1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
|
------------------------------------------------------------------------------
-- --
-- GNAT RUNTIME COMPONENTS --
-- --
-- M A T H _ L I B --
-- --
-- B o d y --
-- --
-- $Revision: 1.2 $ --
-- --
-- Copyright (C) 1992-1997 Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
-- MA 02111-1307, USA. --
-- --
-- As a special exception, if other files instantiate generics from this --
-- unit, or you link this unit with other files to produce an executable, --
-- this unit does not by itself cause the resulting executable to be --
-- covered by the GNU General Public License. This exception does not --
-- however invalidate any other reasons why the executable file might be --
-- covered by the GNU Public License. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- It is now maintained by Ada Core Technologies Inc (http://www.gnat.com). --
-- --
------------------------------------------------------------------------------
-- This body is specifically for using an Ada interface to C math.h to get
-- the computation engine. Many special cases are handled locally to avoid
-- unnecessary calls. This is not a "strict" implementation, but takes full
-- advantage of the C functions, e.g. in providing interface to hardware
-- provided versions of the elementary functions.
-- A known weakness is that on the x86, all computation is done in Double,
-- which means that a lot of accuracy is lost for the Long_Long_Float case.
-- Uses functions sqrt, exp, log, pow, sin, asin, cos, acos, tan, atan,
-- sinh, cosh, tanh from C library via math.h
-- This is an adaptation of Ada.Numerics.Generic_Elementary_Functions that
-- provides a compatible body for the DEC Math_Lib package.
with Ada.Numerics.Aux;
use type Ada.Numerics.Aux.Double;
with Ada.Numerics; use Ada.Numerics;
package body Math_Lib is
Log_Two : constant := 0.69314_71805_59945_30941_72321_21458_17656_80755;
Two_Pi : constant Real'Base := 2.0 * Pi;
Half_Pi : constant Real'Base := Pi / 2.0;
Fourth_Pi : constant Real'Base := Pi / 4.0;
Epsilon : constant Real'Base := Real'Base'Epsilon;
IEpsilon : constant Real'Base := 1.0 / Epsilon;
subtype Double is Aux.Double;
DEpsilon : constant Double := Double (Epsilon);
DIEpsilon : constant Double := Double (IEpsilon);
-----------------------
-- Local Subprograms --
-----------------------
function Arctan
(Y : Real;
A : Real := 1.0)
return Real;
function Arctan
(Y : Real;
A : Real := 1.0;
Cycle : Real)
return Real;
function Exact_Remainder
(A : Real;
Y : Real)
return Real;
-- Computes exact remainder of A divided by Y
function Half_Log_Epsilon return Real;
-- Function to provide constant: 0.5 * Log (Epsilon)
function Local_Atan
(Y : Real;
A : Real := 1.0)
return Real;
-- Common code for arc tangent after cyele reduction
function Log_Inverse_Epsilon return Real;
-- Function to provide constant: Log (1.0 / Epsilon)
function Square_Root_Epsilon return Real;
-- Function to provide constant: Sqrt (Epsilon)
----------
-- "**" --
----------
function "**" (A1, A2 : Real) return Real is
begin
if A1 = 0.0
and then A2 = 0.0
then
raise Argument_Error;
elsif A1 < 0.0 then
raise Argument_Error;
elsif A2 = 0.0 then
return 1.0;
elsif A1 = 0.0 then
if A2 < 0.0 then
raise Constraint_Error;
else
return 0.0;
end if;
elsif A1 = 1.0 then
return 1.0;
elsif A2 = 1.0 then
return A1;
else
begin
if A2 = 2.0 then
return A1 * A1;
else
return
Real (Aux.pow (Double (A1), Double (A2)));
end if;
exception
when others =>
raise Constraint_Error;
end;
end if;
end "**";
------------
-- Arccos --
------------
-- Natural cycle
function Arccos (A : Real) return Real is
Temp : Real'Base;
begin
if abs A > 1.0 then
raise Argument_Error;
elsif abs A < Square_Root_Epsilon then
return Pi / 2.0 - A;
elsif A = 1.0 then
return 0.0;
elsif A = -1.0 then
return Pi;
end if;
Temp := Real (Aux.acos (Double (A)));
if Temp < 0.0 then
Temp := Pi + Temp;
end if;
return Temp;
end Arccos;
-- Arbitrary cycle
function Arccos (A, Cycle : Real) return Real is
Temp : Real'Base;
begin
if Cycle <= 0.0 then
raise Argument_Error;
elsif abs A > 1.0 then
raise Argument_Error;
elsif abs A < Square_Root_Epsilon then
return Cycle / 4.0;
elsif A = 1.0 then
return 0.0;
elsif A = -1.0 then
return Cycle / 2.0;
end if;
Temp := Arctan (Sqrt (1.0 - A * A) / A, 1.0, Cycle);
if Temp < 0.0 then
Temp := Cycle / 2.0 + Temp;
end if;
return Temp;
end Arccos;
-------------
-- Arccosh --
-------------
function Arccosh (A : Real) return Real is
begin
-- Return Log (A - Sqrt (A * A - 1.0)); double valued,
-- only positive value returned
-- What is this comment ???
