1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S E M _ A T T R --
-- --
-- B o d y --
-- --
-- $Revision: 1.417 $ --
-- --
-- Copyright (C) 1992-1997, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
-- MA 02111-1307, USA. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- It is now maintained by Ada Core Technologies Inc (http://www.gnat.com). --
-- --
------------------------------------------------------------------------------
with Ada.Characters.Latin_1; use Ada.Characters.Latin_1;
with Atree; use Atree;
with Checks; use Checks;
with Einfo; use Einfo;
with Errout; use Errout;
with Eval_Fat;
with Exp_TSS; use Exp_TSS;
with Exp_Util; use Exp_Util;
with Features; use Features;
with Fname; use Fname;
with Freeze; use Freeze;
with Lib; use Lib;
with Lib.Load; use Lib.Load;
with Namet; use Namet;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Opt; use Opt;
with Output; use Output;
with Restrict; use Restrict;
with Rtsfind; use Rtsfind;
with Sem; use Sem;
with Sem_Ch6; use Sem_Ch6;
with Sem_Ch8; use Sem_Ch8;
with Sem_Ch13; use Sem_Ch13;
with Sem_Dist; use Sem_Dist;
with Sem_Eval; use Sem_Eval;
with Sem_Res; use Sem_Res;
with Sem_Type; use Sem_Type;
with Sem_Util; use Sem_Util;
with Stand; use Stand;
with Sinfo; use Sinfo;
with Sinput; use Sinput;
with Snames; use Snames;
with Stand;
with Stringt; use Stringt;
with Table;
with Ttypes; use Ttypes;
with Ttypef; use Ttypef;
with Tbuild; use Tbuild;
with Uintp; use Uintp;
with Uname; use Uname;
with Urealp; use Urealp;
with Widechar; use Widechar;
package body Sem_Attr is
True_Value : constant Uint := Uint_1;
False_Value : constant Uint := Uint_0;
-- Synonyms to be used when these constants are used as Boolean values
Bad_Attribute : exception;
-- Exception raised if an error is detected during attribute processing,
-- used so that we can abandon the processing so we don't run into
-- trouble with cascaded errors.
-- The following array is the list of attributes defined in the Ada 83 RM
Attribute_83 : Attribute_Class_Array := Attribute_Class_Array'(
Attribute_Address |
Attribute_Aft |
Attribute_Alignment |
Attribute_Base |
Attribute_Callable |
Attribute_Constrained |
Attribute_Count |
Attribute_Delta |
Attribute_Digits |
Attribute_Emax |
Attribute_Epsilon |
Attribute_First |
Attribute_First_Bit |
Attribute_Fore |
Attribute_Image |
Attribute_Large |
Attribute_Last |
Attribute_Last_Bit |
Attribute_Leading_Part |
Attribute_Length |
Attribute_Machine_Emax |
Attribute_Machine_Emin |
Attribute_Machine_Mantissa |
Attribute_Machine_Overflows |
Attribute_Machine_Radix |
Attribute_Machine_Rounds |
Attribute_Mantissa |
Attribute_Pos |
Attribute_Position |
Attribute_Pred |
Attribute_Range |
Attribute_Safe_Emax |
Attribute_Safe_Large |
Attribute_Safe_Small |
Attribute_Size |
Attribute_Small |
Attribute_Storage_Size |
Attribute_Succ |
Attribute_Terminated |
Attribute_Val |
Attribute_Value |
Attribute_Width => True,
others => False);
function In_Generic_Unit return Boolean;
-- Utility do determine whether we are within a generic unit. Used to
-- validate and evaluate 'Definite and 'Has_Discriminants. Returns
-- False if in an instance which is itself within a generic, because
-- the attributes are legal in the instance.
-----------------------
-- Analyze_Attribute --
-----------------------
procedure Analyze_Attribute (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Aname : constant Name_Id := Attribute_Name (N);
P : constant Node_Id := Prefix (N);
Exprs : constant List_Id := Expressions (N);
Attr_Id : constant Attribute_Id := Get_Attribute_Id (Aname);
E1 : Node_Id;
E2 : Node_Id;
P_Type : Entity_Id;
-- Type of prefix after analysis
P_Base_Type : Entity_Id;
-- Base type of prefix after analysis
P_Root_Type : Entity_Id;
-- Root type of prefix after analysis
Unanalyzed : Node_Id;
-----------------------
-- Local Subprograms --
-----------------------
procedure Access_Attribute;
-- Used for Access, Unchecked_Access, Unrestricted_Access attributes.
