1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- E X P _ C H 3 --
-- --
-- B o d y --
-- --
-- $Revision: 1.357 $ --
-- --
-- Copyright (C) 1992-1997 Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
-- MA 02111-1307, USA. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- It is now maintained by Ada Core Technologies Inc (http://www.gnat.com). --
-- --
------------------------------------------------------------------------------
with Atree; use Atree;
with Checks; use Checks;
with Einfo; use Einfo;
with Elists; use Elists;
with Exp_Aggr; use Exp_Aggr;
with Exp_Ch4; use Exp_Ch4;
with Exp_Ch7; use Exp_Ch7;
with Exp_Ch9; use Exp_Ch9;
with Exp_Dbug; use Exp_Dbug;
with Exp_Disp; use Exp_Disp;
with Exp_Dist; use Exp_Dist;
with Exp_Pakd; use Exp_Pakd;
with Exp_Strm; use Exp_Strm;
with Exp_TSS; use Exp_TSS;
with Exp_Util; use Exp_Util;
with Expander; use Expander;
with Freeze; use Freeze;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Namet; use Namet;
with Opt; use Opt;
with Output; use Output;
with Rtsfind; use Rtsfind;
with Sem; use Sem;
with Sem_Ch3; use Sem_Ch3;
with Sem_Ch8; use Sem_Ch8;
with Sem_Ch13; use Sem_Ch13;
with Sem_Eval; use Sem_Eval;
with Sem_Mech; use Sem_Mech;
with Sem_Res; use Sem_Res;
with Sem_Util; use Sem_Util;
with Sinfo; use Sinfo;
with Stand; use Stand;
with Snames; use Snames;
with Tbuild; use Tbuild;
with Ttypes; use Ttypes;
with Uintp; use Uintp;
with Urealp; use Urealp;
package body Exp_Ch3 is
-----------------------
-- Local Subprograms --
-----------------------
procedure Build_Array_Init_Proc (A_Type : Entity_Id; Nod : Node_Id);
-- Build initialization procedure for given array type. Nod is a node
-- used for attachment of any actions required in its construction.
-- It also supplies the source location used for the procedure.
procedure Build_Class_Wide_Master (T : Entity_Id);
-- for access to class-wide limited types we must build a task master
-- because some subsequent extension may add a task component. To avoid
-- bringing in the tasking run-time whenever an access-to-class-wide
-- limited type is used, we use the soft-link mechanism and add a level
-- of indirection to calls to routines that manipulate Master_Ids.
function Build_Discriminant_Formals
(Rec_Id : Entity_Id;
Use_Dl : Boolean)
return List_Id;
-- This function uses the discriminants of a type to build a list of
-- formal parameters, used in the following function. If the flag Use_Dl
-- is set, the list is built using the already defined discriminals
-- of the type. Otherwise new identifiers are created, with the source
-- names of the discriminants.
procedure Build_Master_Renaming (N : Node_Id; T : Entity_Id);
-- If the designated type of an access type is a task type or contains
-- tasks, we make sure that a _Master variable is declared in the current
-- scope, and then declare a renaming for it:
--
-- atypeM : Master_Id renames _Master;
--
-- where atyp is the name of the access type. This declaration is
-- used when an allocator for the access type is expanded. The node N
-- is the full declaration of the designated type that contains tasks.
-- The renaming declaration is inserted before N, and after the Master
-- declaration.
procedure Build_Record_Init_Proc (N : Node_Id; Pe : Entity_Id);
-- Build record initialization procedure. N is the type declaration
-- node, and Pe is the corresponding entity for the record type.
procedure Build_Variant_Record_Equality (Typ : Entity_Id);
-- Create An Equality function for the non-tagged variant record 'Typ'
-- and attach it to the TSS list
procedure Expand_Tagged_Root (T : Entity_Id);
-- Add a field _Tag at the beginning of the record. This field carries
-- the value of the access to the Dispatch table. This procedure is only
-- called on root (non CPP_Class) types, the _Tag field being inherited
-- by the descendants.
procedure Expand_Record_Controller (T : Entity_Id);
-- T must be a record type that Has_Controlled_Component. Add a field _C
-- of type Record_Controller or Limited_Record_Controller in the record T.
procedure Freeze_Array_Type (N : Node_Id);
-- Freeze an array type. Deals with building the initialization procedure,
-- creating the packed array type for a packed array and also with the
-- creation of the controlling procedures for the controlled case. The
-- argument N is the N_Freeze_Entity node for the type.
procedure Freeze_Enumeration_Type (N : Node_Id);
-- Freeze enumeration type with non-standard representation. Builds the
-- array and function needed to convert between enumeration pos and
-- enumeration representation values. N is the N_Freeze_Entity node
-- for the type.
procedure Freeze_Record_Type (N : Node_Id);
-- Freeze record type. Builds all necessary discriminant checking
-- and other ancillary functions, and builds dispatch tables where
-- needed. The argument N is the N_Freeze_Entity node. This processing
-- applies only to E_Record_Type entities, not to class wide types,
-- record subtypes, or private types.
function Init_Formals (Typ : Entity_Id) return List_Id;
-- This function builds the list of formals for an initialization routine.
-- The first formal is always _Init with the given type. For task value
-- record types and types containing tasks, three additional formals are
-- added:
--
-- _Master : Master_Id
-- _Chain : in out Activation_Chain
-- _Task_Id : Task_Image_Type
--
-- The caller must append additional entries for discriminants if required.
function In_Runtime (E : Entity_Id) return Boolean;
-- Check if E is defined in the RTL (in a child of Ada or System). Used
-- to avoid to bring in the overhead of _Input, _Output for tagged types.
function Make_Eq_Case (Loc : Source_Ptr; CL : Node_Id) return List_Id;
-- Building block for variant record equality. Defined to share the
-- code between the tagged and non-tagged case. Given a Component_List
-- node CL, it generates a 'if' followed by a 'case' statement that
-- compares all components of 'X' and 'Y' (that are supposed to be
-- formals at some upper level)
function Make_Eq_If (Loc : Source_Ptr; L : List_Id) return Node_Id;
-- Building block for variant record equality. Defined to share the
-- code between the tagged and non-tagged case. Given the list of
-- components (or discriminants) L, it generates a return statement
-- that compares all components of X and Y (that are supposed to be
-- formals at some upper level).
-- No comprendo! what are X and Y ???, same for Make_Eq_Case
procedure Make_Predefined_Primitive_Specs
(Tag_Typ : Entity_Id;
Predef_List : out List_Id;
Renamed_Eq : out Node_Id);
-- Create a list with the specs of the predefined primitive operations.
-- This list contains _Size, _Read, _Write, _Input and _Output for
-- every tagged types, plus _equality, _assign, _deep_finalize and
-- _deep_adjust for non limited tagged types. _Size, _Read, _Write,
-- _Input and _Output implement the corresponding attributes that need
-- to be dispatching when their arguments are classwide. _equality and
-- _assign, implement equality and assignment that also must be
-- dispatching. _Deep_Finalize and _Deep_Adjust are empty procedures
-- unless the type contains some controlled components that require
-- finalization actions. The list is returned in Predef_List. The
-- parameter Renamed_Eq either returns the value Empty, or else the
-- defining unit name for the predefined equality function in the
-- case where the type has a primitive operation that is a renaming
-- of predefined equality (but only if there is also an overriding
-- user-defined equality function). The returned Renamed_Eq will be
-- passed to the corresponding parameter of Predefined_Primitive_Bodies.
function Predef_Spec_Or_Body
(Loc : Source_Ptr;
Tag_Typ : Entity_Id;
Name : Name_Id;
Profile : List_Id;
Ret_Type : Entity_Id := Empty;
For_Body : Boolean := False)
return Node_Id;
-- This function generates the appropriate expansion for a predefined
-- primitive operation specified by its name, parameter profile and
-- return type (Empty means this is a procedure). If For_Body is false,
-- then the returned node is a subprogram declaration. If For_Body is
-- true, then the returned node is a empty subprogram body containing
-- no declarations and no statements.
function Predef_Stream_Attr_Spec
(Loc : Source_Ptr;
Tag_Typ : Entity_Id;
Name : Name_Id;
For_Body : Boolean := False)
return Node_Id;
-- Specialized version of Predef_Spec_Or_Body that apply to _read, _write,
-- _input and _output whose specs are constructed in Exp_Strm.
function Predef_Deep_Spec
(Loc : Source_Ptr;
Tag_Typ : Entity_Id;
Name : Name_Id;
For_Body : Boolean := False)
return Node_Id;
-- Specialized version of Predef_Spec_Or_Body that apply to _deep_adjust
-- and _deep_finalize
function Predefined_Primitive_Bodies
(Tag_Typ : Entity_Id; Renamed_Eq : Node_Id) return List_Id;
-- Create the bodies of the predefined primitives that are described in
-- Predefined_Primitive_Specs. When not empty, Renamed_Eq must denote
-- the defining unit name of the type's predefined equality as returned
-- by Make_Predefined_Primitive_Specs.
function Predefined_Primitive_Freeze (Tag_Typ : Entity_Id) return List_Id;
-- Freeze entities of all predefined primitive operations. This is needed
-- because the bodies of these operations do not normally do any freezeing.
---------------------------
-- Build_Array_Init_Proc --
---------------------------
procedure Build_Array_Init_Proc (A_Type : Entity_Id; Nod : Node_Id) is
Loc : constant Source_Ptr := Sloc (Nod);
Comp_Type : constant Entity_Id := Component_Type (A_Type);
Index_List : List_Id;
Proc_Id : Entity_Id;
Proc_Body : Node_Id;
function Init_Component return List_Id;
-- Create one statement to initialize one array component, designated
-- by a full set of indices.
function Init_One_Dimension (N : Int) return List_Id;
-- Create loop to initialize one dimension of the array. The single
-- statement in the body of the loop initializes the inner dimensions if
-- any,or else a single component.
--------------------
-- Init_Component --
--------------------
function Init_Component return List_Id is
Comp : Node_Id;
begin
Comp :=
Make_Indexed_Component (Loc,
Prefix => Make_Identifier (Loc, Name_uInit),
Expressions => Index_List);
if Needs_Simple_Initialization (Comp_Type) then
Set_Assignment_OK (Comp);
return New_List (
Make_Assignment_Statement (Loc,
Name => Comp,
Expression => Get_Simple_Init_Val (Comp_Type, Loc)));
else
return
Build_Initialization_Call (Loc, Comp, Comp_Type, True, A_Type);
end if;
end Init_Component;
------------------------
-- Init_One_Dimension --
------------------------
function Init_One_Dimension (N : Int) return List_Id is
Index : Entity_Id;
begin
if N > Number_Dimensions (A_Type) then
return Init_Component;
else
Index :=
Make_Defining_Identifier (Loc, New_External_Name ('J', N));
Append (New_Reference_To (Index, Loc), Index_List);
return New_List (
Make_Loop_Statement (Loc,
Identifier => Empty,
Iteration_Scheme =>
Make_Iteration_Scheme (Loc,
Loop_Parameter_Specification =>
Make_Loop_Parameter_Specification (Loc,
Defining_Identifier => Index,
Discrete_Subtype_Definition =>
Make_Attribute_Reference (Loc,
Prefix => Make_Identifier (Loc, Name_uInit),
Attribute_Name => Name_Range,
Expressions => New_List (
Make_Integer_Literal (Loc, UI_From_Int (N)))))),
Statements => Init_One_Dimension (N + 1)));
end if;
end Init_One_Dimension;
-- Start of processing for Build_Array_Init_Proc
begin
if Suppress_Init_Proc (A_Type) then
return;
end if;
Index_List := New_List;
if Present (Base_Init_Proc (Comp_Type))
or else Needs_Simple_Initialization (Comp_Type)
or else Has_Task (Comp_Type)
then
Proc_Id :=
Make_Defining_Identifier (Loc, Name_uInit_Proc);
Proc_Body :=
Make_Subprogram_Body (Loc,
Specification =>
Make_Procedure_Specification (Loc,
Defining_Unit_Name => Proc_Id,
Parameter_Specifications => Init_Formals (A_Type)),
Declarations => New_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => Init_One_Dimension (1)));
Set_Init_Proc (A_Type, Proc_Id);
Set_Ekind (Proc_Id, E_Procedure);
Set_Is_Public (Proc_Id, Is_Public (A_Type));
Set_Is_Inlined (Proc_Id);
Set_Is_Internal (Proc_Id);
Set_Has_Completion (Proc_Id);
end if;
end Build_Array_Init_Proc;
------------------------------------
-- Build_Variant_Record_Equality --
------------------------------------
-- Generates:
--
-- function _Equality (X, Y : T) return Boolean is
-- begin
--
-- -- Compare discriminants
--
-- if False or else X.D1 /= Y.D1 or else X.D2 /= Y.D2 then
-- return False;
-- end if;
--
-- -- Compare components
--
-- if False or else X.C1 /= Y.C1 or else X.C2 /= Y.C2 then
-- return False;
-- end if;
--
-- -- Compare variant part
--
-- case X.D1 is
-- when V1 =>
-- if False or else X.C2 /= Y.C2 or else X.C3 /= Y.C3 then
-- return False;
-- end if;
-- ...