if A < 1.0 then
raise Argument_Error;
elsif A < 1.0 + Square_Root_Epsilon then
return A - 1.0;
elsif abs A > 1.0 / Square_Root_Epsilon then
return Log (A) + Log_Two;
else
return Log (A + Sqrt (A * A - 1.0));
end if;
end Arccosh;
------------
-- Arccot --
------------
-- Natural cycle
function Arccot
(A : Real;
Y : Real := 1.0)
return Real
is
begin
-- Just reverse arguments
return Arctan (Y, A);
end Arccot;
-- Arbitrary cycle
function Arccot
(A : Real;
Y : Real := 1.0;
Cycle : Real)
return Real
is
begin
-- Just reverse arguments
return Arctan (Y, A, Cycle);
end Arccot;
-------------
-- Arccoth --
-------------
function Arccoth (A : Real) return Real is
begin
if abs A = 1.0 then
raise Constraint_Error;
elsif abs A < 1.0 then
raise Argument_Error;
elsif abs A > 1.0 / Epsilon then
return 0.0;
else
return 0.5 * Log ((1.0 + A) / (A - 1.0));
end if;
end Arccoth;
------------
-- Arcsin --
------------
-- Natural cycle
function Arcsin (A : Real) return Real is
begin
if abs A > 1.0 then
raise Argument_Error;
elsif abs A < Square_Root_Epsilon then
return A;
elsif A = 1.0 then
return Pi / 2.0;
elsif A = -1.0 then
return -Pi / 2.0;
end if;
return Real (Aux.asin (Double (A)));
end Arcsin;
-- Arbitrary cycle
function Arcsin (A, Cycle : Real) return Real is
begin
if Cycle <= 0.0 then
raise Argument_Error;
elsif abs A > 1.0 then
raise Argument_Error;
elsif A = 0.0 then
return A;
elsif A = 1.0 then
return Cycle / 4.0;
elsif A = -1.0 then
return -Cycle / 4.0;
end if;
return Arctan (A / Sqrt (1.0 - A * A), 1.0, Cycle);
end Arcsin;
-------------
-- Arcsinh --
-------------
function Arcsinh (A : Real) return Real is
begin
if abs A < Square_Root_Epsilon then
return A;
elsif A > 1.0 / Square_Root_Epsilon then
return Log (A) + Log_Two;
elsif A < -1.0 / Square_Root_Epsilon then
return -(Log (-A) + Log_Two);
elsif A < 0.0 then
return -Log (abs A + Sqrt (A * A + 1.0));
else
return Log (A + Sqrt (A * A + 1.0));
end if;
end Arcsinh;
------------
-- Arctan --
------------
-- Natural cycle
function Arctan
(Y : Real;
A : Real := 1.0)
return Real
is
begin
if A = 0.0
and then Y = 0.0
then
raise Argument_Error;
elsif Y = 0.0 then
if A > 0.0 then
return 0.0;
else -- A < 0.0
return Pi;
end if;
elsif A = 0.0 then
if Y > 0.0 then
return Half_Pi;
else -- Y < 0.0
return -Half_Pi;
end if;
else
return Local_Atan (Y, A);
end if;
end Arctan;
-- Arbitrary cycle
function Arctan
(Y : Real;
A : Real := 1.0;
Cycle : Real)
return Real
is
begin
if Cycle <= 0.0 then
raise Argument_Error;
elsif A = 0.0
and then Y = 0.0
then
raise Argument_Error;
elsif Y = 0.0 then
if A > 0.0 then
return 0.0;
else -- A < 0.0
return Cycle / 2.0;
end if;
elsif A = 0.0 then
if Y > 0.0 then
return Cycle / 4.0;
else -- Y < 0.0
return -Cycle / 4.0;
end if;
else