-- Internally, Id distinguishes which of the three cases is involved.
procedure Check_Array_Or_Scalar_Type;
-- Common procedure used by First, Last, Range attribute to check
-- that the prefix is a constrained array or scalar type, or a name
-- of an array object, and that an argument appears only if appropriate
-- (i.e. only in the array case).
procedure Check_Array_Type;
-- Common semantic checks for all array attributes. Checks that the
-- prefix is a constrained array type or the name of an array object.
procedure Check_Asm_Attribute;
-- Common semantic checks for Asm_Input and Asm_Output attributes
procedure Check_Component;
-- Common processing for First_Bit, Last_Bit and Position. Checks that
-- the prefix is an appropriate selected component.
procedure Check_Decimal_Fixed_Point_Type;
-- Check that prefix of attribute N is a decimal fixed-point type
procedure Check_Dereference;
-- If the prefix of attribute is an object of an access type, then
-- introduce an explicit deference, and adjust P_Type accordingly.
procedure Check_Discrete_Type;
-- Verify that prefix of attribute N is a discrete type
procedure Check_E0;
-- Check that no attribute arguments are present
procedure Check_E0_Or_E1;
-- Check that at most one attribute argument is present
procedure Check_E1;
-- Check that exactly one attribute argument is present
procedure Check_E2;
-- Check that two attribute arguments are present
procedure Check_Enumeration_Type;
-- Verify that prefix of attribute N is an enumeration type
procedure Check_Fixed_Point_Type;
-- Verify that prefix of attribute N is a fixed type
procedure Check_Fixed_Point_Type_0;
-- Verify that prefix of attribute N is a fixed type and that
-- no attribute expressions are present
procedure Check_Floating_Point_Type;
-- Verify that prefix of attribute N is a float type
procedure Check_Floating_Point_Type_0;
-- Verify that prefix of attribute N is a float type and that
-- no attribute expressions are present
procedure Check_Floating_Point_Type_1;
-- Verify that prefix of attribute N is a float type and that
-- exactly one attribute expression is present
procedure Check_Floating_Point_Type_2;
-- Verify that prefix of attribute N is a float type and that
-- two attribute expressions are present
procedure Check_Generic_Type;
-- Common processing for attributes Definite, and Has_Discriminants
procedure Check_Integer_Type;
-- Verify that prefix of attribute N is an integer type
procedure Check_Library_Unit;
-- Verify that prefix of attribute N is a library unit
procedure Check_Not_Incomplete_Type;
-- Check that P (the prefix of the attribute) is not an incomplete
-- type or a private type for which no full view has been given.
procedure Check_Object_Reference (P : Node_Id);
-- Check that P (the prefix of the attribute) is an object reference
procedure Check_Program_Unit;
-- Verify that prefix of attribute N is a program unit
procedure Check_Real_Type;
-- Verify that prefix of attribute N is fixed or float type
procedure Check_Scalar_Type;
-- Verify that prefix of attribute N is a scalar type
procedure Check_Standard_Prefix;
-- Verify that prefix of attribute N is package Standard
procedure Check_Stream_Attribute (Nam : Name_Id);
-- Validity checking for stream attribute. Nam is the name of the
-- corresponding possible defined attribute function (e.g. for the
-- Read attribute, Nam will be Name_uRead).
procedure Check_Task_Prefix;
-- Verify that prefix of attribute N is a task or task type
procedure Check_Type;
-- Verify that the prefix of attribute N is a type
procedure Error_Attr (Msg : String; Error_Node : Node_Id);
-- Posts error using Error_Msg_N at given node, sets type of attribute
-- node to Any_Type, and then raises Bad_Attribute to avoid any further
-- semantic processing. The message typically contains a % insertion
-- character which is replaced by the attribute name.
procedure Standard_Attribute (Val : Int);
-- Used to process attributes whose prefix is package Standard which
-- yield values of type Universal_Integer. The attribute reference
-- node is rewritten with an integer literal of the given value.
procedure Unexpected_Argument (En : Node_Id);
-- Signal unexpected attribute argument (En is the argument)
procedure Unimplemented_Attribute;
-- Give error message for unimplemented attribute
procedure Validate_Non_Static_Attribute_Function_Call;
-- Called when processing an attribute that is a function call to a
-- non-static function, i.e. an attribute function that either takes
-- non-scalar arguments or returns a non-scalar result. Verifies that
-- such a call does not appear in a preelaborable context.