-- when Vn =>
-- if False or else X.Cn /= Y.Cn then
-- return False;
-- end if;
-- end case;
-- return True;
-- end _Equality;
procedure Build_Variant_Record_Equality (Typ : Entity_Id) is
Loc : constant Source_Ptr := Sloc (Typ);
F : constant Entity_Id := Make_Defining_Identifier (Loc,
Name_uEquality);
X : constant Entity_Id := Make_Defining_Identifier (Loc, Name_X);
Y : constant Entity_Id := Make_Defining_Identifier (Loc, Name_Y);
Def : constant Node_Id := Parent (Typ);
Comps : constant Node_Id := Component_List (Type_Definition (Def));
Function_Body : Node_Id;
Stmts : List_Id := New_List;
begin
Function_Body :=
Make_Subprogram_Body (Loc,
Specification =>
Make_Function_Specification (Loc,
Defining_Unit_Name => F,
Parameter_Specifications => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => X,
Parameter_Type => New_Reference_To (Typ, Loc)),
Make_Parameter_Specification (Loc,
Defining_Identifier => Y,
Parameter_Type => New_Reference_To (Typ, Loc))),
Subtype_Mark => New_Reference_To (Standard_Boolean, Loc)),
Declarations => New_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => Stmts));
-- For unchecked union case, raise program error. This will only
-- happen in the case of dynamic dispatching for a tagged type,
-- since in the static cases it is a compile time error.
if Has_Unchecked_Union (Typ) then
Append_To (Stmts,
Make_Raise_Program_Error (Loc));
else
Append_To (Stmts,
Make_Eq_If (Loc,
Discriminant_Specifications (Def)));
Append_List_To (Stmts,
Make_Eq_Case (Loc, Comps));
end if;
Append_To (Stmts,
Make_Return_Statement (Loc,
Expression => New_Reference_To (Standard_True, Loc)));
Set_TSS (Typ, F);
Set_Is_Pure (F);
end Build_Variant_Record_Equality;
-------------------------
-- Get_Simple_Init_Val --
-------------------------
function Get_Simple_Init_Val
(T : Entity_Id;
Loc : Source_Ptr)
return Node_Id
is
Val : Node_Id;
Typ : Node_Id;
begin
-- For scalars, we must have normalize scalars case
if Is_Scalar_Type (T) then
pragma Assert (Normalize_Scalars);
-- First prepare a value (out of subtype range if possible)
if Is_Real_Type (T) or else Is_Integer_Type (T) then
Val :=
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Base_Type (T), Loc),
Attribute_Name => Name_First);
elsif Is_Modular_Integer_Type (T) then
Val :=
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Base_Type (T), Loc),
Attribute_Name => Name_Last);
else
pragma Assert (Is_Enumeration_Type (T));
if Esize (T) <= 8 then
Typ := RTE (RE_Unsigned_8);
elsif Esize (T) <= 16 then
Typ := RTE (RE_Unsigned_16);
elsif Esize (T) <= 32 then
Typ := RTE (RE_Unsigned_32);
else
Typ := RTE (RE_Unsigned_64);
end if;
Val :=
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Typ, Loc),
Attribute_Name => Name_Last);
end if;
-- The final expression is obtained by doing an unchecked
-- conversion of this result to the required subtype.
return Unchecked_Convert_To (T, Val);
-- Access type is initialized to null
elsif Is_Access_Type (T) then
return
Make_Null (Loc);
-- We initialize modular packed bit arrays to zero, to make sure that
-- unused bits are zero, as required (see spec of Exp_Pakd). Also note
-- that this improves gigi code, since the value tracing knows that
-- all bits of the variable start out at zero. The value of zero has
-- to be unchecked converted to the proper array type.
elsif Is_Bit_Packed_Array (T) then
declare
PAT : constant Entity_Id := Packed_Array_Type (T);
Nod : Node_Id;
begin
pragma Assert (Is_Modular_Integer_Type (PAT));
Nod :=
Make_Unchecked_Type_Conversion (Loc,
Subtype_Mark => New_Occurrence_Of (T, Loc),
Expression => Make_Integer_Literal (Loc, Uint_0));
Set_Etype (Expression (Nod), PAT);
return Nod;
end;
-- Otherwise we have a case of a private type whose underlying type
-- needs simple initialization. In this case, we get the value for
-- the underlying type, then unchecked convert to the private type.
else
pragma Assert
(Is_Private_Type (T)
and then Present (Underlying_Type (T)));
Val := Get_Simple_Init_Val (Underlying_Type (T), Loc);
-- A special case, if the underlying value is null, then qualify
-- it with the underlying type, so that the null is properly typed
if Nkind (Val) = N_Null then
Val :=
Make_Qualified_Expression (Loc,
Subtype_Mark =>
New_Occurrence_Of (Underlying_Type (T), Loc),
Expression => Val);
end if;
return Unchecked_Convert_To (T, Val);
end if;
end Get_Simple_Init_Val;
------------------
-- Make_Eq_Case --
------------------
-- <Make_Eq_if shared components>
-- case X.D1 is
-- when V1 => <Make_Eq_Case> on subcomponents
-- ...
-- when Vn => <Make_Eq_Case> on subcomponents
-- end case;
function Make_Eq_Case (Loc : Source_Ptr; CL : Node_Id) return List_Id is
Variant : Node_Id;
Alt_List : List_Id;
Result : List_Id := New_List;
begin
Append_To (Result, Make_Eq_If (Loc, Component_Items (CL)));
if No (Variant_Part (CL)) then
return Result;
end if;
Variant := First_Non_Pragma (Variants (Variant_Part (CL)));
if No (Variant) then
return Result;
end if;
Alt_List := New_List;
while Present (Variant) loop
Append_To (Alt_List,
Make_Case_Statement_Alternative (Loc,
Discrete_Choices => New_List_Copy (Discrete_Choices (Variant)),
Statements => Make_Eq_Case (Loc, Component_List (Variant))));
Variant := Next_Non_Pragma (Variant);
end loop;
Append_To (Result,
Make_Case_Statement (Loc,
Expression =>
Make_Selected_Component (Loc,
Prefix => Make_Identifier (Loc, Name_X),
Selector_Name => New_Copy (Name (Variant_Part (CL)))),
Alternatives => Alt_List));
return Result;
end Make_Eq_Case;
----------------
-- Make_Eq_If --
----------------
-- Generates:
-- if
-- X.C1 /= Y.C1
-- or else
-- X.C2 /= Y.C2
-- ...
-- then
-- return False;
-- end if;
-- or a null statement if the list L is empty
function Make_Eq_If (Loc : Source_Ptr; L : List_Id) return Node_Id is
C : Node_Id;
Field_Name : Name_Id;
Cond : Node_Id;
begin
if No (L) then
return Make_Null_Statement (Loc);
else
Cond := Empty;
C := First_Non_Pragma (L);
while Present (C) loop
Field_Name := Chars (Defining_Identifier (C));
-- The tags must not be compared they are not part of
-- the value. Note also that in the following, we use
-- Make_Identifier for the component names. Use of
-- New_Reference_To to identify the components would be
-- incorrect because the wrong entities for
-- discriminants could be picked up in the private type
-- case.
if Field_Name /= Name_uTag then
Evolve_Or_Else (Cond,
Make_Op_Ne (Loc,
Left_Opnd =>
Make_Selected_Component (Loc,
Prefix => Make_Identifier (Loc, Name_X),
Selector_Name =>
Make_Identifier (Loc, Field_Name)),
Right_Opnd =>
Make_Selected_Component (Loc,
Prefix => Make_Identifier (Loc, Name_Y),
Selector_Name =>
Make_Identifier (Loc, Field_Name))));
end if;
C := Next_Non_Pragma (C);
end loop;
if No (Cond) then
return Make_Null_Statement (Loc);
else
return
Make_If_Statement (Loc,
Condition => Cond,
Then_Statements => New_List (
Make_Return_Statement (Loc,
Expression => New_Occurrence_Of (Standard_False, Loc))));
end if;
end if;
end Make_Eq_If;
-----------------------------
-- Build_Class_Wide_Master --
-----------------------------
procedure Build_Class_Wide_Master (T : Entity_Id) is
Loc : constant Source_Ptr := Sloc (T);
M_Id : Entity_Id;
Decl : Node_Id;
P : Node_Id;
begin
-- Nothing to do if we already built a master entity for this scope
if not Has_Master_Entity (Scope (T)) then
-- first build the master entity
-- _Master : constant Master_Id := Current_Master;
-- and insert it just before the current declaration
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_uMaster),
Constant_Present => True,
Object_Definition => New_Reference_To (Standard_Integer, Loc),
Expression =>
Make_Explicit_Dereference (Loc,
Prefix => New_Reference_To (RTE (RE_Current_Master), Loc)));
P := Parent (T);
Insert_Before (P, Decl);
Analyze (Decl);
Set_Has_Master_Entity (Scope (T));
-- Now mark the containing scope as a task master
while Nkind (P) /= N_Compilation_Unit loop
P := Parent (P);
-- If we fall off the top, we are at the outer level, and the
-- environment task is our effective master, so nothing to mark.
if Nkind (P) = N_Task_Body
or else Nkind (P) = N_Block_Statement
or else Nkind (P) = N_Subprogram_Body
then
Set_Is_Task_Master (P, True);
exit;
end if;
end loop;
end if;
-- Now define the renaming of the master_id.
M_Id :=
Make_Defining_Identifier (Loc,
New_External_Name (Chars (T), 'M'));
Decl :=
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => M_Id,
Subtype_Mark => New_Reference_To (Standard_Integer, Loc),
Name => Make_Identifier (Loc, Name_uMaster));
Insert_Before (Parent (T), Decl);
Analyze (Decl);
Set_Master_Id (T, M_Id);
end Build_Class_Wide_Master;
--------------------------------
-- Build_Discriminant_Formals --
--------------------------------
function Build_Discriminant_Formals
(Rec_Id : Entity_Id;
Use_Dl : Boolean)
return List_Id
is
D : Entity_Id;
Formal : Entity_Id;
Loc : Source_Ptr := Sloc (Rec_Id);
Param_Spec_Node : Node_Id;
Parameter_List : List_Id := New_List;
begin
if Has_Discriminants (Rec_Id) then
D := First_Discriminant (Rec_Id);
while Present (D) loop
Loc := Sloc (D);
if Use_Dl then
Formal := Discriminal (D);
else
Formal := Make_Defining_Identifier (Loc, Chars (D));
end if;
Param_Spec_Node :=
Make_Parameter_Specification (Loc,
Defining_Identifier => Formal,
Parameter_Type =>
New_Reference_To (Etype (D), Loc));
Append (Param_Spec_Node, Parameter_List);
D := Next_Discriminant (D);
end loop;
end if;
return Parameter_List;
end Build_Discriminant_Formals;
--------------------------------
-- Build_Discr_Checking_Funcs --
--------------------------------
procedure Build_Discr_Checking_Funcs (N : Node_Id) is
Rec_Id : Entity_Id;
Loc : Source_Ptr;
Enclosing_Func_Id : Entity_Id;
Sequence : Nat := 1;
Type_Def : Node_Id;
V : Node_Id;
function Build_Case_Statement
(Case_Id : Entity_Id;
Variant : Node_Id)
return Node_Id;
-- Need documentation for this spec ???
function Build_Dcheck_Function
(Case_Id : Entity_Id;
Variant : Node_Id)
return Entity_Id;
-- Build the discriminant checking function for a given variant
procedure Build_Dcheck_Functions (Variant_Part_Node : Node_Id);
-- Builds the discriminant checking function for each variant of the
-- given variant part of the record type.
--------------------------
-- Build_Case_Statement --
--------------------------
function Build_Case_Statement
(Case_Id : Entity_Id;
Variant : Node_Id)
return Node_Id
is
Actuals_List : List_Id;
Alt_List : List_Id := New_List;
Case_Node : Node_Id;
Case_Alt_Node : Node_Id;
Choice : Node_Id;
Choice_List : List_Id;
D : Entity_Id;
Return_Node : Node_Id;
begin
-- Build a case statement containing only two alternatives. The
-- first alternative corresponds exactly to the discrete choices
-- given on the variant with contains the components that we are
-- generating the checks for. If the discriminant is one of these
-- return False. The other alternative consists of the choice
-- "Others" and will return True indicating the discriminant did
-- not match.
Case_Node := New_Node (N_Case_Statement, Loc);
-- Replace the discriminant which controls the variant, with the
-- name of the formal of the checking function.
Set_Expression (Case_Node,
Make_Identifier (Loc, Chars (Case_Id)));
Choice := First (Discrete_Choices (Variant));
if Nkind (Choice) = N_Others_Choice then
Choice_List := New_List_Copy (Others_Discrete_Choices (Choice));
else
Choice_List := New_List_Copy (Discrete_Choices (Variant));
end if;
if not Is_Empty_List (Choice_List) then
Case_Alt_Node := New_Node (N_Case_Statement_Alternative, Loc);
Set_Discrete_Choices (Case_Alt_Node, Choice_List);
-- In case this is a nested variant, we need to return the result
-- of the discriminant checking function for the immediately
-- enclosing variant.
if Present (Enclosing_Func_Id) then
Actuals_List := New_List;
D := First_Discriminant (Rec_Id);
while Present (D) loop
Append (Make_Identifier (Loc, Chars (D)), Actuals_List);
D := Next_Discriminant (D);
end loop;
Return_Node :=
Make_Return_Statement (Loc,
Expression =>
Make_Function_Call (Loc,
Name =>
New_Reference_To (Enclosing_Func_Id, Loc),
Parameter_Associations =>
Actuals_List));
else
Return_Node :=
Make_Return_Statement (Loc,
Expression =>
New_Reference_To (Standard_False, Loc));
end if;
Set_Statements (Case_Alt_Node, New_List (Return_Node));
Append (Case_Alt_Node, Alt_List);
end if;
Case_Alt_Node := New_Node (N_Case_Statement_Alternative, Loc);
Choice_List := New_List (New_Node (N_Others_Choice, Loc));
Set_Discrete_Choices (Case_Alt_Node, Choice_List);
Return_Node :=
Make_Return_Statement (Loc,
Expression =>
New_Reference_To (Standard_True, Loc));
Set_Statements (Case_Alt_Node, New_List (Return_Node));
Append (Case_Alt_Node, Alt_List);
Set_Alternatives (Case_Node, Alt_List);
return Case_Node;
end Build_Case_Statement;
---------------------------
-- Build_Dcheck_Function --
---------------------------
function Build_Dcheck_Function
(Case_Id : Entity_Id;
Variant : Node_Id)
return Entity_Id
is
Body_Node : Node_Id;
Func_Id : Entity_Id;
Parameter_List : List_Id;
Spec_Node : Node_Id;
begin
Body_Node := New_Node (N_Subprogram_Body, Loc);
Sequence := Sequence + 1;
Func_Id :=
Make_Defining_Identifier (Loc,
Chars => New_External_Name (Chars (Rec_Id), 'D', Sequence));
Spec_Node := New_Node (N_Function_Specification, Loc);
Set_Defining_Unit_Name (Spec_Node, Func_Id);
Parameter_List := Build_Discriminant_Formals (Rec_Id, False);
Set_Parameter_Specifications (Spec_Node, Parameter_List);
Set_Subtype_Mark (Spec_Node,
New_Reference_To (Standard_Boolean, Loc));
Set_Specification (Body_Node, Spec_Node);
Set_Declarations (Body_Node, New_List);
Set_Handled_Statement_Sequence (Body_Node,
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (
Build_Case_Statement (Case_Id, Variant))));
Set_Ekind (Func_Id, E_Function);
Set_Mechanism (Func_Id, Default_Mechanism);
Set_Is_Inlined (Func_Id, True);
Set_Is_Pure (Func_Id, True);
Set_Is_Public (Func_Id, Is_Public (Rec_Id));
Set_Is_Internal (Func_Id, True);
Append_Freeze_Action (Rec_Id, Body_Node);
return Func_Id;
end Build_Dcheck_Function;
----------------------------
-- Build_Dcheck_Functions --
----------------------------
procedure Build_Dcheck_Functions (Variant_Part_Node : Node_Id) is
Component_List_Node : Node_Id;
Decl : Entity_Id;
Discr_Name : Entity_Id;
Func_Id : Entity_Id;
Variant : Node_Id;
Saved_Enclosing_Func_Id : Entity_Id;
begin
-- Build the discriminant checking function for each variant, label
-- all components of that variant with the function's name.
