipsnbsd_supply_fpreg (char *fpregs, int regno)
{
int i;
for (i = FP0_REGNUM; i <= FCRIR_REGNUM; i++)
{
if (regno == i || regno == -1)
{
if (CANNOT_FETCH_REGISTER (i))
supply_register (i, NULL);
else
supply_register (i, fpregs + ((i - FP0_REGNUM) * MIPS_REGSIZE));
}
}
}
void
mipsnbsd_fill_fpreg (char *fpregs, int regno)
{
int i;
for (i = FP0_REGNUM; i <= FCRCS_REGNUM; i++)
if ((regno == i || regno == -1) && ! CANNOT_STORE_REGISTER (i))
regcache_collect (i, fpregs + ((i - FP0_REGNUM) * MIPS_REGSIZE));
}
static void
fetch_core_registers (char *core_reg_sect, unsigned core_reg_size, int which,
CORE_ADDR ignore)
{
char *regs, *fpregs;
/* We get everything from one section. */
if (which != 0)
return;
regs = core_reg_sect;
fpregs = core_reg_sect + SIZEOF_STRUCT_REG;
/* Integer registers. */
mipsnbsd_supply_reg (regs, -1);
/* Floating point registers. */
mipsnbsd_supply_fpreg (regs, -1);
}
static void
fetch_elfcore_registers (char *core_reg_sect, unsigned core_reg_size, int which,
CORE_ADDR ignore)
{
switch (which)
{
case 0: /* Integer registers. */
if (core_reg_size != SIZEOF_STRUCT_REG)
warning ("Wrong size register set in core file.");
else
mipsnbsd_supply_reg (core_reg_sect, -1);
break;
case 2: /* Floating point registers. */
if (core_reg_size != SIZEOF_STRUCT_FPREG)
warning ("Wrong size register set in core file.");
else
mipsnbsd_supply_fpreg (core_reg_sect, -1);
break;
default:
/* Don't know what kind of register request this is; just ignore it. */
break;
}
}
static struct core_fns mipsnbsd_core_fns =
{
bfd_target_unknown_flavour, /* core_flavour */
default_check_format, /* check_format */
default_core_sniffer, /* core_sniffer */
fetch_core_registers, /* core_read_registers */
NULL /* next */
};
static struct core_fns mipsnbsd_elfcore_fns =
{
bfd_target_elf_flavour, /* core_flavour */
default_check_format, /* check_format */
default_core_sniffer, /* core_sniffer */
fetch_elfcore_registers, /* core_read_registers */
NULL /* next */
};
/* Under NetBSD/mips, signal handler invocations can be identified by the
designated code sequence that is used to return from a signal handler.
In particular, the return address of a signal handler points to the
following code sequence:
addu a0, sp, 16
li v0, 295 # __sigreturn14
syscall
Each instruction has a unique encoding, so we simply attempt to match
the instruction the PC is pointing to with any of the above instructions.
If there is a hit, we know the offset to the start of the designated
sequence and can then check whether we really are executing in the
signal trampoline. If not, -1 is returned, otherwise the offset from the
start of the return sequence is returned. */
#define RETCODE_NWORDS 3
#define RETCODE_SIZE (RETCODE_NWORDS * 4)
static const unsigned char sigtramp_retcode_mipsel[RETCODE_SIZE] =
{
0x10, 0x00, 0xa4, 0x27, /* addu a0, sp, 16 */
0x27, 0x01, 0x02, 0x24, /* li v0, 295 */
0x0c, 0x00, 0x00, 0x00, /* syscall */
};
static const unsigned char sigtramp_retcode_mipseb[RETCODE_SIZE] =
{
0x27, 0xa4, 0x00, 0x10, /* addu a0, sp, 16 */
0x24, 0x02, 0x01, 0x27, /* li v0, 295 */
0x00, 0x00, 0x00, 0x0c, /* syscall */
};
static LONGEST
mipsnbsd_sigtramp_offset (CORE_ADDR pc)
{
const char *retcode = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
? sigtramp_retcode_mipseb : sigtramp_retcode_mipsel;
unsigned char ret[RETCODE_SIZE], w[4];
LONGEST off;
int i;
if (read_memory_nobpt (pc, (char *) w, sizeof (w)) != 0)
return -1;