----------------------
-- Access_Attribute --
----------------------
procedure Access_Attribute is
Acc_Type : Entity_Id;
Scop : Entity_Id;
Typ : Entity_Id;
procedure Build_Access_Subprogram_Type (P : Node_Id);
-- Build an access to subprogram whose designated type is
-- the type of the prefix. If prefix is overloaded, so it the
-- node itself.
----------------------------------
-- Build_Access_Subprogram_Type --
----------------------------------
procedure Build_Access_Subprogram_Type (P : Node_Id) is
Index : Interp_Index;
It : Interp;
function Get_Kind (E : Entity_Id) return Entity_Kind;
-- Distinguish between access to regular and protected
-- subprograms.
function Get_Kind (E : Entity_Id) return Entity_Kind is
begin
if Convention (E) = Convention_Protected then
return E_Access_Protected_Subprogram_Type;
else
return E_Access_Subprogram_Type;
end if;
end Get_Kind;
-- Start of processing for Build_Access_Subprogram_Type
begin
if not Is_Overloaded (P) then
Acc_Type :=
New_Internal_Entity
(Get_Kind (Entity (P)), Current_Scope, Loc, 'A');
Set_Etype (Acc_Type, Acc_Type);
Set_Directly_Designated_Type (Acc_Type, Entity (P));
Set_Etype (N, Acc_Type);
else
Get_First_Interp (P, Index, It);
Set_Etype (N, Any_Type);
while Present (It.Nam) loop
if not Is_Intrinsic_Subprogram (It.Nam) then
Acc_Type :=
New_Internal_Entity
(Get_Kind (It.Nam), Current_Scope, Loc, 'A');
Set_Etype (Acc_Type, Acc_Type);
Set_Directly_Designated_Type (Acc_Type, It.Nam);
Add_One_Interp (N, Acc_Type, Acc_Type);
end if;
Get_Next_Interp (Index, It);
end loop;
if Etype (N) = Any_Type then
Error_Attr ("prefix of % attribute cannot be intrinsic", P);
end if;
end if;
end Build_Access_Subprogram_Type;
-- Start of processing for Access_Attribute
begin
Check_E0;
-- In the case of an access to subprogram, use the name of the
-- subprogram itself as the designated type. Type-checking in
-- this case compares the signatures of the designated types.
if Is_Entity_Name (P)
and then Is_Overloadable (Entity (P))
then
Build_Access_Subprogram_Type (P);
return;
-- Component is an operation of a protected type.
elsif (Nkind (P) = N_Selected_Component
and then Is_Overloadable (Entity (Selector_Name (P))))
then
if Ekind (Entity (Selector_Name (P))) = E_Entry then
Error_Attr ("Prefix of % attribute must be subprogram", P);
end if;
Build_Access_Subprogram_Type (Selector_Name (P));
return;
end if;
-- Deal with incorrect reference to a type, but note that some
-- accesses are allowed (references to the current type instance).
if Is_Entity_Name (P) then
Scop := Current_Scope;
Typ := Entity (P);
if Is_Type (Typ) then
-- OK if we are within the scope of a limited type
-- let's mark the component as having per object constraint
if Typ = Scop then
declare
Q : Node_Id := Parent (N);
begin
while Present (Q)
and then Nkind (Q) /= N_Component_Declaration
loop
Q := Parent (Q);
end loop;
if Present (Q) then
Set_Has_Per_Object_Constraint (
Defining_Identifier (Q), True);
end if;
end;
-- OK if we are in initialization procedure for the
-- type in question. More precise check needed ???
elsif Ekind (Scop) = E_Procedure
and then Chars (Scop) = Name_uInit_Proc
and then Etype (First_Formal (Scop)) = Typ
then
null;
-- OK if a task type, this test needs sharpening up ???