Discr_Name := Entity (Name (Variant_Part_Node));
Variant := First_Non_Pragma (Variants (Variant_Part_Node));
while Present (Variant) loop
Func_Id := Build_Dcheck_Function (Discr_Name, Variant);
Component_List_Node := Component_List (Variant);
if not Null_Present (Component_List_Node) then
Decl :=
First_Non_Pragma (Component_Items (Component_List_Node));
while Present (Decl) loop
Set_Discriminant_Checking_Func
(Defining_Identifier (Decl), Func_Id);
Decl := Next_Non_Pragma (Decl);
end loop;
if Present (Variant_Part (Component_List_Node)) then
Saved_Enclosing_Func_Id := Enclosing_Func_Id;
Enclosing_Func_Id := Func_Id;
Build_Dcheck_Functions (Variant_Part (Component_List_Node));
Enclosing_Func_Id := Saved_Enclosing_Func_Id;
end if;
end if;
Variant := Next_Non_Pragma (Variant);
end loop;
end Build_Dcheck_Functions;
-- Start of processing for Build_Discr_Checking_Funcs
begin
Type_Def := Type_Definition (N);
pragma Assert (Nkind (Type_Def) = N_Record_Definition
or else Nkind (Type_Def) = N_Derived_Type_Definition);
if Nkind (Type_Def) = N_Record_Definition then
if No (Component_List (Type_Def)) then -- null record.
return;
else
V := Variant_Part (Component_List (Type_Def));
end if;
else -- Nkind (Type_Def) = N_Derived_Type_Definition
if No (Component_List (Record_Extension_Part (Type_Def))) then
return;
else
V := Variant_Part
(Component_List (Record_Extension_Part (Type_Def)));
end if;
end if;
Rec_Id := Defining_Identifier (N);
if Present (V) and then not Is_Unchecked_Union (Rec_Id) then
Loc := Sloc (N);
Enclosing_Func_Id := Empty;
Build_Dcheck_Functions (V);
end if;
end Build_Discr_Checking_Funcs;
----------------------------
-- Build_Record_Init_Proc --
----------------------------
procedure Build_Record_Init_Proc (N : Node_Id; Pe : Entity_Id) is
Loc : Source_Ptr := Sloc (N);
Proc_Id : Entity_Id;
Rec_Type : Entity_Id;
function Build_Assignment (Id : Entity_Id; N : Node_Id) return List_Id;
-- Build a assignment statement node which assigns to record
-- component its default expression if defined. The left hand side
-- of the assignment is marked Assignment_OK so that initialization
-- of limited private records works correctly, Return also the
-- adjustment call for controlled objects
procedure Build_Discriminant_Assignments (Statement_List : List_Id);
-- If the record has discriminants, adds assignment statements to
-- statement list to initialize the discriminant values from the
-- arguments of the initialization procedure.
function Build_Init_Statements (Comp_List : Node_Id) return List_Id;
-- Build a list representing a sequence of statements which initialize
-- components of the given component list. This may involve building
-- case statements for the variant parts.
function Build_Init_Call_Thru
(Parameters : List_Id)
return List_Id;
-- Given a non-tagged type-derivation that declares discriminants,
-- such as
--
-- type R (R1, R2 : Integer) is record ... end record;
--
-- type D (D1 : Integer) is new R (1, D1);
--
-- we make the _init_proc of D be
--
-- procedure _init_proc(X : D; D1 : Integer) is
-- begin
-- _init_proc( R(X), 1, D1);
-- end _init_proc;
--
-- This function builds the call statement in this _init_proc.
procedure Build_Init_Procedure;
-- Build the tree corresponding to the procedure specification and body
-- of the initialization procedure (by calling all the preceding
-- auxillary routines), and install it as the _init TSS.
procedure Build_Record_Checks
(S : Node_Id;
Related_Nod : Node_Id;
Check_List : List_Id);
-- Add range checks to components of disciminated records. S is a
-- subtype indication of a record component. Related_Nod is passed
-- for compatibility with Process_Range_Expr_In_Decl. Check_List is
-- a list to which the check actions are appended.
function Component_Needs_Simple_Initialization
(T : Entity_Id)
return Boolean;
-- Determines if a component needs simple initialization, given its
-- type T. This is identical to Needs_Simple_Initialization, except
-- that the types Tag and Vtable_Ptr, which are access types which
-- would normally require simple initialization to null, do not
-- require initialization as components, since they are explicitly
-- initialized by other means.
procedure Constrain_Array
(SI : Node_Id;
Related_Nod : Node_Id;
Check_List : List_Id);
-- Called from Build_Record_Checks.
-- Apply a list of index constraints to an unconstrained array type.
-- The first parameter is the entity for the resulting subtype.
-- Related_Nod is passed for compatibility with Process_Range_Expr_In_
-- Decl. Check_List is a list to which the check actions are appended.
procedure Constrain_Index
(Index : Node_Id;
S : Node_Id;
Related_Nod : Node_Id;
Check_List : List_Id);
-- Called from Build_Record_Checks.
-- Process an index constraint in a constrained array declaration.
-- The constraint can be a subtype name, or a range with or without
-- an explicit subtype mark. The index is the corresponding index of the
-- unconstrained array. S is the range expression. Check_List is a list
-- to which the check actions are appended.
function Parent_Subtype_Renaming_Discrims return Boolean;
-- Returns True for base types N that rename discriminants, else False
function Requires_Init_Proc (Rec_Id : Entity_Id) return Boolean;
-- Determines whether a record initialization procedure needs to be
-- generated for the given record type.
----------------------
-- Build_Assignment --
----------------------
function Build_Assignment (Id : Entity_Id; N : Node_Id) return List_Id is
Lhs : Node_Id;
Typ : constant Entity_Id := Underlying_Type (Etype (Id));
Res : List_Id;
begin
Loc := Sloc (N);
Lhs :=
Make_Selected_Component (Loc,
Prefix => Make_Identifier (Loc, Name_uInit),
Selector_Name => New_Occurrence_Of (Id, Loc));
Set_Assignment_OK (Lhs);
Res := New_List (
Make_Assignment_Statement (Loc,
Name => Lhs,
Expression => N));
Set_No_Ctrl_Actions (First (Res));
-- Adjust the tag if tagged (because of possible view conversions)
if Is_Tagged_Type (Typ) then
Append_To (Res,
Make_Assignment_Statement (Loc,
Name =>
Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (Lhs),
Selector_Name =>
New_Reference_To (Tag_Component (Typ), Loc)),
Expression =>
Unchecked_Convert_To (RTE (RE_Tag),
New_Reference_To (Access_Disp_Table (Typ), Loc))));
end if;
-- Adjust the component if controlled
if Controlled_Type (Typ) then
Append_List_To (Res,
Make_Adjust_Call (
Ref => New_Copy_Tree (Lhs),
Typ => Etype (Id),
Flist_Ref =>
Find_Final_List (Etype (Id), New_Copy_Tree (Lhs)),
With_Attach => Make_Integer_Literal (Loc, Uint_1)));
end if;
return Res;
end Build_Assignment;
------------------------------------
-- Build_Discriminant_Assignments --
------------------------------------
procedure Build_Discriminant_Assignments (Statement_List : List_Id) is
D : Entity_Id;
Is_Tagged : constant Boolean := Is_Tagged_Type (Rec_Type);
begin
if Has_Discriminants (Rec_Type)
and then not Is_Unchecked_Union (Rec_Type)
then
D := First_Discriminant (Rec_Type);
while Present (D) loop
-- Don't generate the assignment for discriminants in derived
-- tagged types if the discriminant is a renaming of some
-- ancestor discriminant. This initialization will be done
-- when initializing the _parent field of the derived record.
if Is_Tagged and then
Present (Corresponding_Discriminant (D))
then
null;
else
Loc := Sloc (D);
Append_List_To (Statement_List,
Build_Assignment (D,
New_Reference_To (Discriminal (D), Loc)));
end if;
D := Next_Discriminant (D);
end loop;
end if;
end Build_Discriminant_Assignments;
--------------------------
-- Build_Init_Call_Thru --
--------------------------
function Build_Init_Call_Thru
(Parameters : List_Id)
return List_Id
is
Parent_Proc : constant Entity_Id :=
Base_Init_Proc (Etype (Rec_Type));
Parent_Type : constant Entity_Id :=
Etype (First_Formal (Parent_Proc));
Uparent_Type : constant Entity_Id :=
Underlying_Type (Parent_Type);
First_Discr_Param : Node_Id;
Parent_Discr : Entity_Id;
First_Arg : Node_Id;
Args : List_Id;
Arg : Node_Id;
Res : List_Id;
begin
-- First argument (_Init) is the object to be initialized.
-- ??? I'm not sure where to get a reasonable Loc for First_Arg
First_Arg :=
OK_Convert_To (Parent_Type,
New_Reference_To (Defining_Identifier (First (Parameters)), Loc));
Set_Etype (First_Arg, Parent_Type);
Args := New_List (Convert_Concurrent (First_Arg, Rec_Type));
-- In the tasks case,
-- add _Master as the value of the _Master parameter
-- add _Chain as the value of the _Chain parameter.
-- add _Task_Id as the value of the _Task_Id parameter.
-- At the outer level, these will be variables holding the
-- corresponding values obtained from GNARL or the expander.
--
-- At inner levels, they will be the parameters passed down through
-- the outer routines.
First_Discr_Param := Next (First (Parameters));
if Has_Task (Rec_Type) then
Append_To (Args, Make_Identifier (Loc, Name_uMaster));
Append_To (Args, Make_Identifier (Loc, Name_uChain));
Append_To (Args, Make_Identifier (Loc, Name_uTask_Id));
First_Discr_Param := Next (Next (Next (First_Discr_Param)));
end if;
-- Append discriminant values
if Has_Discriminants (Uparent_Type) then
pragma Assert (not Is_Tagged_Type (Uparent_Type));
Parent_Discr := First_Discriminant (Uparent_Type);
while Present (Parent_Discr) loop
-- Get the initial value for this discriminant
-- ?????? needs to be cleaned up to use parent_Discr_Constr
-- directly.
declare
Discr_Value : Elmt_Id :=
First_Elmt
(Girder_Constraint (Rec_Type));
Discr : Entity_Id :=
First_Girder_Discriminant (Uparent_Type);
begin
while Original_Record_Component (Parent_Discr) /= Discr loop
Discr := Next_Girder_Discriminant (Discr);
Discr_Value := Next_Elmt (Discr_Value);
end loop;
Arg := Node (Discr_Value);
end;
-- Append it to the list
if Nkind (Arg) = N_Identifier
and then Ekind (Entity (Arg)) = E_Discriminant
then
Append_To (Args,
New_Reference_To (Discriminal (Entity (Arg)), Loc));
-- Case of access discriminants. We replace the reference
-- to the type by a reference to the actual object
-- ???
-- elsif Nkind (Arg) = N_Attribute_Reference
-- and then Is_Entity_Name (Prefix (Arg))
-- and then Is_Type (Entity (Prefix (Arg)))
-- then
-- Append_To (Args,
-- Make_Attribute_Reference (Loc,
-- Prefix => New_Copy (Prefix (Id_Ref)),
-- Attribute_Name => Name_Unrestricted_Access));
else
Append_To (Args, New_Copy (Arg));
end if;
Parent_Discr := Next_Discriminant (Parent_Discr);
end loop;
end if;
Res :=
New_List (
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Parent_Proc, Loc),
Parameter_Associations => Args));
return Res;
end Build_Init_Call_Thru;
--------------------------
-- Build_Init_Procedure --
--------------------------
procedure Build_Init_Procedure is
Body_Node : Node_Id;
Handled_Stmt_Node : Node_Id;
Parameters : List_Id;
Proc_Spec_Node : Node_Id;
Statement_List : List_Id;
Record_Extension_Node : Node_Id;
begin
Statement_List := New_List;
Body_Node := New_Node (N_Subprogram_Body, Loc);
Proc_Id := Make_Defining_Identifier (Loc, Name_uInit_Proc);
Set_Ekind (Proc_Id, E_Procedure);
Proc_Spec_Node := New_Node (N_Procedure_Specification, Loc);
Set_Defining_Unit_Name (Proc_Spec_Node, Proc_Id);
Parameters := Init_Formals (Rec_Type);
Append_List_To (Parameters,
Build_Discriminant_Formals (Rec_Type, True));
Set_Parameter_Specifications (Proc_Spec_Node, Parameters);
Set_Specification (Body_Node, Proc_Spec_Node);
Set_Declarations (Body_Node, New_List);
if Parent_Subtype_Renaming_Discrims then
-- N is a Derived_Type_Definition that renames the parameters
-- of the ancestor type. We init it by expanding our discrims
-- and call the ancestor _init_proc with a type-converted object
Append_List_To (Statement_List,
Build_Init_Call_Thru (Parameters));
elsif Nkind (Type_Definition (N)) = N_Record_Definition then
Build_Discriminant_Assignments (Statement_List);
if not Null_Present (Type_Definition (N)) then
Append_List_To (Statement_List,
Build_Init_Statements (
Component_List (Type_Definition (N))));
end if;
else
-- N is a Derived_Type_Definition with a possible non-empty
-- extension. The initialization of a type extension consists
-- in the initialization of the components in the extension.
Build_Discriminant_Assignments (Statement_List);
Record_Extension_Node :=
Record_Extension_Part (Type_Definition (N));
if not Null_Present (Record_Extension_Node) then
declare
Stmts : List_Id :=
Build_Init_Statements (
Component_List (Record_Extension_Node));
begin
-- The parent field must be initialized first because
-- the offset of the new discriminants may depend on it
Prepend_To (Statement_List, Remove_Head (Stmts));
Append_List_To (Statement_List, Stmts);
end;
end if;
end if;
-- Add here the assignment to instantiate the Tag
-- This instantiation is done at the end because the instantiation
-- of the _parent field calls the Record_Init_Proc for the parent
-- Parent which instantiate the Tag with a wrong value.