return Local_Atan (Y, A) * Cycle / Two_Pi;
end if;
end Arctan;
-------------
-- Arctanh --
-------------
function Arctanh (A : Real) return Real is
begin
if abs A = 1.0 then
raise Constraint_Error;
elsif abs A > 1.0 then
raise Argument_Error;
elsif abs A < Square_Root_Epsilon then
return A;
else
return 0.5 * Log ((1.0 + A) / (1.0 - A));
end if;
end Arctanh;
---------
-- Cos --
---------
-- Natural cycle
function Cos (A : Real) return Real is
begin
if A = 0.0 then
return 1.0;
elsif abs A < Square_Root_Epsilon then
return 1.0;
end if;
return Real (Aux.Cos (Double (A)));
end Cos;
-- Arbitrary cycle
function Cos (A, Cycle : Real) return Real is
T : Real'Base;
begin
if Cycle <= 0.0 then
raise Argument_Error;
elsif A = 0.0 then
return 1.0;
end if;
T := Exact_Remainder (abs (A), Cycle) / Cycle;
if T = 0.25
or else T = 0.75
or else T = -0.25
or else T = -0.75
then
return 0.0;
elsif T = 0.5 or T = -0.5 then
return -1.0;
end if;
return Real (Aux.Cos (Double (T * Two_Pi)));
end Cos;
----------
-- Cosh --
----------
function Cosh (A : Real) return Real is
begin
if abs A < Square_Root_Epsilon then
return 1.0;
elsif abs A > Log_Inverse_Epsilon then
return Exp ((abs A) - Log_Two);
end if;
return Real (Aux.cosh (Double (A)));
exception
when others =>
raise Constraint_Error;
end Cosh;
---------
-- Cot --
---------
-- Natural cycle
function Cot (A : Real) return Real is
begin
if A = 0.0 then
raise Constraint_Error;
elsif abs A < Square_Root_Epsilon then
return 1.0 / A;
end if;
return Real (1.0 / Real'Base (Aux.tan (Double (A))));
end Cot;
-- Arbitrary cycle
function Cot (A, Cycle : Real) return Real is
T : Real'Base;
begin
if Cycle <= 0.0 then
raise Argument_Error;
elsif A = 0.0 then
raise Constraint_Error;
elsif abs A < Square_Root_Epsilon then
return 1.0 / A;
end if;
T := Exact_Remainder (A, Cycle) / Cycle;
if T = 0.0 or T = 0.5 or T = -0.5 then
raise Constraint_Error;
else
return Cos (T * Two_Pi) / Sin (T * Two_Pi);
end if;
end Cot;
----------
-- Coth --
----------
function Coth (A : Real) return Real is
begin
if A = 0.0 then
raise Constraint_Error;
elsif A < Half_Log_Epsilon then
return -1.0;
elsif A > -Half_Log_Epsilon then
return 1.0;
elsif abs A < Square_Root_Epsilon then
return 1.0 / A;
end if;
return Real (1.0 / Real'Base (Aux.tanh (Double (A))));
end Coth;
---------------------
-- Exact_Remainder --
---------------------
function Exact_Remainder
(A : Real;
Y : Real)
return Real
is
Denominator : Real'Base := abs A;
Divisor : Real'Base := abs Y;
Reducer : Real'Base;
Sign : Real'Base := 1.0;
begin
if Y = 0.0 then
raise Constraint_Error;
elsif A = 0.0 then
return 0.0;
elsif A = Y then
return 0.0;
elsif Denominator < Divisor then
return A;
end if;
while Denominator >= Divisor loop