elsif Is_Task_Type (Typ) then
null;
-- Otherwise we have an error case
else
Error_Attr ("% attribute cannot be applied to type", P);
return;
end if;
end if;
end if;
-- If we fall through, we have a normal access to object case
Acc_Type := New_Internal_Entity (E_Access_Attribute_Type,
Current_Scope, Loc, 'A');
Set_Etype (Acc_Type, Acc_Type);
Set_Esize (Acc_Type, Uint_0);
Set_Directly_Designated_Type (Acc_Type, P_Type);
Set_Etype (N, Acc_Type);
-- Check for aliased view unless unrestricted case
if Aname /= Name_Unrestricted_Access
and then not Is_Aliased_View (P)
then
Error_Attr ("prefix of % attribute must be aliased", P);
end if;
end Access_Attribute;
--------------------------------
-- Check_Array_Or_Scalar_Type --
--------------------------------
procedure Check_Array_Or_Scalar_Type is
Index : Entity_Id;
D : Int;
-- Dimension number for array attributes.
begin
-- Case of string literal or string literal subtype. These cases
-- cannot arise from legal Ada code, but the expander is allowed
-- to generate them. They require special handling because string
-- literal subtypes do not have standard bounds (the whole idea
-- of these subtypes is to avoid having to generate the bounds)
if Ekind (P_Type) = E_String_Literal_Subtype then
Set_Etype (N, Etype (First_Index (P_Base_Type)));
return;
-- Scalar types
elsif Is_Scalar_Type (P_Type) then
Check_Type;
if Present (E1) then
Error_Attr ("invalid argument in % attribute", E1);
else
Set_Etype (N, P_Base_Type);
return;
end if;
-- Array types other than string literal subtypes handled above
else
Check_Array_Type;
-- We know prefix is an array type, or the name of an array
-- object, and that the expression, if present, is static
-- and within the range of the dimensions of the type.
if Is_Array_Type (P_Type) then
Index := First_Index (P_Base_Type);
elsif Is_Access_Type (P_Type) then
Index := First_Index (Base_Type (Designated_Type (P_Type)));
end if;
if No (E1) then
-- First dimension assumed
Set_Etype (N, Base_Type (Etype (Index)));
else
D := UI_To_Int (Intval (E1));
for I in 1 .. D - 1 loop
Index := Next_Index (Index);
end loop;
Set_Etype (N, Base_Type (Etype (Index)));
Set_Etype (E1, Standard_Integer);
end if;
end if;
end Check_Array_Or_Scalar_Type;
----------------------
-- Check_Array_Type --
----------------------
procedure Check_Array_Type is
D : Int;
-- Dimension number for array attributes.
begin
-- If the type is a string literal type, then this must be generated
-- internally, and no further check is required on its legality.
if Ekind (P_Type) = E_String_Literal_Subtype then
return;
end if;
-- Normal case of array type or subtype
Check_E0_Or_E1;
if Is_Array_Type (P_Type) then
if not Is_Constrained (P_Type)
and then Is_Entity_Name (P)
and then Is_Type (Entity (P))
then
-- Note: we do not call Error_Attr here, since we prefer to
-- continue, using the relevant index type of the array,
-- even though it is unconstrained. This gives better error
-- recovery behavior.
Error_Msg_Name_1 := Aname;
Error_Msg_N
("prefix for % attribute must be constrained array", P);
end if;
D := Number_Dimensions (P_Type);
elsif Is_Access_Type (P_Type)
and then Is_Array_Type (Designated_Type (P_Type))
then
if Is_Entity_Name (P) and then Is_Type (Entity (P)) then
Error_Attr ("prefix of % attribute cannot be access type", P);
end if;
D := Number_Dimensions (Designated_Type (P_Type));
else
Error_Attr ("prefix for % attribute must be array", P);
end if;
if Present (E1) then
Resolve (E1, Any_Integer);
Set_Etype (E1, Standard_Integer);
if not Is_Static_Expression (E1) then
Error_Attr ("expression for dimension must be static", E1);
elsif UI_To_Int (Intval (E1)) > D
or else UI_To_Int (Intval (E1)) < 1
then
Error_Attr ("invalid dimension number for array type", E1);
end if;
end if;
end Check_Array_Type;
-------------------------
-- Check_Asm_Attribute --
-------------------------
procedure Check_Asm_Attribute is
begin
Check_Type;
Check_E2;
-- Check first argument is static string expression
Analyze_And_Resolve (E1, Standard_String);
if Etype (E1) = Any_Type then
return;
elsif not Is_OK_Static_Expression (E1) then
Error_Attr
("constraint argument must be static string expression", E1);
end if;
-- Check second argument is right type
Analyze_And_Resolve (E2, Entity (P));
-- Note: that is all we need to do, we don't need to check
-- that it appears in a correct context. The Ada type system
-- will do that for us.