-- The assignement corresponds to the code:
-- _Init._Tag := Typ'Tag;
if Is_Tagged_Type (Rec_Type) and then not Is_CPP_Class (Rec_Type) then
Append_To (Statement_List,
Make_Assignment_Statement (Loc,
Name =>
Make_Selected_Component (Loc,
Prefix => Make_Identifier (Loc, Name_uInit),
Selector_Name =>
New_Reference_To (Tag_Component (Rec_Type), Loc)),
Expression =>
New_Reference_To (Access_Disp_Table (Rec_Type), Loc)));
end if;
Handled_Stmt_Node := New_Node (N_Handled_Sequence_Of_Statements, Loc);
Set_Statements (Handled_Stmt_Node, Statement_List);
Set_Exception_Handlers (Handled_Stmt_Node, No_List);
Set_Handled_Statement_Sequence (Body_Node, Handled_Stmt_Node);
Set_Init_Proc (Rec_Type, Proc_Id);
end Build_Init_Procedure;
---------------------------
-- Build_Init_Statements --
---------------------------
function Build_Init_Statements (Comp_List : Node_Id) return List_Id is
Alt_List : List_Id;
Statement_List : List_Id;
Stmts : List_Id;
Check_List : List_Id := New_List;
Regular_Components : Boolean;
Per_Object_Constraint_Components : Boolean;
Decl : Node_Id;
Variant : Node_Id;
Id : Entity_Id;
Typ : Entity_Id;
begin
if Null_Present (Comp_List) then
return New_List (Make_Null_Statement (Loc));
end if;
Statement_List := New_List;
-- Loop through components, skipping pragmas in 2 steps,
-- the first step deal with regular components and the second with
-- component s having per object constraints which must be
-- initialized later to satisfy 7.6 (12). The outer loop is at most
-- executed twice.
Regular_Components := True;
Per_Object_Constraint_Components := False;
while Regular_Components or Per_Object_Constraint_Components loop
Decl := First_Non_Pragma (Component_Items (Comp_List));
while Present (Decl) loop
Loc := Sloc (Decl);
Build_Record_Checks
(Subtype_Indication (Decl),
Decl,
Check_List);
Id := Defining_Identifier (Decl);
Typ := Etype (Id);
if Regular_Components
and then Has_Per_Object_Constraint (Id)
then
-- Skip processing for now and ask for a second pass
Per_Object_Constraint_Components := True;
elsif not Regular_Components
and then not Has_Per_Object_Constraint (Id)
then
-- we are in the second pass, Skip processing of regular
-- components
null;
else
if Present (Expression (Decl)) then
Stmts := Build_Assignment (Id, Expression (Decl));
elsif Present (Base_Init_Proc (Typ)) then
Stmts :=
Build_Initialization_Call (Loc,
Make_Selected_Component (Loc,
Prefix => Make_Identifier (Loc, Name_uInit),
Selector_Name => New_Occurrence_Of (Id, Loc)),
Typ, True);
elsif Component_Needs_Simple_Initialization (Typ) then
Stmts :=
Build_Assignment (Id, Get_Simple_Init_Val (Typ, Loc));
else
Stmts := No_List;
end if;
if Present (Check_List) then
Append_List_To (Statement_List, Check_List);
end if;
if Present (Stmts) then
Append_List_To (Statement_List, Stmts);
end if;
end if;
Decl := Next_Non_Pragma (Decl);
end loop;
if Regular_Components then
Regular_Components := False;
elsif Per_Object_Constraint_Components then
Per_Object_Constraint_Components := False;
end if;
end loop;
-- Process the variant part
if Present (Variant_Part (Comp_List)) then
Alt_List := New_List;
Variant := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
while Present (Variant) loop
Loc := Sloc (Variant);
Append_To (Alt_List,
Make_Case_Statement_Alternative (Loc,
Discrete_Choices =>
New_List_Copy (Discrete_Choices (Variant)),
Statements =>
Build_Init_Statements (Component_List (Variant))));
Variant := Next_Non_Pragma (Variant);
end loop;
-- The expression of the case statement which is a reference
-- to one of the discriminants is replaced by the appropriate
-- formal parameter of the initialization procedure.
Append_To (Statement_List,
Make_Case_Statement (Loc,
Expression =>
New_Reference_To (Discriminal (
Entity (Name (Variant_Part (Comp_List)))), Loc),
Alternatives => Alt_List));
end if;
-- For a task record type, add the task create call and calls
-- to bind any interrupt (signal) entries.
if Is_Task_Record_Type (Rec_Type) then
Append_To (Statement_List, Make_Task_Create_Call (Rec_Type));
declare
Task_Type : constant Entity_Id :=
Corresponding_Concurrent_Type (Rec_Type);
Task_Decl : constant Node_Id := Parent (Task_Type);
Task_Def : constant Node_Id := Task_Definition (Task_Decl);
Vis_Decl : Node_Id;
Ent : Entity_Id;
begin
if Present (Task_Def) then
Vis_Decl := First (Visible_Declarations (Task_Def));
while Present (Vis_Decl) loop
Loc := Sloc (Vis_Decl);
if Nkind (Vis_Decl) = N_Attribute_Definition_Clause then
if Get_Attribute_Id (Chars (Vis_Decl)) =
Attribute_Address
then
Ent := Entity (Name (Vis_Decl));
if Ekind (Ent) = E_Entry then
Append_To (Statement_List,
Make_Procedure_Call_Statement (Loc,
Name => New_Reference_To (
RTE (RE_Bind_Interrupt_To_Entry), Loc),
Parameter_Associations => New_List (
Make_Selected_Component (Loc,
Prefix =>
Make_Identifier (Loc, Name_uInit),
Selector_Name =>
Make_Identifier (Loc, Name_uTask_Id)),
Entry_Index_Expression (
Loc, Ent, Empty, Task_Type),
Expression (Vis_Decl))));
end if;
end if;
end if;
Vis_Decl := Next (Vis_Decl);
end loop;
end if;
end;
end if;
-- For a protected type, add a call to Initialize_Protection.
if Is_Protected_Record_Type (Rec_Type) then
Append_To (Statement_List,
Make_Initialize_Protection_Call (Rec_Type));
end if;
-- If no initializations when generated for component declarations
-- corresponding to this Statement_List, append a null statement
-- to the Statement_List to make it a valid Ada tree.
if Is_Empty_List (Statement_List) then
Append (New_Node (N_Null_Statement, Loc), Statement_List);
end if;
return Statement_List;
end Build_Init_Statements;
-------------------------
-- Build_Record_Checks --
-------------------------
procedure Build_Record_Checks
(S : Node_Id;
Related_Nod : Node_Id;
Check_List : List_Id)
is
P : Node_Id;
Subtype_Mark_Id : Entity_Id;
begin
if Nkind (S) = N_Subtype_Indication then
Find_Type (Subtype_Mark (S));
P := Parent (S);
Subtype_Mark_Id := Entity (Subtype_Mark (S));
-- Remaining processing depends on type
case Ekind (Subtype_Mark_Id) is
when Array_Kind =>
Constrain_Array (S, Related_Nod, Check_List);
when others =>
null;
end case;
end if;
end Build_Record_Checks;
-------------------------------------------
-- Component_Needs_Simple_Initialization --
-------------------------------------------
function Component_Needs_Simple_Initialization
(T : Entity_Id)
return Boolean
is
begin
return
Needs_Simple_Initialization (T)
and then not Is_RTE (T, RE_Tag)
and then not Is_RTE (T, RE_Vtable_Ptr);
end Component_Needs_Simple_Initialization;
---------------------
-- Constrain_Array --
---------------------
procedure Constrain_Array
(SI : Node_Id;
Related_Nod : Node_Id;
Check_List : List_Id)
is
C : constant Node_Id := Constraint (SI);
Number_Of_Constraints : Nat := 0;
Index : Node_Id;
S, T : Entity_Id;
begin
T := Entity (Subtype_Mark (SI));
if Ekind (T) in Access_Kind then
T := Designated_Type (T);
end if;
S := First (Constraints (C));
while Present (S) loop
Number_Of_Constraints := Number_Of_Constraints + 1;
S := Next (S);
end loop;
-- In either case, the index constraint must provide a discrete
-- range for each index of the array type and the type of each
-- discrete range must be the same as that of the corresponding
-- index. (RM 3.6.1)
S := First (Constraints (C));
Index := First_Index (T);
Analyze (Index);
-- Apply constraints to each index type
for J in 1 .. Number_Of_Constraints loop
Constrain_Index (Index, S, Related_Nod, Check_List);
Index := Next (Index);
S := Next (S);
end loop;
end Constrain_Array;
---------------------
-- Constrain_Index --
---------------------
procedure Constrain_Index
(Index : Node_Id;
S : Node_Id;
Related_Nod : Node_Id;
Check_List : List_Id)
is
T : constant Entity_Id := Etype (Index);
begin
if Nkind (S) = N_Range then
Process_Range_Expr_In_Decl (S, T, Related_Nod, Check_List);
end if;
end Constrain_Index;
--------------------------------------
-- Parent_Subtype_Renaming_Discrims --
--------------------------------------
function Parent_Subtype_Renaming_Discrims return Boolean is
De : Entity_Id;
Dp : Entity_Id;
begin
if Base_Type (Pe) /= Pe then
return False;
end if;
if Etype (Pe) = Pe
or else not Has_Discriminants (Pe)
or else Is_Constrained (Pe)
or else Is_Tagged_Type (Pe)
then
return False;
end if;
-- If there are no explicit girder discriminants we have inherited
-- the root type discriminants so far, so no renamings occurred.
if First_Discriminant (Pe) = First_Girder_Discriminant (Pe) then
return False;
end if;
-- Check if we have done some trivial renaming of the parent
-- discriminants, i.e. someting like
--
-- type DT (X1,X2: int) is new PT (X1,X2);
De := First_Discriminant (Pe);
Dp := First_Discriminant (Etype (Pe));
while Present (De) loop
pragma Assert (Present (Dp));
if Corresponding_Discriminant (De) /= Dp then
return True;
end if;
De := Next_Discriminant (De);
Dp := Next_Discriminant (Dp);
end loop;
return Present (Dp);
end Parent_Subtype_Renaming_Discrims;
------------------------
-- Requires_Init_Proc --
------------------------
function Requires_Init_Proc (Rec_Id : Entity_Id) return Boolean is
Comp_Decl : Node_Id;
Id : Entity_Id;
Typ : Entity_Id;
begin
-- Definitely do not need one if specifically suppressed
if Suppress_Init_Proc (Rec_Id) then
return False;
end if;
-- Otherwise we need to generate an initialization procedure if
-- at least one of the following applies:
-- 1. Discriminants are present, since they need to be initialized
-- with the appropriate discriminant constraint expressions.
-- However, the discriminant of an unchecked union does not
-- count, since the discriminant is not present.
-- 2. The type is a tagged type, since the implicit Tag component
-- needs to be initialized with a pointer to the dispatch table.
-- 3. The type contains tasks
-- 4. One or more components has an initial value
-- 5. One or more components is for a type which itself requires
-- an initialization procedure.
-- 6. One or more components is a type that requires simple
-- initialization (see Needs_Simple_Initialization), except
-- that types Tag and Vtable_Ptr are excluded, since fields
-- of these types are initialized by other means.
-- 7. The type is the record type built for a task type (since at
-- the very least, Create_Task must be called)
-- 8. The type is the record type built for a protected type (since
-- Initialize_Protection must be called)
if Is_CPP_Class (Rec_Id) then
return False;
elsif (Has_Discriminants (Rec_Id)
and then not Is_Unchecked_Union (Rec_Id))
or else Is_Tagged_Type (Rec_Id)
or else Is_Concurrent_Record_Type (Rec_Id)
or else Has_Task (Rec_Id)
then
return True;
end if;
Id := First_Component (Rec_Id);
while Present (Id) loop
Comp_Decl := Parent (Id);
Typ := Etype (Id);
if Present (Expression (Comp_Decl))
or else Present (Base_Init_Proc (Typ))
or else Component_Needs_Simple_Initialization (Typ)
then
return True;
end if;
Id := Next_Component (Id);
end loop;
return False;
end Requires_Init_Proc;
-- Start of processing for Build_Record_Init_Proc
begin
Rec_Type := Defining_Identifier (N);
-- This may be full declaration of a private type, in which case
-- the visible entity is a record, and the private entity has been
-- exchanged with it in the private part of the current package.
-- The initialization procedure is built for the record type, which
-- is retrievable from the private entity.
if Is_Incomplete_Or_Private_Type (Rec_Type) then
Rec_Type := Underlying_Type (Rec_Type);
end if;
-- Derived types that have no type extension can use the initialization
-- procedure of their parent and do not need a procedure of their own.