-- Put divisors mantissa with denominators exponent to make reducer
Reducer := Divisor;
begin
while Reducer * 1_048_576.0 < Denominator loop
Reducer := Reducer * 1_048_576.0;
end loop;
exception
when others => null;
end;
begin
while Reducer * 1_024.0 < Denominator loop
Reducer := Reducer * 1_024.0;
end loop;
exception
when others => null;
end;
begin
while Reducer * 2.0 < Denominator loop
Reducer := Reducer * 2.0;
end loop;
exception
when others => null;
end;
Denominator := Denominator - Reducer;
end loop;
if A < 0.0 then
return -Denominator;
else
return Denominator;
end if;
end Exact_Remainder;
---------
-- Exp --
---------
function Exp (A : Real) return Real is
Result : Real'Base;
begin
if A = 0.0 then
return 1.0;
else
Result := Real (Aux.Exp (Double (A)));
-- The check here catches the case of Exp returning IEEE infinity
if Result > Real'Last then
raise Constraint_Error;
else
return Result;
end if;
end if;
end Exp;
----------------------
-- Half_Log_Epsilon --
----------------------
-- Cannot precompute this constant, because this is required to be a
-- pure package, which allows no state. A pity, but no way around it!
function Half_Log_Epsilon return Real is
begin
return Real (0.5 * Real'Base (Aux.Log (DEpsilon)));
end Half_Log_Epsilon;
----------------
-- Local_Atan --
----------------
function Local_Atan
(Y : Real;
A : Real := 1.0)
return Real
is
Z : Real'Base;
Raw_Atan : Real'Base;
begin
if abs Y > abs A then
Z := abs (A / Y);
else
Z := abs (Y / A);
end if;
if Z < Square_Root_Epsilon then
Raw_Atan := Z;
elsif Z = 1.0 then
Raw_Atan := Pi / 4.0;
elsif Z < Square_Root_Epsilon then
Raw_Atan := Z;
else
Raw_Atan := Real'Base (Aux.Atan (Double (Z)));
end if;
if abs Y > abs A then
Raw_Atan := Half_Pi - Raw_Atan;
end if;
if A > 0.0 then
if Y > 0.0 then
return Raw_Atan;
else -- Y < 0.0
return -Raw_Atan;
end if;
else -- A < 0.0
if Y > 0.0 then
return Pi - Raw_Atan;
else -- Y < 0.0
return -(Pi - Raw_Atan);
end if;
end if;
end Local_Atan;
---------
-- Log --
---------
-- Natural base
function Log (A : Real) return Real is
begin
if A < 0.0 then
raise Argument_Error;
elsif A = 0.0 then
raise Constraint_Error;
elsif A = 1.0 then
return 0.0;
end if;
return Real (Aux.Log (Double (A)));
end Log;
-- Arbitrary base
function Log (A, Base : Real) return Real is
begin
if A < 0.0 then
raise Argument_Error;
elsif Base <= 0.0 or else Base = 1.0 then
raise Argument_Error;
elsif A = 0.0 then
raise Constraint_Error;
elsif A = 1.0 then
return 0.0;
end if;
return Real (Aux.Log (Double (A)) / Aux.Log (Double (Base)));
end Log;
-------------------------
-- Log_Inverse_Epsilon --
-------------------------
-- Cannot precompute this constant, because this is required to be a
-- pure package, which allows no state. A pity, but no way around it!