end Check_Asm_Attribute;
---------------------
-- Check_Component --
---------------------
procedure Check_Component is
begin
Check_E0;
if Nkind (P) /= N_Selected_Component
or else
(Ekind (Entity (Selector_Name (P))) /= E_Component
and then
Ekind (Entity (Selector_Name (P))) /= E_Discriminant)
then
Error_Attr
("prefix for % attribute must be selected component", P);
end if;
end Check_Component;
------------------------------------
-- Check_Decimal_Fixed_Point_Type --
------------------------------------
procedure Check_Decimal_Fixed_Point_Type is
begin
Check_Type;
if not Is_Decimal_Fixed_Point_Type (P_Type) then
Error_Attr
("prefix of % attribute must be decimal type", P);
end if;
end Check_Decimal_Fixed_Point_Type;
-----------------------
-- Check_Dereference --
-----------------------
procedure Check_Dereference is
begin
if Is_Object_Reference (P)
and then Is_Access_Type (P_Type)
then
Rewrite (P,
Make_Explicit_Dereference (Sloc (P),
Prefix => Relocate_Node (P)));
Analyze_And_Resolve (P);
P_Type := Etype (P);
if P_Type = Any_Type then
raise Bad_Attribute;
end if;
P_Base_Type := Base_Type (P_Type);
P_Root_Type := Root_Type (P_Base_Type);
end if;
end Check_Dereference;
-------------------------
-- Check_Discrete_Type --
-------------------------
procedure Check_Discrete_Type is
begin
Check_Type;
if not Is_Discrete_Type (P_Type) then
Error_Attr ("prefix of % attribute must be discrete type", P);
end if;
end Check_Discrete_Type;
--------------
-- Check_E0 --
--------------
procedure Check_E0 is
begin
if Present (E1) then
Unexpected_Argument (E1);
end if;
end Check_E0;
--------------------
-- Check_E0_Or_E1 --
--------------------
procedure Check_E0_Or_E1 is
begin
if Present (E2) then
Unexpected_Argument (E2);
end if;
end Check_E0_Or_E1;
--------------
-- Check_E1 --
--------------
procedure Check_E1 is
begin
Check_E0_Or_E1;
if No (E1) then
-- Special-case attributes that are functions and that appear as
-- the prefix of another attribute. The DEC compiler apparently
-- supports this, but GNAT does not. Error is posted on parent.
if Nkind (Parent (N)) = N_Attribute_Reference
and then (Attribute_Name (Parent (N)) = Name_Address
or else
Attribute_Name (Parent (N)) = Name_Access)
then
Error_Msg_Name_1 := Attribute_Name (Parent (N));
Error_Msg_N ("illegal prefix for % attribute", Parent (N));
Set_Etype (Parent (N), Any_Type);
Set_Entity (Parent (N), Any_Type);
raise Bad_Attribute;
else
Error_Attr ("missing argument for % attribute", N);
end if;
end if;
end Check_E1;
--------------
-- Check_E2 --
--------------
procedure Check_E2 is
begin
if No (E1) then
Error_Attr ("missing arguments for % attribute (2 required)", N);
elsif No (E2) then
Error_Attr ("missing argument for % attribute (2 required)", N);
end if;
end Check_E2;
----------------------------
-- Check_Enumeration_Type --
----------------------------
procedure Check_Enumeration_Type is
begin
Check_Type;
if not Is_Enumeration_Type (P_Type) then
Error_Attr ("prefix of % attribute must be enumeration type", P);
end if;
end Check_Enumeration_Type;
----------------------------
-- Check_Fixed_Point_Type --
----------------------------
procedure Check_Fixed_Point_Type is
begin
Check_Type;
if not Is_Fixed_Point_Type (P_Type) then
Error_Attr ("prefix of % attribute must be fixed point type", P);
end if;
end Check_Fixed_Point_Type;
------------------------------