for (i = 0; i < RETCODE_NWORDS; i++)
{
if (memcmp (w, retcode + (i * 4), 4) == 0)
break;
}
if (i == RETCODE_NWORDS)
return -1;
off = i * 4;
pc -= off;
if (read_memory_nobpt (pc, (char *) ret, sizeof (ret)) != 0)
return -1;
if (memcmp (ret, retcode, RETCODE_SIZE) == 0)
return off;
return -1;
}
static int
mipsnbsd_pc_in_sigtramp (CORE_ADDR pc, char *func_name)
{
return (nbsd_pc_in_sigtramp (pc, func_name)
|| mipsnbsd_sigtramp_offset (pc) >= 0);
}
/* Figure out where the longjmp will land. We expect that we have
just entered longjmp and haven't yet setup the stack frame, so
the args are still in the argument regs. A0_REGNUM points at the
jmp_buf structure from which we extract the PC that we will land
at. The PC is copied into *pc. This routine returns true on
success. */
#define NBSD_MIPS_JB_PC (2 * 4)
#define NBSD_MIPS_JB_ELEMENT_SIZE MIPS_REGSIZE
#define NBSD_MIPS_JB_OFFSET (NBSD_MIPS_JB_PC * \
NBSD_MIPS_JB_ELEMENT_SIZE)
static int
mipsnbsd_get_longjmp_target (CORE_ADDR *pc)
{
CORE_ADDR jb_addr;
char *buf;
buf = alloca (NBSD_MIPS_JB_ELEMENT_SIZE);
jb_addr = read_register (A0_REGNUM);
if (target_read_memory (jb_addr + NBSD_MIPS_JB_OFFSET, buf,
NBSD_MIPS_JB_ELEMENT_SIZE))
return 0;
*pc = extract_address (buf, NBSD_MIPS_JB_ELEMENT_SIZE);
return 1;
}
static int
mipsnbsd_cannot_fetch_register (int regno)
{
return (regno >= FP_REGNUM
|| regno == ZERO_REGNUM
|| regno == FCRIR_REGNUM);
}
static int
mipsnbsd_cannot_store_register (int regno)
{
return (regno >= FP_REGNUM
|| regno == ZERO_REGNUM
|| regno == FCRIR_REGNUM);
}
/* NetBSD/mips uses a slightly different link_map structure from the
other NetBSD platforms. */
static struct link_map_offsets *
mipsnbsd_ilp32_solib_svr4_fetch_link_map_offsets (void)
{
static struct link_map_offsets lmo;
static struct link_map_offsets *lmp = NULL;
if (lmp == NULL)
{
lmp = &lmo;
lmo.r_debug_size = 16;
lmo.r_map_offset = 4;
lmo.r_map_size = 4;
lmo.link_map_size = 24;
lmo.l_addr_offset = 0;
lmo.l_addr_size = 4;
lmo.l_name_offset = 8;
lmo.l_name_size = 4;
lmo.l_next_offset = 16;
lmo.l_next_size = 4;
lmo.l_prev_offset = 20;
lmo.l_prev_size = 4;
}
return lmp;
}
static struct link_map_offsets *
mipsnbsd_lp64_solib_svr4_fetch_link_map_offsets (void)
{
static struct link_map_offsets lmo;
static struct link_map_offsets *lmp = NULL;
if (lmp == NULL)
{
lmp = &lmo;
lmo.r_debug_size = 32;
lmo.r_map_offset = 8;
lmo.r_map_size = 8;
lmo.link_map_size = 48;
lmo.l_addr_offset = 0;
lmo.l_addr_size = 8;
lmo.l_name_offset = 16;
lmo.l_name_size = 8;
lmo.l_next_offset = 32;
lmo.l_next_size = 8;
lmo.l_prev_offset = 40;
lmo.l_prev_size = 8;
}
return lmp;
}
static void
mipsnbsd_init_abi (struct gdbarch_info info,
struct gdbarch *gdbarch)
{
set_gdbarch_pc_in_sigtramp (gdbarch, mipsnbsd_pc_in_sigtramp);
set_gdbarch_get_longjmp_target (gdbarch, mipsnbsd_get_longjmp_target);
set_gdbarch_cannot_fetch_register (gdbarch, mipsnbsd_cannot_fetch_register);
set_gdbarch_cannot_store_register (gdbarch, mipsnbsd_cannot_store_register);
set_gdbarch_software_single_step (gdbarch, mips_software_single_step);
set_solib_svr4_fetch_link_map_offsets (gdbarch,
gdbarch_ptr_bit (gdbarch) == 32 ?
mipsnbsd_ilp32_solib_svr4_fetch_link_map_offsets :
mipsnbsd_lp64_solib_svr4_fetch_link_map_offsets);
}
void
_initialize_mipsnbsd_tdep (void)
{
gdbarch_register_osabi (bfd_arch_mips, GDB_OSABI_NETBSD_ELF,
mipsnbsd_init_abi);
add_core_fns (&mipsnbsd_core_fns);
add_core_fns (&mipsnbsd_elfcore_fns);
}
|