function Log_Inverse_Epsilon return Real is
begin
return Real (Aux.Log (DIEpsilon));
end Log_Inverse_Epsilon;
---------
-- Sin --
---------
-- Natural cycle
function Sin (A : Real) return Real is
begin
if abs A < Square_Root_Epsilon then
return A;
end if;
return Real (Aux.Sin (Double (A)));
end Sin;
-- Arbitrary cycle
function Sin (A, Cycle : Real) return Real is
T : Real'Base;
begin
if Cycle <= 0.0 then
raise Argument_Error;
elsif A = 0.0 then
return A;
end if;
T := Exact_Remainder (A, Cycle) / Cycle;
if T = 0.0 or T = 0.5 or T = -0.5 then
return 0.0;
elsif T = 0.25 or T = -0.75 then
return 1.0;
elsif T = -0.25 or T = 0.75 then
return -1.0;
end if;
return Real (Aux.Sin (Double (T * Two_Pi)));
end Sin;
----------
-- Sinh --
----------
function Sinh (A : Real) return Real is
begin
if abs A < Square_Root_Epsilon then
return A;
elsif A > Log_Inverse_Epsilon then
return Exp (A - Log_Two);
elsif A < -Log_Inverse_Epsilon then
return -Exp ((-A) - Log_Two);
end if;
return Real (Aux.Sinh (Double (A)));
exception
when others =>
raise Constraint_Error;
end Sinh;
-------------------------
-- Square_Root_Epsilon --
-------------------------
-- Cannot precompute this constant, because this is required to be a
-- pure package, which allows no state. A pity, but no way around it!
function Square_Root_Epsilon return Real is
begin
return Real (Aux.Sqrt (DEpsilon));
end Square_Root_Epsilon;
----------
-- Sqrt --
----------
function Sqrt (A : Real) return Real is
begin
if A < 0.0 then
raise Argument_Error;
-- Special case Sqrt (0.0) to preserve possible minus sign per IEEE
elsif A = 0.0 then
return A;
-- Sqrt (1.0) must be exact for good complex accuracy
elsif A = 1.0 then
return 1.0;
end if;
return Real (Aux.Sqrt (Double (A)));
end Sqrt;
---------
-- Tan --
---------
-- Natural cycle
function Tan (A : Real) return Real is
begin
if abs A < Square_Root_Epsilon then
return A;
elsif abs A = Pi / 2.0 then
raise Constraint_Error;
end if;
return Real (Aux.tan (Double (A)));
end Tan;
-- Arbitrary cycle
function Tan (A, Cycle : Real) return Real is
T : Real'Base;
begin
if Cycle <= 0.0 then
raise Argument_Error;
elsif A = 0.0 then
return A;
end if;
T := Exact_Remainder (A, Cycle) / Cycle;
if T = 0.25
or else T = 0.75
or else T = -0.25
or else T = -0.75
then
raise Constraint_Error;
else
return Sin (T * Two_Pi) / Cos (T * Two_Pi);
end if;
end Tan;
----------
-- Tanh --
----------
function Tanh (A : Real) return Real is
begin
if A < Half_Log_Epsilon then
return -1.0;
elsif A > -Half_Log_Epsilon then
return 1.0;
elsif abs A < Square_Root_Epsilon then
return A;
end if;
return Real (Aux.tanh (Double (A)));
end Tanh;
----------------------------
-- DEC-Specific functions --
----------------------------
function LOG10 (A : REAL) return REAL is
begin
return Log (A, 10.0);
end;
function LOG2 (A : REAL) return REAL is
begin
return Log (A, 2.0);
end;
function ASIN (A : REAL) return REAL renames Arcsin;
function ACOS (A : REAL) return REAL renames Arccos;
function ATAN (A : REAL) return REAL is
begin
return Arctan (A, 1.0);
end;
function ATAN2 (A1, A2 : REAL) return REAL renames Arctan;
function SIND (A : REAL) return REAL is
begin
return Sin (A, 360.0);
end Sind;
function COSD (A : REAL) return REAL is
begin
return Sin (A, 360.0);
end;
function TAND (A : REAL) return REAL is
begin
return Tan (A, 360.0);
end;
function ASIND (A : REAL) return REAL is
begin
return Arcsin (A, 360.0);
end;
function ACOSD (A : REAL) return REAL is
begin
return Arccos (A, 360.0);
end;
function Arctan (A : REAL) return REAL is
begin
return Arctan (A, 1.0, 360.0);
end;
function ATAND (A : REAL) return REAL is
begin
return Arctan (A, 1.0, 360.0);
end ATAND;
function ATAN2D (A1, A2 : REAL) return REAL is
begin
return Arctan (A1, A2, 360.0);
end;
end Math_Lib;
|