-- This is only correct if there are no representation clauses for the
-- type or its parent, and if the parent has in fact been frozen so
-- that its initialization procedure exists.
if Is_Derived_Type (Rec_Type)
and then not Is_Tagged_Type (Rec_Type)
and then not Has_Non_Standard_Rep (Rec_Type)
and then not Has_Non_Standard_Rep (Root_Type (Rec_Type))
and then not Parent_Subtype_Renaming_Discrims
and then Present (Base_Init_Proc (Etype (Rec_Type)))
then
Copy_TSS (Base_Init_Proc (Etype (Rec_Type)), Rec_Type);
-- Otherwise if we need an initialization procedure, then build one,
-- mark it as public and inlinable and as having a completion.
elsif Requires_Init_Proc (Rec_Type) then
Build_Init_Procedure;
Set_Is_Public (Proc_Id, Is_Public (Pe));
Set_Is_Inlined (Proc_Id);
Set_Is_Internal (Proc_Id);
Set_Has_Completion (Proc_Id);
end if;
end Build_Record_Init_Proc;
---------------------------
-- Expand_Derived_Record --
---------------------------
-- Add a field _parent at the beginning of the record extension. This is
-- used to implement inheritance. Here are some examples of expansion:
-- 1. no discriminants
-- type T2 is new T1 with null record;
-- gives
-- type T2 is new T1 with record
-- _Parent : T1;
-- end record;
-- 2. renamed discriminants
-- type T2 (B, C : Int) is new T1 (A => B) with record
-- _Parent : T1 (A => B);
-- D : Int;
-- end;
-- 3. inherited discriminants
-- type T2 is new T1 with record -- discriminant A inherited
-- _Parent : T1 (A);
-- D : Int;
-- end;
procedure Expand_Derived_Record (T : Entity_Id; Def : Node_Id) is
Indic : constant Node_Id := Subtype_Indication (Def);
Loc : constant Source_Ptr := Sloc (Def);
Rec_Ext_Part : Node_Id := Record_Extension_Part (Def);
Par_Subtype : Entity_Id;
Comp_List : Node_Id;
Comp_Decl : Node_Id;
Parent_N : Node_Id;
D : Entity_Id;
List_Constr : constant List_Id := New_List;
begin
-- Expand_Tagged_Extension is called directly from the semantics, so
-- we must check to see whether expansion is active before proceeding
if not Expander_Active then
return;
end if;
Comp_List := Component_List (Rec_Ext_Part);
Parent_N := Make_Defining_Identifier (Loc, Name_uParent);
-- If the derived type inherits its discriminants the type of the
-- _parent field must be constrained by the inherited discriminants
if Has_Discriminants (T)
and then Nkind (Indic) /= N_Subtype_Indication
and then not Is_Constrained (Entity (Indic))
then
D := First_Discriminant (T);
while (Present (D)) loop
Append_To (List_Constr, New_Occurrence_Of (D, Loc));
D := Next_Discriminant (D);
end loop;
Par_Subtype :=
Process_Subtype (
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Reference_To (Entity (Indic), Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => List_Constr)),
Def);
-- Otherwise the the original subtype_indication is just what is needed
else
Par_Subtype := Process_Subtype (New_Copy_Tree (Indic), Def);
end if;
Set_Parent_Subtype (T, Par_Subtype);
Comp_Decl :=
Make_Component_Declaration (Loc,
Defining_Identifier => Parent_N,
Subtype_Indication => New_Reference_To (Par_Subtype, Loc));
if Null_Present (Rec_Ext_Part) then
Set_Component_List (Rec_Ext_Part,
Make_Component_List (Loc,
Component_Items => New_List (Comp_Decl),
Variant_Part => Empty,
Null_Present => False));
Set_Null_Present (Rec_Ext_Part, False);
elsif Null_Present (Comp_List)
or else Is_Empty_List (Component_Items (Comp_List))
then
Set_Component_Items (Comp_List, New_List (Comp_Decl));
Set_Null_Present (Comp_List, False);
else
Insert_Before (First (Component_Items (Comp_List)), Comp_Decl);
end if;
Analyze (Comp_Decl);
end Expand_Derived_Record;
------------------------
-- Expand_Tagged_Root --
------------------------
procedure Expand_Tagged_Root (T : Entity_Id) is
Def : constant Node_Id := Type_Definition (Parent (T));
Comp_List : Node_Id;
Comp_Decl : Node_Id;
Sloc_N : Source_Ptr;
begin
if Null_Present (Def) then
Set_Component_List (Def,
Make_Component_List (Sloc (Def),
Component_Items => Empty_List,
Variant_Part => Empty,
Null_Present => True));
end if;
Comp_List := Component_List (Def);
if Null_Present (Comp_List)
or else Is_Empty_List (Component_Items (Comp_List))
then
Sloc_N := Sloc (Comp_List);
else
Sloc_N := Sloc (First (Component_Items (Comp_List)));
end if;
Comp_Decl :=
Make_Component_Declaration (Sloc_N,
Defining_Identifier => Tag_Component (T),
Subtype_Indication =>
New_Reference_To (RTE (RE_Tag), Sloc_N));
if Null_Present (Comp_List)
or else Is_Empty_List (Component_Items (Comp_List))
then
Set_Component_Items (Comp_List, New_List (Comp_Decl));
Set_Null_Present (Comp_List, False);
else
Insert_Before (First (Component_Items (Comp_List)), Comp_Decl);
end if;
-- We don't Analyze the whole expansion because the tag component has
-- already been analyzed previously. Here we just insure that the
-- tree is coherent with the semantic decoration
Find_Type (Subtype_Indication (Comp_Decl));
end Expand_Tagged_Root;
------------------------------
-- Expand_Record_Controller --
------------------------------
procedure Expand_Record_Controller (T : Entity_Id) is
Def : Node_Id := Type_Definition (Parent (T));
Comp_List : Node_Id;
Comp_Decl : Node_Id;
Loc : Source_Ptr;
First_Comp : Node_Id;
Controller_Type : Entity_Id;
begin
if Nkind (Def) = N_Derived_Type_Definition then
Def := Record_Extension_Part (Def);
end if;
if Null_Present (Def) then
Set_Component_List (Def,
Make_Component_List (Sloc (Def),
Component_Items => Empty_List,
Variant_Part => Empty,
Null_Present => True));
end if;
Comp_List := Component_List (Def);
if Null_Present (Comp_List)
or else Is_Empty_List (Component_Items (Comp_List))
then
Loc := Sloc (Comp_List);
else
Loc := Sloc (First (Component_Items (Comp_List)));
end if;
if Is_Return_By_Reference_Type (T) then
Controller_Type := RTE (RE_Limited_Record_Controller);
else
Controller_Type := RTE (RE_Record_Controller);
end if;
Comp_Decl :=
Make_Component_Declaration (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_uController),
Subtype_Indication => New_Reference_To (Controller_Type, Loc));
if Null_Present (Comp_List)
or else Is_Empty_List (Component_Items (Comp_List))
then
Set_Component_Items (Comp_List, New_List (Comp_Decl));
Set_Null_Present (Comp_List, False);
else
-- The controller cannot be placed before the _Parent field
First_Comp := First (Component_Items (Comp_List));
if Chars (Defining_Identifier (First_Comp)) /= Name_uParent
and then Chars (Defining_Identifier (First_Comp)) /= Name_uTag
then
Insert_Before (First_Comp, Comp_Decl);
else
Insert_After (First_Comp, Comp_Decl);
end if;
end if;
New_Scope (T);
Analyze (Comp_Decl);
Set_Ekind (Defining_Identifier (Comp_Decl), E_Component);
End_Scope;
end Expand_Record_Controller;
-----------------------
-- Freeze_Array_Type --
-----------------------
procedure Freeze_Array_Type (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Entity (N);
Base : constant Entity_Id := Base_Type (Typ);
begin
-- Nothing to do for packed case
if not Is_Bit_Packed_Array (Typ) then
-- If the component contains tasks, so does the array type.
-- This may not be indicated in the array type because the
-- component may have been a private type at the point of
-- definition. Same if component type is controlled.
Set_Has_Task (Base, Has_Task (Component_Type (Typ)));
Set_Has_Controlled_Component (Base,
Has_Controlled_Component (Component_Type (Typ))
or else Is_Controlled (Component_Type (Typ)));
if No (Init_Proc (Base)) then
Build_Array_Init_Proc (Base, N);
end if;
if Typ = Base and then Has_Controlled_Component (Base) then
Build_Controlling_Procs (Base);
end if;
end if;
end Freeze_Array_Type;
-----------------------------
-- Freeze_Enumeration_Type --
-----------------------------
procedure Freeze_Enumeration_Type (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Entity (N);
Ent : Entity_Id;
Lst : List_Id;
Num : Nat;
Arr : Entity_Id;
Fent : Entity_Id;
Func : Entity_Id;
begin
-- Build list of literal references
Lst := New_List;
Num := 0;
Ent := First_Literal (Typ);
while Present (Ent) loop
Append_To (Lst, New_Reference_To (Ent, Sloc (Ent)));
Num := Num + 1;
Ent := Next_Literal (Ent);
end loop;
-- Now build an array declaration
-- typA : array (Natural range 0 .. num - 1) of ctype :=
-- (v, v, v, v, v, ....)
-- where ctype is the corresponding integer type
Arr :=
Make_Defining_Identifier (Loc,
Chars => New_External_Name (Chars (Typ), 'A'));
Append_Freeze_Action (Typ,
Make_Object_Declaration (Loc,
Defining_Identifier => Arr,
Constant_Present => True,
Object_Definition =>
Make_Constrained_Array_Definition (Loc,
Discrete_Subtype_Definitions => New_List (
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Reference_To (Standard_Natural, Loc),
Constraint =>
Make_Range_Constraint (Loc,
Range_Expression =>
Make_Range (Loc,
Low_Bound =>
Make_Integer_Literal (Loc,
Intval => Uint_0),
High_Bound =>
Make_Integer_Literal (Loc,
Intval => UI_From_Int (Num - 1)))))),
Subtype_Indication => New_Reference_To (Typ, Loc)),
Expression =>
Make_Aggregate (Loc,
Expressions => Lst)));
Set_Enum_Pos_To_Rep (Typ, Arr);
-- Now we build the function that converts representation values to
-- position values. This function has the form:
-- function _Rep_To_Pos (A : etype; F : Boolean) return Integer is
-- begin
-- case A is
-- when enum-lit => return posval;
-- when enum-lit => return posval;
-- ...
-- when others =>
-- if F then raise Program_Error else return -1; end if;
-- end case;
-- end;
-- Note: the F parameter determines whether the others case (no valid
-- representation) raises Program_Error or returns a unique value of
-- minus one. The latter case is used, e.g. in 'Valid code.
-- First build list of cases
Lst := New_List;
Ent := First_Literal (Typ);
while Present (Ent) loop
Append_To (Lst,
Make_Case_Statement_Alternative (Loc,
Discrete_Choices => New_List (New_Reference_To (Ent, Loc)),
Statements => New_List (
Make_Return_Statement (Loc,
Expression =>
Make_Integer_Literal (Loc, Enumeration_Pos (Ent))))));
Ent := Next_Literal (Ent);
end loop;
Append_To (Lst,
Make_Case_Statement_Alternative (Loc,
Discrete_Choices => New_List (Make_Others_Choice (Loc)),
Statements => New_List (
Make_If_Statement (Loc,
Condition => Make_Identifier (Loc, Name_uF),
Then_Statements => New_List (
Make_Raise_Program_Error (Loc)),
Else_Statements => New_List (
Make_Return_Statement (Loc,
Expression =>
Make_Integer_Literal (Loc, Uint_Minus_1)))))));
-- Now we can build the function body
Fent :=
Make_Defining_Identifier (Loc, Name_uRep_To_Pos);
Func :=
Make_Subprogram_Body (Loc,
Specification =>
Make_Function_Specification (Loc,
Defining_Unit_Name => Fent,
Parameter_Specifications => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_uA),
Parameter_Type => New_Reference_To (Typ, Loc)),
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_uF),
Parameter_Type => New_Reference_To (Standard_Boolean, Loc))),
Subtype_Mark => New_Reference_To (Standard_Integer, Loc)),
Declarations => Empty_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (
Make_Case_Statement (Loc,
Expression => Make_Identifier (Loc, Name_uA),
Alternatives => Lst))));
Set_TSS (Typ, Fent);
Set_Is_Pure (Typ);
end Freeze_Enumeration_Type;
------------------------
-- Freeze_Record_Type --
------------------------
procedure Freeze_Record_Type (N : Node_Id) is
Def_Id : constant Node_Id := Entity (N);
Type_Decl : constant Node_Id := Parent (Def_Id);
Predef_List : List_Id;
Renamed_Eq : Node_Id := Empty;
-- Could use some comments ???
begin
-- Build discriminant checking functions if not a derived type (for
-- derived types that are not tagged types, we always use the
-- discriminant checking functions of the parent type).
if not Is_Derived_Type (Def_Id)
and then not Is_Tagged_Type (Def_Id)
and then not Has_Non_Standard_Rep (Def_Id)
and then not Has_Non_Standard_Rep (Root_Type (Def_Id))
then
Build_Discr_Checking_Funcs (Type_Decl);
end if;
-- Creation of the Dispatch Table. Note that a Dispatch Table is
-- created for regular tagged types as well as for Ada types
-- deriving from a C++ Class, but not for tagged types directly
-- corresponding to the C++ classes. In the later case we assume
-- that the Vtable is created in the C++ side and we just use it.
if Is_Tagged_Type (Def_Id) then
if Is_CPP_Class (Def_Id) then
Set_All_DT_Position (Def_Id);
Set_Default_Constructor (Def_Id);
else
if Underlying_Type (Etype (Def_Id)) = Def_Id then
Expand_Tagged_Root (Def_Id);
end if;
-- Unfreeze momentarily the type to add the predefined
-- primitives operations. The reason we unfreeze is so
-- that these predefined operations will indeed end up
-- as primitive operations (which must be before the
-- freeze point).
Set_Is_Frozen (Def_Id, False);
Make_Predefined_Primitive_Specs
(Def_Id, Predef_List, Renamed_Eq);
Insert_List_Before_And_Analyze (N, Predef_List);
Set_Is_Frozen (Def_Id, True);
Set_All_DT_Position (Def_Id);
Append_Freeze_Actions (Def_Id, Make_DT (Def_Id));
-- Make sure that the primitives Initialize, Adjust and
-- Finalize are Frozen before other TSS subprograms. We
-- don't want them Frozen inside.
if Is_Controlled (Def_Id) then
if not Is_Limited_Type (Def_Id) then
Append_Freeze_Actions (Def_Id,
Freeze_Entity
(Find_Prim_Op (Def_Id, Name_Adjust), Sloc (Def_Id)));
end if;
Append_Freeze_Actions (Def_Id,
Freeze_Entity
(Find_Prim_Op (Def_Id, Name_Initialize), Sloc (Def_Id)));
Append_Freeze_Actions (Def_Id,
Freeze_Entity
(Find_Prim_Op (Def_Id, Name_Finalize), Sloc (Def_Id)));
end if;
-- Freeze rest of primitive operations
Append_Freeze_Actions
(Def_Id, Predefined_Primitive_Freeze (Def_Id));
end if;
-- In the non-tagged case, an equality function is provided only
-- for variant records (that are not unchecked unions).
elsif Has_Discriminants (Def_Id)
and then not Is_Limited_Type (Def_Id)
then
declare
Comps : constant Node_Id :=
Component_List (Type_Definition (Type_Decl));
begin
if Present (Comps)
and then Present (Variant_Part (Comps))
and then not Is_Unchecked_Union (Def_Id)
then
Build_Variant_Record_Equality (Def_Id);
end if;
end;
end if;
-- Before building the record initialization procedure, if we are
-- dealing with a concurrent record value type, then we must go
-- through the discriminants, exchanging discriminals between the
-- concurrent type and the concurrent record value type. See the
-- section "Handling of Discriminants" in the Einfo spec for details.