-- Check_Fixed_Point_Type_0 --
------------------------------
procedure Check_Fixed_Point_Type_0 is
begin
Check_Fixed_Point_Type;
Check_E0;
end Check_Fixed_Point_Type_0;
-------------------------------
-- Check_Floating_Point_Type --
-------------------------------
procedure Check_Floating_Point_Type is
begin
Check_Type;
if not Is_Floating_Point_Type (P_Type) then
Error_Attr ("prefix of % attribute must be float type", P);
end if;
end Check_Floating_Point_Type;
---------------------------------
-- Check_Floating_Point_Type_0 --
---------------------------------
procedure Check_Floating_Point_Type_0 is
begin
Check_Floating_Point_Type;
Check_E0;
end Check_Floating_Point_Type_0;
---------------------------------
-- Check_Floating_Point_Type_1 --
---------------------------------
procedure Check_Floating_Point_Type_1 is
begin
Check_Floating_Point_Type;
Check_E1;
end Check_Floating_Point_Type_1;
---------------------------------
-- Check_Floating_Point_Type_2 --
---------------------------------
procedure Check_Floating_Point_Type_2 is
begin
Check_Floating_Point_Type;
Check_E2;
end Check_Floating_Point_Type_2;
------------------------
-- Check_Generic_Type --
------------------------
procedure Check_Generic_Type is
begin
Check_E0;
if not Is_Entity_Name (P)
or else not Is_Type (Entity (P))
then
Error_Attr (" prefix of % attribute must be generic type", N);
else
-- If the context is a generic unit, then the attribute must
-- apply to a formal indefinite subtype. If the context is an
-- instance then it applies to the corresponding actual type,
-- and can be constant-folded.
if In_Generic_Unit
and then (not Is_Generic_Type (Entity (P))
or else
not Is_Indefinite_Subtype (Entity (P)))
then
Error_Attr (" prefix of % attribute must be generic type", N);
end if;
end if;
Set_Etype (N, Standard_Boolean);
end Check_Generic_Type;
------------------------
-- Check_Integer_Type --
------------------------
procedure Check_Integer_Type is
begin
Check_Type;
if not Is_Integer_Type (P_Type) then
Error_Attr ("prefix of % attribute must be integer type", P);
end if;
end Check_Integer_Type;
------------------------
-- Check_Library_Unit --
------------------------
procedure Check_Library_Unit is
begin
if not Is_Compilation_Unit (Entity (P)) then
Error_Attr ("prefix of % attribute must be library unit", P);
end if;
end Check_Library_Unit;
-------------------------------
-- Check_Not_Incomplete_Type --
-------------------------------
procedure Check_Not_Incomplete_Type is
begin
if not Is_Entity_Name (P)
or else not Is_Type (Entity (P))
or else In_Default_Expression
then
return;
else
Check_Fully_Declared (P_Type, P);
end if;
end Check_Not_Incomplete_Type;
----------------------------
-- Check_Object_Reference --
----------------------------
procedure Check_Object_Reference (P : Node_Id) is
Rtyp : Entity_Id;
begin
-- If we need an object, and we have a prefix that is the name of
-- a function entity, convert it into a function call.
if Is_Entity_Name (P)
and then Ekind (Entity (P)) = E_Function
then
Rtyp := Etype (Entity (P));
Rewrite (P,
Make_Function_Call (Sloc (P),
Name => Relocate_Node (P)));
Analyze_And_Resolve (P, Rtyp);
-- Otherwise we must have an object reference
-- Note: explicit test for function call is needed here, but for
-- some reason it does not work to put that into Is_Object_Reference
-- (blows up a-strunb) ???