if Is_Concurrent_Record_Type (Def_Id)
and then Has_Discriminants (Def_Id)
then
declare
Ctyp : constant Entity_Id :=
Corresponding_Concurrent_Type (Def_Id);
Conc_Discr : Entity_Id;
Rec_Discr : Entity_Id;
Temp : Entity_Id;
begin
Conc_Discr := First_Discriminant (Ctyp);
Rec_Discr := First_Discriminant (Def_Id);
while Present (Conc_Discr) loop
Temp := Discriminal (Conc_Discr);
Set_Discriminal (Conc_Discr, Discriminal (Rec_Discr));
Set_Discriminal (Rec_Discr, Temp);
Conc_Discr := Next_Discriminant (Conc_Discr);
Rec_Discr := Next_Discriminant (Rec_Discr);
end loop;
end;
end if;
if Has_Controlled_Component (Def_Id) then
if No (Controller_Component (Def_Id)) then
Expand_Record_Controller (Def_Id);
end if;
Build_Controlling_Procs (Def_Id);
end if;
Build_Record_Init_Proc (Type_Decl, Def_Id);
-- For tagged type, build bodies of primitive operations. Note
-- that we do this after building the record initialization
-- experiment, since the primitive operations may need the
-- initialization routine
if Is_Tagged_Type (Def_Id) then
Predef_List := Predefined_Primitive_Bodies (Def_Id, Renamed_Eq);
Append_Freeze_Actions (Def_Id, Predef_List);
end if;
if Is_Remote_Call_Interface (Def_Id)
and then Present (Corresponding_Remote_Type (Def_Id))
then
Add_RAST_Features (Parent (Corresponding_Remote_Type (Def_Id)));
end if;
end Freeze_Record_Type;
-----------------
-- Freeze_Type --
-----------------
-- Full type declarations are expanded at the point at which the type
-- is frozen. The formal N is the Freeze_Node for the type. Any statements
-- or declarations generated by the freezing (e.g. the procedure generated
-- for initialization) are chained in the Acions field list of the freeze
-- node using Append_Freeze_Actions.
procedure Freeze_Type (N : Node_Id) is
Def_Id : constant Entity_Id := Entity (N);
begin
-- Freeze processing for record types
if Is_Record_Type (Def_Id) then
if Ekind (Def_Id) = E_Record_Type then
Freeze_Record_Type (N);
end if;
-- Freeze processing for array types
elsif Is_Array_Type (Def_Id) then
Freeze_Array_Type (N);
-- Freeze processing for access types
-- For pool-specific access types, find out the pool object used for
-- this type, needs actual expansion of it in some cases. Here are the
-- different cases :
-- 1. Rep Clause "for Def_Id'Storage_Size use 0;"
-- ---> don't use any storage pool
-- 2. Rep Clause : for Def_Id'Storage_Size use Expr.
-- Expand:
-- Def_Id__Pool : Stack_Bounded_Pool (Expr, DT'Size, DT'Alignment);
-- 3. Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
-- ---> Storage Pool is the specified one
-- See GNAT Pool packages in the Run-Time for more details
elsif Ekind (Def_Id) = E_Access_Type
or else Ekind (Def_Id) = E_General_Access_Type
then
declare
Loc : constant Source_Ptr := Sloc (N);
Desig_Type : constant Entity_Id := Designated_Type (Def_Id);
Pool_Object : Entity_Id;
Siz_Exp : Node_Id;
begin
if Has_Storage_Size_Clause (Def_Id) then
Siz_Exp := Expression (Parent (Storage_Size_Variable (Def_Id)));
else
Siz_Exp := Empty;
end if;
-- case 1
if Has_Storage_Size_Clause (Def_Id)
and then Compile_Time_Known_Value (Siz_Exp)
and then Expr_Value (Siz_Exp) = 0
then
null;
-- case 2
elsif Has_Storage_Size_Clause (Def_Id) then
declare
DT_Size : Node_Id;
DT_Align : Node_Id;
begin
-- For unconstrained composite types we give a size of
-- zero so that the pool knows that it needs a special
-- algorithm for variable size object allocation.
if Is_Composite_Type (Desig_Type)
and then not Is_Constrained (Desig_Type)
then
DT_Size :=
Make_Integer_Literal (Loc, Intval => Uint_0);
DT_Align :=
Make_Integer_Literal (Loc,
Intval => UI_From_Int (Maximum_Alignment));
else
DT_Size :=
Make_Attribute_Reference (Loc,
Prefix => New_Reference_To (Desig_Type, Loc),
Attribute_Name => Name_Max_Size_In_Storage_Elements);
DT_Align :=
Make_Attribute_Reference (Loc,
Prefix => New_Reference_To (Desig_Type, Loc),
Attribute_Name => Name_Alignment);
end if;
Pool_Object :=
Make_Defining_Identifier (Loc,
Chars => New_External_Name (Chars (Def_Id), 'P'));
Append_Freeze_Action (Def_Id,
Make_Object_Declaration (Loc,
Defining_Identifier => Pool_Object,
Object_Definition =>
Make_Subtype_Indication (Loc,
Subtype_Mark =>
New_Reference_To
(RTE (RE_Stack_Bounded_Pool), Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => New_List (
-- First discriminant is the Pool Size
New_Reference_To (
Storage_Size_Variable (Def_Id), Loc),
-- Second discriminant is the element size
DT_Size,
-- Third discriminant is the alignment
DT_Align)))));
end;
Set_Associated_Storage_Pool (Def_Id, Pool_Object);
-- case 3
elsif Present (Associated_Storage_Pool (Def_Id)) then
-- Nothing to do the associated storage pool has been attached
-- when analyzing the rep. clause
null;
end if;
-- For access to controlled types (including class-wide types
-- and taft amendment types which potentially have controlled
-- components), expand the list controller object that will
-- store the dynamically allocated objects. Do not do this
-- transformation for expander generated access types.
if not Comes_From_Source (Def_Id) then
null;
elsif Controlled_Type (Desig_Type)
or else (Is_Incomplete_Or_Private_Type (Desig_Type)
and then No (Full_View (Desig_Type))
-- An exception is made for types defined in the run-time
-- because Ada.Tags.Tag itself is such a type and cannot
-- afford this unnecessary overhead that would generates a
-- loop in the expansion scheme...
and then not In_Runtime (Def_Id))
then
Set_Associated_Final_Chain (Def_Id,
Make_Defining_Identifier (Loc,
New_External_Name (Chars (Def_Id), 'L')));
Append_Freeze_Action (Def_Id,
Make_Object_Declaration (Loc,
Defining_Identifier => Associated_Final_Chain (Def_Id),
Object_Definition =>
New_Reference_To (RTE (RE_List_Controller), Loc)));
end if;
end;
-- Freeze processing for enumeration types
elsif Ekind (Def_Id) = E_Enumeration_Type then
-- We only have something to do if we have a non-standard
-- representation (i.e. at least one literal whose pos value
-- is not the same as its representation)
if Has_Non_Standard_Rep (Def_Id) then
Freeze_Enumeration_Type (N);
end if;
-- All other types require no expander action. There are such
-- cases (e.g. task types and protected types). In such cases,
-- the freeze nodes are there for use by Gigi.
end if;
end Freeze_Type;
------------------------------------
-- Expand_N_Full_Type_Declaration --
------------------------------------
procedure Expand_N_Full_Type_Declaration (N : Node_Id) is
Def_Id : constant Entity_Id := Defining_Identifier (N);
B_Id : Entity_Id := Base_Type (Def_Id);
FN : Node_Id;
begin
if Is_Access_Type (Def_Id) then
-- Anonymous access types are created for the components of the
-- record parameter for an entry declaration. No master is created
-- for such a type.
if Has_Task (Designated_Type (Def_Id))
and then Comes_From_Source (N)
then
Build_Master_Entity (Def_Id);
Build_Master_Renaming (Parent (Def_Id), Def_Id);
elsif Is_Class_Wide_Type (Designated_Type (Def_Id))
and then Is_Limited_Type (Designated_Type (Def_Id))
then
Build_Class_Wide_Master (Def_Id);
elsif Ekind (Def_Id) = E_Access_Protected_Subprogram_Type then
Expand_Access_Protected_Subprogram_Type (N);
end if;
elsif Has_Task (Def_Id) then
Expand_Previous_Access_Type (N, Def_Id);
end if;
if Nkind (Type_Definition (Original_Node (N)))
= N_Derived_Type_Definition
and then not Is_Tagged_Type (Def_Id)
and then Present (Freeze_Node (Etype (B_Id)))
and then Present (TSS_Elist (Freeze_Node (Etype (B_Id))))
then
Ensure_Freeze_Node (B_Id);
FN := Freeze_Node (B_Id);
if No (TSS_Elist (FN)) then
Set_TSS_Elist (FN, New_Elmt_List);
end if;
declare
T_E : Elist_Id := TSS_Elist (FN);
Elmt : Elmt_Id;
begin
Elmt := First_Elmt (TSS_Elist (Freeze_Node (Etype (B_Id))));
while Present (Elmt) loop
if Chars (Node (Elmt)) /= Name_uInit then
Append_Elmt (Node (Elmt), T_E);
end if;
Elmt := Next_Elmt (Elmt);
end loop;
end;
end if;
end Expand_N_Full_Type_Declaration;
---------------------------
-- Build_Master_Renaming --
---------------------------
procedure Build_Master_Renaming (N : Node_Id; T : Entity_Id) is
Loc : constant Source_Ptr := Sloc (N);
M_Id : Entity_Id;
Decl : Node_Id;
begin
M_Id :=
Make_Defining_Identifier (Loc,
New_External_Name (Chars (T), 'M'));
Decl :=
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => M_Id,
Subtype_Mark => New_Reference_To (RTE (RE_Master_Id), Loc),
Name => Make_Identifier (Loc, Name_uMaster));
Insert_Before (N, Decl);
Analyze (Decl);
Set_Master_Id (T, M_Id);
end Build_Master_Renaming;
---------------------------------
-- Expand_Previous_Access_Type --
---------------------------------
procedure Expand_Previous_Access_Type (N : Node_Id; Def_Id : Entity_Id) is
T : Entity_Id := First_Entity (Current_Scope);
begin
-- Find all access types declared in the current scope, whose
-- designated type is Def_Id.
while Present (T) loop
if Is_Access_Type (T)
and then Designated_Type (T) = Def_Id
then
Build_Master_Entity (Def_Id);
Build_Master_Renaming (Parent (Def_Id), T);
end if;
T := Next_Entity (T);
end loop;
end Expand_Previous_Access_Type;
---------------------------------
-- Expand_N_Object_Declaration --
---------------------------------
-- First we do special processing for objects of a tagged type where this
-- is the point at which the type is frozen. The creation of the dispatch
-- table and the initialization procedure have to be deffered to this
-- point, since we reference previously declared primitive subprograms.
-- For all types, we call an initialization procedure if there is one
procedure Expand_N_Object_Declaration (N : Node_Id) is
Def_Id : constant Entity_Id := Defining_Identifier (N);
Typ : constant Entity_Id := Etype (Def_Id);
Loc : constant Source_Ptr := Sloc (N);
Expr : Node_Id := Expression (N);
New_Ref : Node_Id;
Id_Ref : Node_Id;
Expr_Q : Node_Id;
begin
-- Don't do anything for deferred constants. All proper actions will
-- be expanded during the redeclaration.
if No (Expr) and Constant_Present (N) then
return;
end if;
-- If tasks being declared, make sure we have an activation chain
-- defined for the tasks (has no effect if we already have one), and
-- also that a Master variable is established and that the appropriate
-- enclosing construct is established as a task master.
if Has_Task (Typ) then
Build_Activation_Chain_Entity (N);
Build_Master_Entity (Def_Id);
end if;
-- Default initialization required, and no expression present
if No (Expr) then
-- Expand Initialize call for controlled objects. One may wonder why
-- the Initialize Call is not done in the regular Init procedure
-- attached to the record type. That's because the init procedure is
-- recursively called on each component, including _Parent, thus the
-- Init call for a controlled object would generate not only one
-- Initialize call as it is required but one for each ancestor of
-- its type. This processing is suppressed if No_Default_Init set.
if Controlled_Type (Typ)
and then not No_Default_Init (N)
then
Insert_Actions_After (N,
Make_Init_Call (
Ref => New_Occurrence_Of (Def_Id, Loc),
Typ => Typ,
Flist_Ref => Find_Final_List (Def_Id),
With_Attach => Make_Integer_Literal (Loc, Uint_1)));
end if;
-- Call type initialization procedure if there is one. We build the
-- call and put it immediately after the object declaration, so that
-- it will be expanded in the usual manner. Note that this will
-- result in proper handling of defaulted discriminants. The call
-- to the Init_Proc is suppressed if No_Default_Init is set.
if Present (Base_Init_Proc (Typ))
and then not No_Default_Init (N)
then
-- The call to the initialization procedure does NOT freeze
-- the object being initialized. This is because the call is
-- not a source level call. This works fine, because the only
-- possible statements depending on freeze status that can
-- appear after the _Init call are rep clauses which can
-- safely appear after actual references to the object.
Id_Ref := New_Reference_To (Def_Id, Loc);
Set_Must_Not_Freeze (Id_Ref);
Set_Assignment_OK (Id_Ref);
Insert_Actions_After (N,
Build_Initialization_Call (Loc, Id_Ref, Typ));
-- If simple initialization is required, then set an appropriate
-- simple initialization expression in place. This special
-- initialization is required even though No_Init_Flag is present.