elsif not Is_Object_Reference (P)
and then Nkind (P) /= N_Function_Call
then
Error_Attr ("prefix of % attribute must be object", P);
end if;
end Check_Object_Reference;
------------------------
-- Check_Program_Unit --
------------------------
procedure Check_Program_Unit is
begin
if Is_Entity_Name (P) then
declare
K : constant Entity_Kind := Ekind (Entity (P));
T : constant Entity_Id := Etype (Entity (P));
begin
if K in Subprogram_Kind
or else K in Task_Kind
or else K in Protected_Kind
or else K = E_Package
or else (K = E_Variable
and then
(Is_Task_Type (T)
or else
Is_Protected_Type (T)))
then
return;
end if;
end;
end if;
Error_Attr ("prefix of % attribute must be program unit", P);
end Check_Program_Unit;
---------------------
-- Check_Real_Type --
---------------------
procedure Check_Real_Type is
begin
Check_Type;
if not Is_Real_Type (P_Type) then
Error_Attr ("prefix of % attribute must be real type", P);
end if;
end Check_Real_Type;
-----------------------
-- Check_Scalar_Type --
-----------------------
procedure Check_Scalar_Type is
begin
Check_Type;
if not Is_Scalar_Type (P_Type) then
Error_Attr ("prefix of % attribute must be scalar type", P);
end if;
end Check_Scalar_Type;
---------------------------
-- Check_Standard_Prefix --
---------------------------
procedure Check_Standard_Prefix is
begin
Check_E0;
if Nkind (P) /= N_Identifier
or else Chars (P) /= Name_Standard
then
Error_Attr ("only allowed prefix for % attribute is Standard", P);
end if;
end Check_Standard_Prefix;
----------------------------
-- Check_Stream_Attribute --
----------------------------
procedure Check_Stream_Attribute (Nam : Name_Id) is
Etyp : Entity_Id;
begin
Validate_Non_Static_Attribute_Function_Call;
Check_Type;
-- Stream attributes not allowed on limited types
if Is_Limited_Type (P_Type)
and then not Present (TSS (Base_Type (P_Type), Nam))
then
Error_Attr ("limited types have no default stream attributes", P);
end if;
-- Here we must check that the first argument is an access type
-- that is compatible with Ada.Streams.Root_Stream_Type'Class.
Analyze_And_Resolve (E1);
Etyp := Etype (E1);
-- Note: the double call to Root_Type here is needed because the
-- root type of a class-wide type is the corresponding type (e.g.
-- X for X'Class, and we really want to go to the root.
if not Is_Access_Type (Etyp)
or else Root_Type (Root_Type (Designated_Type (Etyp))) /=
RTE (RE_Root_Stream_Type)
then
Error_Attr
("expected access to Ada.Streams.Root_Stream_Type''Class", E1);
end if;
-- Check that the second argument is of the right type if there is
-- one (the Input attribute has only one argument so this is skipped)
if Present (E2) then
Analyze_And_Resolve (E2, P_Type);
-- For Read attribute, check second arg ok for out formal
if Nam = Name_uRead
and then not Is_OK_Variable_For_Out_Formal (E2)
then
Error_Attr
("second argument of % attribute must be a variable", E2);
end if;
end if;
end Check_Stream_Attribute;
-----------------------
-- Check_Task_Prefix --
-----------------------
procedure Check_Task_Prefix is
begin
Analyze (P);
if Is_Task_Type (Etype (P))
or else (Is_Access_Type (Etype (P))
and then Is_Task_Type (Designated_Type (Etype (P))))
then
Resolve (P, Etype (P));
else
Error_Attr ("prefix of % attribute must be a task", P);
end if;
end Check_Task_Prefix;
----------------
-- Check_Type --
----------------
-- The possibilities are an entity name denoting a type, or an
-- attribute reference that denotes a type (Base or Class). If
-- the type is incomplete, replace it with its full view.
procedure Check_Type is
begin
if not Is_Entity_Name (P)
or else not Is_Type (Entity (P))
then
Error_Attr ("prefix of % attribute must be a type", P);
elsif Ekind (Entity (P)) = E_Incomplete_Type
and then Present (Full_View (Entity (P)))
then
P_Type := Full_View (Entity (P));
Set_Entity (P, P_Type);
end if;
end Check_Type;
----------------
-- Error_Attr --
----------------
procedure Error_Attr (Msg : String; Error_Node : Node_Id) is
begin
Error_Msg_Name_1 := Aname;
Error_Msg_N (Msg, Error_Node);
Set_Etype (N, Any_Type);
Set_Entity (N, Any_Type);
raise Bad_Attribute;
end Error_Attr;
------------------------
-- Standard_Attribute --
------------------------
procedure Standard_Attribute (Val : Int) is
begin
Check_Standard_Prefix;
Rewrite (N,
Make_Integer_Literal (Loc, UI_From_Int (Val)));
Analyze (N);
end Standard_Attribute;
-------------------------
-- Unexpected Argument --
-------------------------
procedure Unexpected_Argument (En : Node_Id) is
begin
Error_Attr ("unexpected argument for % attribute", En);
end Unexpected_Argument;
-----------------------------
-- Unimplemented_Attribute --
-----------------------------
procedure Unimplemented_Attribute is
begin
Error_Attr ("% attribute not implemented yet", N);
end Unimplemented_Attribute;
-------------------------------------------------
-- Validate_Non_Static_Attribute_Function_Call --
-------------------------------------------------
-- This function should be moved to Sem_Dist ???