-- KLUDGE ALERT! This expression is marked with a location of
-- No_Location in order to ease its removal in case the variable
-- is later found to be pragma Imported ???
elsif Needs_Simple_Initialization (Typ) then
Set_No_Default_Init (N, False);
Set_Expression (N, Get_Simple_Init_Val (Typ, No_Location));
Analyze_And_Resolve (Expression (N), Typ);
end if;
-- Explicit initialization present
else
if Nkind (Expr) = N_Qualified_Expression then
Expr_Q := Expression (Expr);
else
Expr_Q := Expr;
end if;
if (Nkind (Expr_Q) = N_Aggregate
or else Nkind (Expr_Q) = N_Extension_Aggregate)
and then Expansion_Delayed (Expr_Q)
then
Convert_Aggr_In_Object_Decl (N);
else
-- In most cases, we must check that the initial value meets
-- any constraint imposed by the declared type. However, there
-- is one very important exception to this rule. If the entity
-- has an unconstrained nominal subtype, then it got is
-- constraints from the expression in the first place, and not
-- only does this mean that the constraint check is not
-- needed, but an attempt to perform the constraint check can
-- cause order of elaboration problems.
if not Is_Constr_Subt_For_U_Nominal (Typ) then
Apply_Constraint_Check (Expr, Typ);
end if;
-- If the type is controlled we attach the object to the final
-- list and adjust the target after the copy.
if Controlled_Type (Typ) then
Insert_Actions_After (N,
Make_Adjust_Call (
Ref => New_Reference_To (Def_Id, Loc),
Typ => Typ,
Flist_Ref => Find_Final_List (Def_Id),
With_Attach => Make_Integer_Literal (Loc, Uint_1)));
end if;
-- For tagged types, when an init value is given, the tag has
-- to be re-initialized separately in order to avoid the
-- propagation of a wrong tag coming from a view conversion
-- unless the type is class wide (in this case the tag comes
-- from the init value).
if Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
-- The re-assignment of the tag has to be done even if
-- the object is a constant
New_Ref :=
Make_Selected_Component (Loc,
Prefix => New_Reference_To (Def_Id, Loc),
Selector_Name =>
New_Reference_To (Tag_Component (Typ), Loc));
Set_Assignment_OK (New_Ref);
Insert_After (N,
Make_Assignment_Statement (Loc,
Name => New_Ref,
Expression =>
Unchecked_Convert_To (RTE (RE_Tag),
New_Reference_To
(Access_Disp_Table (Base_Type (Typ)), Loc))));
end if;
end if;
end if;
-- For array type, check for size too large
-- We really need this for record types too???
if Is_Array_Type (Typ) then
Apply_Array_Size_Check (N, Typ);
end if;
end Expand_N_Object_Declaration;
---------------------------------
-- Expand_N_Subtype_Indication --
---------------------------------
-- Add a check on the range of the subtype. The static case is
-- partially duplicated by Process_Range_Expr_In_Decl in Sem_Ch3,
-- but we still need to check here for the static case in order to
-- avoid generating extraneous expanded code.
procedure Expand_N_Subtype_Indication (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Ran : Node_Id := Range_Expression (Constraint (N));
Typ : Entity_Id := Entity (Subtype_Mark (N));
begin
if Nkind (Parent (N)) = N_Constrained_Array_Definition or else
Nkind (Parent (N)) = N_Slice
then
Resolve (Ran, Typ);
Apply_Range_Check (Ran, Typ);
end if;
end Expand_N_Subtype_Indication;
-------------------------------
-- Build_Initialization_Call --
-------------------------------
-- References to a discriminant inside the record type declaration
-- can appear either in the subtype_indication to constrain a
-- record or an array, or as part of a larger expression given for
-- the initial value of a component. In both of these cases N appears
-- in the record initialization procedure and needs to be replaced by
-- the formal parameter of the initialization procedure which
-- corresponds to that discriminant.
-- In the example below, references to discriminants D1 and D2 in proc_1
-- are replaced by references to formals with the same name
-- (discriminals)
-- A similar replacement is done for calls to any record
-- initialization procedure for any components that are themselves
-- of a record type.
-- type R (D1, D2 : Integer) is record
-- X : Integer := F * D1;
-- Y : Integer := F * D2;
-- end record;
-- procedure proc_1 (Out_2 : out R; D1 : Integer; D2 : Integer) is
-- begin
-- Out_2.D1 := D1;
-- Out_2.D2 := D2;
-- Out_2.X := F * D1;
-- Out_2.Y := F * D2;
-- end;
function Build_Initialization_Call
(Loc : Source_Ptr;
Id_Ref : Node_Id;
Typ : Entity_Id;
In_Init_Proc : Boolean := False;
Array_Type : Entity_Id := Empty)
return List_Id
is
First_Arg : Node_Id;
Args : List_Id;
Decl : Node_Id;
Discr : Entity_Id;
Arg : Node_Id;
Proc : constant Entity_Id := Base_Init_Proc (Typ);
Init_Type : constant Entity_Id := Etype (First_Formal (Proc));
Full_Init_Type : constant Entity_Id := Underlying_Type (Init_Type);
Res : List_Id := New_List;
Full_Type : Entity_Id := Typ;
begin
if Is_Private_Type (Typ)
and then Present (Full_View (Typ))
then
Full_Type := Full_View (Typ);
end if;
-- First argument (_Init) is the object to be initialized.
if Is_CPP_Class (Typ) then
First_Arg :=
Make_Attribute_Reference (Loc,
Prefix => Id_Ref,
Attribute_Name => Name_Unrestricted_Access);
-- If Typ is derived, the procedure is the initialization procedure for
-- the root type. Wrap the argument in an conversion to make it type
-- honest. Actually it isn't quite type honest, because there can be
-- conflicts of views in the private type case. That is why we set
-- Conversion_OK in the conversion node.
elsif (Is_Record_Type (Typ)
or else Is_Array_Type (Typ)
or else Is_Private_Type (Typ))
and then Init_Type /= Base_Type (Typ)
then
First_Arg := OK_Convert_To (Etype (Init_Type), Id_Ref);
Set_Etype (First_Arg, Init_Type);
else
First_Arg := Id_Ref;
end if;
Args := New_List (Convert_Concurrent (First_Arg, Typ));
-- In the tasks case, add _Master as the value of the _Master parameter
-- and _Chain as the value of the _Chain parameter. At the outer level,
-- these will be variables holding the corresponding values obtained
-- from GNARL. At inner levels, they will be the parameters passed down
-- through the outer routines.
if Has_Task (Full_Type) then
Append_To (Args, Make_Identifier (Loc, Name_uMaster));
Append_To (Args, Make_Identifier (Loc, Name_uChain));
Decl := Build_Task_Image_Decl (Loc, Id_Ref, Array_Type);
Append_To (Args,
New_Occurrence_Of (Defining_Identifier (Decl), Loc));
Append (Decl, Res);
end if;
-- Add discriminant values if discriminants are present
if Has_Discriminants (Full_Init_Type) then
Discr := First_Discriminant (Full_Init_Type);
while Present (Discr) loop
Arg :=
Get_Discriminant_Value (
Discr,
Full_Type,
Discriminant_Constraint (Full_Type));
if In_Init_Proc then
-- Replace any possible references to the discriminant in the
-- call to the record initialization procedure with references
-- to the appropriate formal parameter.
if Nkind (Arg) = N_Identifier
and then Ekind (Entity (Arg)) = E_Discriminant
then
Arg := New_Reference_To (Discriminal (Entity (Arg)), Loc);
-- Case of access discriminants. We replace the reference
-- to the type by a reference to the actual object
elsif Nkind (Arg) = N_Attribute_Reference
and then Is_Entity_Name (Prefix (Arg))
and then Is_Type (Entity (Prefix (Arg)))
then
Arg :=
Make_Attribute_Reference (Loc,
Prefix => New_Copy (Prefix (Id_Ref)),
Attribute_Name => Name_Unrestricted_Access);
-- Otherwise make a copy of the default expression. Note
-- that we use the current Sloc for this, because we do not
-- want the call to appear to be at the declaration point.
else
Arg := New_Copy_Tree (Arg, New_Sloc => Loc);
end if;
else
if Is_Constrained (Full_Type) then
Arg := Duplicate_Subexpr (Arg);
else
-- The constraints come from the discriminant default
-- exps, they must be reevaluated, so we use New_Copy_Tree
-- but we ensure the proper Sloc (for any embedded calls).
Arg := New_Copy_Tree (Arg, New_Sloc => Loc);
end if;
end if;
Append_To (Args, Arg);
Discr := Next_Discriminant (Discr);
end loop;
end if;
Append (
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Proc, Loc),
Parameter_Associations => Args),
Res);
if Controlled_Type (Typ)
and then Nkind (Id_Ref) = N_Selected_Component
and then Chars (Selector_Name (Id_Ref)) /= Name_uParent
then
Append_List_To (Res,
Make_Init_Call (
Ref => New_Copy_Tree (First_Arg),
Typ => Typ,
Flist_Ref =>
Find_Final_List (Typ, New_Copy_Tree (First_Arg)),
With_Attach => Make_Integer_Literal (Loc, Uint_1)));
end if;
return Res;
end Build_Initialization_Call;
---------------------------------
-- Needs_Simple_Initialization --
---------------------------------
function Needs_Simple_Initialization (T : Entity_Id) return Boolean is
begin
-- Cases needing simple initializatoin are access types, scalar types
-- if pragma Normalize_Scalars is in effect, and packed array types
-- whose representation type is a modular integer type.
if Is_Access_Type (T)
or else (Normalize_Scalars
and then Is_Scalar_Type (T))
or else (Is_Bit_Packed_Array (T)
and then Is_Modular_Integer_Type (Packed_Array_Type (T)))
then
return True;
-- Check for private type, in which case test applies to the
-- underlying type of the private type.
elsif Is_Private_Type (T) then
declare
RT : constant Entity_Id := Underlying_Type (T);
begin
if Present (RT) then
return Needs_Simple_Initialization (RT);
else
return False;
end if;
end;
else
return False;
end if;
end Needs_Simple_Initialization;
----------------
-- In_Runtime --
----------------
function In_Runtime (E : Entity_Id) return Boolean is
S1 : Entity_Id := Scope (E);
begin
while Scope (S1) /= Standard_Standard loop
S1 := Scope (S1);
end loop;
return Chars (S1) = Name_System or else Chars (S1) = Name_Ada;
end In_Runtime;
-------------------------
-- Predef_Spec_Or_Body --
-------------------------
function Predef_Spec_Or_Body
(Loc : Source_Ptr;
Tag_Typ : Entity_Id;
Name : Name_Id;
Profile : List_Id;
Ret_Type : Entity_Id := Empty;
For_Body : Boolean := False)
return Node_Id
is
Id : Entity_Id := Make_Defining_Identifier (Loc, Name);
Spec : Node_Id;
begin
Set_Is_Public (Id, Is_Public (Tag_Typ));
-- The internal flag is set to mark these declarations because
-- they have specific properties. First they are primitives even
-- if they are not defined in the type scope (the freezing point
-- is not necessarily in the same scope), furthermore the
-- predefined equality can be overridden by a user-defined
-- equality, no body will be generated in this case.
Set_Is_Internal (Id);
if No (Ret_Type) then
Spec :=
Make_Procedure_Specification (Loc,
Defining_Unit_Name => Id,
Parameter_Specifications => Profile);
else
Spec :=
Make_Function_Specification (Loc,
Defining_Unit_Name => Id,
Parameter_Specifications => Profile,
Subtype_Mark =>
New_Reference_To (Ret_Type, Loc));
end if;
-- If body case, return empty subprogram body. Note that this is
-- ill-formed, because there is not even a null statement, and
-- certainly not a return in the function case. The caller is
-- expected to do surgery on the body to add the appropriate stuff.
if For_Body then
return Make_Subprogram_Body (Loc, Spec, Empty_List, Empty);
-- For the case of _Input and _Ouput applied to an abstract type,
-- generate abstract specifications. These will never be called,
-- but we need the slots allocated in the dispatching table so
-- that typ'Class'Input and typ'Class'Output will work properly.
elsif (Name = Name_uInput or else Name = Name_uOutput)
and then Is_Abstract (Tag_Typ)
then
return Make_Abstract_Subprogram_Declaration (Loc, Spec);
-- Normal spec case, where we return a subprogram declaration
else
return Make_Subprogram_Declaration (Loc, Spec);
end if;
end Predef_Spec_Or_Body;
-----------------------------
-- Predef_Stream_Attr_Spec --
-----------------------------
function Predef_Stream_Attr_Spec
(Loc : Source_Ptr;
Tag_Typ : Entity_Id;
Name : Name_Id;
For_Body : Boolean := False)
return Node_Id
is
Ret_Type : Entity_Id;
begin
if Name = Name_uInput then
Ret_Type := Tag_Typ;
else
Ret_Type := Empty;
end if;
return Predef_Spec_Or_Body (Loc,
Name => Name,
Tag_Typ => Tag_Typ,
Profile => Build_Stream_Attr_Profile (Loc, Tag_Typ, Name),
Ret_Type => Ret_Type,
For_Body => For_Body);
end Predef_Stream_Attr_Spec;
----------------------
-- Predef_Deep_Spec --
----------------------
function Predef_Deep_Spec
(Loc : Source_Ptr;
Tag_Typ : Entity_Id;
Name : Name_Id;
For_Body : Boolean := False)
return Node_Id
is
Prof : List_Id;
Type_B : Entity_Id;
begin
if Name = Name_uDeep_Finalize then
Prof := New_List;
Type_B := Standard_Boolean;
else
Prof := New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_L),
In_Present => True,
Out_Present => True,
Parameter_Type =>
New_Reference_To (RTE (RE_Finalizable_Ptr), Loc)));
Type_B := Standard_Short_Short_Integer;
end if;
Append_To (Prof,
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
In_Present => True,
Out_Present => True,
Parameter_Type => New_Reference_To (Tag_Typ, Loc)));
Append_To (Prof,
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_B),
Parameter_Type => New_Reference_To (Type_B, Loc)));
return Predef_Spec_Or_Body (Loc,
Name => Name,
Tag_Typ => Tag_Typ,
Profile => Prof,
For_Body => For_Body);
end Predef_Deep_Spec;
-------------------------------------
-- Make_Predefined_Primitive_Specs --
-------------------------------------
procedure Make_Predefined_Primitive_Specs
(Tag_Typ : Entity_Id;
Predef_List : out List_Id;
Renamed_Eq : out Node_Id)
is
Loc : constant Source_Ptr := Sloc (Tag_Typ);
Res : List_Id := New_List;
Prim : Elmt_Id;
Eq_Needed : Boolean;
Eq_Spec : Node_Id;
Eq_Name : Name_Id := Name_Op_Eq;
function Is_Predefined_Eq_Renaming (Prim : Node_Id) return Boolean;
-- Returns true if Prim is a renaming of an unresolved predefined
-- equality operation.
function Is_Predefined_Eq_Renaming (Prim : Node_Id) return Boolean is
begin
return Chars (Prim) /= Name_Op_Eq
and then Present (Alias (Prim))
and then Comes_From_Source (Prim)
and then Is_Intrinsic_Subprogram (Alias (Prim))
and then Chars (Alias (Prim)) = Name_Op_Eq;
end Is_Predefined_Eq_Renaming;
-- Start of processing for Make_Predefined_Primitive_Specs
begin
Renamed_Eq := Empty;
-- Spec of _Size
Append_To (Res, Predef_Spec_Or_Body (Loc,
Tag_Typ => Tag_Typ,
Name => Name_uSize,
Profile => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
Ret_Type => Standard_Long_Long_Integer));
-- Specs for dispatching stream attributes. We skip these for limited
-- types, since there is no question of dispatching in the limited case.
-- We also skip them for types declared in the runtime, which is
-- certainly incorrect (consider Unbounded_String)???
if not Is_Limited_Type (Tag_Typ)
-- and then not In_Runtime (Tag_Typ)
then
Append_To (Res, Predef_Stream_Attr_Spec (Loc, Tag_Typ, Name_uRead));
Append_To (Res, Predef_Stream_Attr_Spec (Loc, Tag_Typ, Name_uWrite));
Append_To (Res, Predef_Stream_Attr_Spec (Loc, Tag_Typ, Name_uInput));
Append_To (Res, Predef_Stream_Attr_Spec (Loc, Tag_Typ, Name_uOutput));
end if;
if not Is_Limited_Type (Tag_Typ) then
-- Spec of "=" if expanded if the type is not limited and if a
-- user defined "=" was not already declared for the non-full
-- view of a private extension
Eq_Needed := True;
Prim := First_Elmt (Primitive_Operations (Tag_Typ));
while Present (Prim) loop
-- If a primitive is encountered that renames the predefined
-- equality operator before reaching any explicit equality
-- primitive, then we still need to create a predefined
-- equality function, because calls to it can occur via
-- the renaming. A new name is created for the equality
-- to avoid conflicting with any user-defined equality.
-- (Note that this doesn't account for renamings of
-- equality nested within subpackages???)
if Is_Predefined_Eq_Renaming (Node (Prim)) then
Eq_Name := New_External_Name (Chars (Node (Prim)), 'E');
elsif Chars (Node (Prim)) = Name_Op_Eq
and then (No (Alias (Node (Prim)))
or else Nkind (Get_Declaration_Node (Node (Prim))) =
N_Subprogram_Renaming_Declaration)
then
Eq_Needed := False;
exit;
end if;
Prim := Next_Elmt (Prim);
end loop;
-- If a renaming of predefined equality was found
-- but there was no user-defined equality (so Eq_Needed
-- is still true), then set the name back to Name_Op_Eq.
-- But in the case where a user-defined equality was
-- located after such a renaming, then the predefined
-- equality function is still needed, so Eq_Needed must
-- be set back to True.
if Eq_Name /= Name_Op_Eq then
if Eq_Needed then
Eq_Name := Name_Op_Eq;
else
Eq_Needed := True;
end if;
end if;
if Eq_Needed then
Eq_Spec := Predef_Spec_Or_Body (Loc,
Tag_Typ => Tag_Typ,
Name => Eq_Name,
Profile => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_X),
Parameter_Type => New_Reference_To (Tag_Typ, Loc)),
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_Y),
Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
Ret_Type => Standard_Boolean);
Append_To (Res, Eq_Spec);
if Eq_Name /= Name_Op_Eq then
Renamed_Eq := Defining_Unit_Name (Specification (Eq_Spec));
Prim := First_Elmt (Primitive_Operations (Tag_Typ));
while Present (Prim) loop
-- Any renamings of equality that appeared before an
-- overriding equality must be updated to refer to
-- the entity for the predefined equality, otherwise
-- calls via the renaming would get incorrectly
-- resolved to call the user-defined equality function.
if Is_Predefined_Eq_Renaming (Node (Prim)) then
Set_Alias (Node (Prim), Renamed_Eq);
-- Exit upon encountering a user-defined equality
elsif Chars (Node (Prim)) = Name_Op_Eq
and then No (Alias (Node (Prim)))
then
exit;
end if;
Prim := Next_Elmt (Prim);
end loop;
end if;
end if;
-- Spec for dispatching assignment
Append_To (Res, Predef_Spec_Or_Body (Loc,
Tag_Typ => Tag_Typ,
Name => Name_uAssign,
Profile => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
Out_Present => True,
Parameter_Type => New_Reference_To (Tag_Typ, Loc)),
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_Y),
Parameter_Type => New_Reference_To (Tag_Typ, Loc)))));
end if;
-- Specs for finalization actions that may be required in case a
-- future extension contain a controlled element. We generate those
-- only for root tagged types where they will get dummy bodies or
-- when the type has controlled components and their body must be
-- generated. It is also impossible to provide those for tagged
-- types defined within s-finimp since it would involve circularity
-- problems
if In_Finalization_Root (Tag_Typ) then
null;
elsif Etype (Tag_Typ) = Tag_Typ or else Controlled_Type (Tag_Typ) then
if not Is_Limited_Type (Tag_Typ) then
Append_To (Res,
Predef_Deep_Spec (Loc, Tag_Typ, Name_uDeep_Adjust));
end if;
Append_To (Res, Predef_Deep_Spec (Loc, Tag_Typ, Name_uDeep_Finalize));
end if;
Predef_List := Res;
end Make_Predefined_Primitive_Specs;
---------------------------------
-- Predefined_Primitive_Bodies --
---------------------------------
function Predefined_Primitive_Bodies
(Tag_Typ : Entity_Id;
Renamed_Eq : Node_Id)
return List_Id
is
Loc : constant Source_Ptr := Sloc (Tag_Typ);
Decl : Node_Id;
Res : List_Id := New_List;
Prim : Elmt_Id;
Eq_Needed : Boolean := False;
Eq_Name : Name_Id;
Ent : Entity_Id;
begin
-- See if we have a predefined "=" operator
if Present (Renamed_Eq) then
Eq_Needed := True;
Eq_Name := Chars (Renamed_Eq);
else
Prim := First_Elmt (Primitive_Operations (Tag_Typ));
while Present (Prim) loop
if Chars (Node (Prim)) = Name_Op_Eq
and then Is_Internal (Node (Prim))
then
Eq_Needed := True;
Eq_Name := Name_Op_Eq;
end if;
Prim := Next_Elmt (Prim);
end loop;
end if;
-- Body of _Size
Decl := Predef_Spec_Or_Body (Loc,
Tag_Typ => Tag_Typ,
Name => Name_uSize,
Profile => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
Ret_Type => Standard_Long_Long_Integer,
For_Body => True);
Set_Handled_Statement_Sequence (Decl,
Make_Handled_Sequence_Of_Statements (Loc, New_List (
Make_Return_Statement (Loc,
Expression =>
Make_Attribute_Reference (Loc,
Prefix => Make_Identifier (Loc, Name_X),
Attribute_Name => Name_Size)))));
Append_To (Res, Decl);
-- Bodies for Dispatching stream IO routines. We need these only for
-- non-limited types (in the limited case there is no dispatching).
if not Is_Limited_Type (Tag_Typ) then
if No (TSS (Tag_Typ, Name_uRead)) then
Build_Record_Read_Procedure (Loc, Tag_Typ, Decl, Ent);
Append_To (Res, Decl);
end if;
if No (TSS (Tag_Typ, Name_uWrite)) then
Build_Record_Write_Procedure (Loc, Tag_Typ, Decl, Ent);
Append_To (Res, Decl);
end if;
-- Skip bodies of _Input and _Output for the abstract case, since
-- the corresponding specs are abstract (see Predef_Spec_Or_Body)
if not Is_Abstract (Tag_Typ) then
if No (TSS (Tag_Typ, Name_uInput)) then
Build_Record_Or_Elementary_Input_Function
(Loc, Tag_Typ, Decl, Ent);
Append_To (Res, Decl);
end if;
if No (TSS (Tag_Typ, Name_uOutput)) then
Build_Record_Or_Elementary_Output_Procedure
(Loc, Tag_Typ, Decl, Ent);
Append_To (Res, Decl);
end if;
end if;
end if;
if not Is_Limited_Type (Tag_Typ) then
-- Body for equality
if Eq_Needed then
Decl := Predef_Spec_Or_Body (Loc,
Tag_Typ => Tag_Typ,
Name => Eq_Name,
Profile => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_X),
Parameter_Type => New_Reference_To (Tag_Typ, Loc)),
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_Y),
Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
Ret_Type => Standard_Boolean,
For_Body => True);
declare
Def : constant Node_Id := Parent (Tag_Typ);
Variant_Case : Boolean := Has_Discriminants (Tag_Typ);
Comps : Node_Id := Empty;
Typ_Def : Node_Id := Type_Definition (Def);
Stmts : List_Id := New_List;
begin
if Variant_Case then
if Nkind (Typ_Def) = N_Derived_Type_Definition then
Typ_Def := Record_Extension_Part (Typ_Def);
end if;
if Present (Typ_Def) then
Comps := Component_List (Typ_Def);
end if;
Variant_Case := Present (Comps)
and then Present (Variant_Part (Comps));
end if;
if Variant_Case then
Append_To (Stmts,
Make_Eq_If (Loc, Discriminant_Specifications (Def)));
Append_List_To (Stmts, Make_Eq_Case (Loc, Comps));
Append_To (Stmts,
Make_Return_Statement (Loc,
Expression => New_Reference_To (Standard_True, Loc)));
else
Append_To (Stmts,
Make_Return_Statement (Loc,
Expression =>
Expand_Record_Equality (Loc,
Typ => Tag_Typ,
Lhs => Make_Identifier (Loc, Name_X),
Rhs => Make_Identifier (Loc, Name_Y),
Bodies => Declarations (Decl))));
end if;
Set_Handled_Statement_Sequence (Decl,
Make_Handled_Sequence_Of_Statements (Loc, Stmts));
end;
Append_To (Res, Decl);
end if;
-- Body for dispatching assignment
Decl := Predef_Spec_Or_Body (Loc,
Tag_Typ => Tag_Typ,
Name => Name_uAssign,
Profile => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
Out_Present => True,
Parameter_Type => New_Reference_To (Tag_Typ, Loc)),
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_Y),
Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
For_Body => True);
Set_Handled_Statement_Sequence (Decl,
Make_Handled_Sequence_Of_Statements (Loc, New_List (
Make_Assignment_Statement (Loc,
Name => Make_Identifier (Loc, Name_X),
Expression => Make_Identifier (Loc, Name_Y)))));
Append_To (Res, Decl);
end if;
-- Generate dummy bodies for finalization actions of types that have
-- no controlled components
if In_Finalization_Root (Tag_Typ) then
null;
elsif (Etype (Tag_Typ) = Tag_Typ or else Is_Controlled (Tag_Typ))
and then not Has_Controlled_Component (Tag_Typ)
then
if not Is_Limited_Type (Tag_Typ) then
Decl := Predef_Deep_Spec (Loc, Tag_Typ, Name_uDeep_Adjust, True);
if Is_Controlled (Tag_Typ) then
Set_Handled_Statement_Sequence (Decl,
Make_Handled_Sequence_Of_Statements (Loc,
Make_Adjust_Call (
Ref => Make_Identifier (Loc, Name_V),
Typ => Tag_Typ,
Flist_Ref => Make_Identifier (Loc, Name_L),
With_Attach => Make_Identifier (Loc, Name_B))));
else
Set_Handled_Statement_Sequence (Decl,
Make_Handled_Sequence_Of_Statements (Loc, New_List (
Make_Null_Statement (Loc))));
end if;
Append_To (Res, Decl);
end if;
Decl := Predef_Deep_Spec (Loc, Tag_Typ, Name_uDeep_Finalize, True);
if Is_Controlled (Tag_Typ) then
Set_Handled_Statement_Sequence (Decl,
Make_Handled_Sequence_Of_Statements (Loc,
Make_Final_Call (
Ref => Make_Identifier (Loc, Name_V),
Typ => Tag_Typ,
With_Detach => Make_Identifier (Loc, Name_B))));
else
Set_Handled_Statement_Sequence (Decl,
Make_Handled_Sequence_Of_Statements (Loc, New_List (
Make_Null_Statement (Loc))));
end if;
Append_To (Res, Decl);
end if;
return Res;
end Predefined_Primitive_Bodies;
---------------------------------
-- Predefined_Primitive_Freeze --
---------------------------------
function Predefined_Primitive_Freeze
(Tag_Typ : Entity_Id)
return List_Id
is
Loc : constant Source_Ptr := Sloc (Tag_Typ);
Res : List_Id := New_List;
Prim : Elmt_Id;
Frnodes : List_Id;
begin
Prim := First_Elmt (Primitive_Operations (Tag_Typ));
while Present (Prim) loop
if Is_Internal (Node (Prim)) then
Frnodes := Freeze_Entity (Node (Prim), Loc);
if Present (Frnodes) then
Append_List_To (Res, Frnodes);
end if;
end if;
Prim := Next_Elmt (Prim);
end loop;
return Res;
end Predefined_Primitive_Freeze;
---------------------------
-- Expand_N_Variant_Part --
---------------------------
-- If the last variant does not contain the Others choice, replace
-- it with an N_Others_Choice node since Gigi always wants an Others.
-- Note that we do not bother to call Analyze on the modified variant
-- part, since it's only effect would be to compute the contents of
-- the Others_Discrete_Choices node laboriously, and of course we
-- already know the list of choices that corresponds to the others
-- choice (it's the list we are replacing!)
procedure Expand_N_Variant_Part (N : Node_Id) is
Last_Var : constant Node_Id := Last_Non_Pragma (Variants (N));
Others_Node : Node_Id;
begin
if Nkind (First (Discrete_Choices (Last_Var))) /= N_Others_Choice then
Others_Node := Make_Others_Choice (Sloc (Last_Var));
Set_Others_Discrete_Choices
(Others_Node, Discrete_Choices (Last_Var));
Set_Discrete_Choices (Last_Var, New_List (Others_Node));
end if;
end Expand_N_Variant_Part;
------------------
-- Init_Formals --
------------------
function Init_Formals (Typ : Entity_Id) return List_Id is
Loc : constant Source_Ptr := Sloc (Typ);
Formals : List_Id;
begin
-- First parameter is always _Init : in out typ. Note that we need
-- this to be in/out because in the case of the task record value,
-- there are default record fields (_Priority, _Size, -Task_Info)
-- that may be referenced in the generated initialization routine.
Formals := New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_uInit),
In_Present => True,
Out_Present => True,
Parameter_Type => New_Reference_To (Typ, Loc)));
-- For task record value, or type that contains tasks, add two more
-- formals, _Master : Master_Id and _Chain : in out Activation_Chain
-- We also add these parameters for the task record type case.
if Has_Task (Typ)
or else (Is_Record_Type (Typ) and then Is_Task_Record_Type (Typ))
then
Append_To (Formals,
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_uMaster),
Parameter_Type => New_Reference_To (RTE (RE_Master_Id), Loc)));
Append_To (Formals,
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_uChain),
In_Present => True,
Out_Present => True,
Parameter_Type =>
New_Reference_To (RTE (RE_Activation_Chain), Loc)));
Append_To (Formals,
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_uTask_Id),
In_Present => True,
Parameter_Type =>
New_Reference_To (RTE (RE_Task_Image_Type), Loc)));
end if;
return Formals;
end Init_Formals;
end Exp_Ch3;
|