procedure Validate_Non_Static_Attribute_Function_Call is
begin
if In_Preelaborated_Unit
and then not In_Subprogram_Or_Concurrent_Unit
then
Error_Msg_N ("non-static function call in preelaborated unit", N);
end if;
end Validate_Non_Static_Attribute_Function_Call;
-----------------------------------------------
-- Start of Processing for Analyze_Attribute --
-----------------------------------------------
begin
-- Immediate return if unrecognized attribute (already diagnosed
-- by parser, so there is nothing more that we need to do)
if not Is_Attribute_Name (Aname) then
raise Bad_Attribute;
end if;
-- Deal with Ada 83 and Features issues
if not Attribute_83 (Attr_Id) then
if Ada_83 and then Comes_From_Source (N) then
Error_Msg_Name_1 := Aname;
Error_Msg_N ("(Ada 83) attribute% is not recognized", N);
end if;
if Attribute_Impl_Def (Attr_Id) then
Note_Feature (Implementation_Dependent_Attributes, Loc);
Check_Restriction (No_Implementation_Attributes, N);
else
Note_Feature (New_Attributes, Loc);
end if;
end if;
-- Remote access to subprogram type access attribute reference needs
-- unanalyzed copy for tree transformation. The analyzed copy is used
-- for its semantic information (whether prefix is a remote subprogram
-- name), the unanalyzed copy is used to construct new subtree rooted
-- with N_aggregate which represents a fat pointer aggregate.
if Aname = Name_Access then
Unanalyzed := Copy_Separate_Tree (N);
end if;
-- Analyze prefix and exit if error in analysis. If the prefix is an
-- incomplete type, use full view if available.
Analyze (P);
P_Type := Etype (P);
if Is_Entity_Name (P)
and then Present (Entity (P))
and then Is_Type (Entity (P))
and then Ekind (Entity (P)) = E_Incomplete_Type
then
P_Type := Get_Full_View (P_Type);
Set_Entity (P, P_Type);
Set_Etype (P, P_Type);
end if;
if P_Type = Any_Type then
raise Bad_Attribute;
end if;
P_Base_Type := Base_Type (P_Type);
P_Root_Type := Root_Type (P_Base_Type);
-- Analyze expressions that may be present, exiting if an error occurs
if No (Exprs) then
E1 := Empty;
E2 := Empty;
else
E1 := First (Exprs);
Analyze (E1);
if Etype (E1) = Any_Type then
raise Bad_Attribute;
end if;
E2 := Next (E1);
if Present (E2) then
Analyze (E2);
if Etype (E2) = Any_Type then
raise Bad_Attribute;
end if;
if Present (Next (E2)) then
Unexpected_Argument (Next (E2));
end if;
end if;
end if;
if Is_Overloaded (P)
and then Aname /= Name_Access
and then Aname /= Name_Address
and then Aname /= Name_Count
and then Aname /= Name_Caller
and then Aname /= Name_Unchecked_Access
then
Error_Attr ("ambiguous prefix for % attribute", P);
end if;
-- Remaining processing depends on attribute
case Attr_Id is
------------------
-- Abort_Signal --
------------------
when Attribute_Abort_Signal =>
Check_Standard_Prefix;
Rewrite (N,
New_Reference_To (Stand.Abort_Signal, Loc));
Analyze (N);
------------
-- Access --
------------
when Attribute_Access =>
Access_Attribute;
-------------
-- Address --
-------------
when Attribute_Address =>
Check_E0;
-- Check for some junk cases, where we have to allow the address
-- attribute but it does not make much sense, so at least for now
-- just replace with Null_Address.
-- We also do this if the prefix is a reference to the AST_Entry
-- attribute. If expansion is active, the attribute will be
-- replaced by a function call, and address will work fine and
-- get the proper value, but if expansion is not active, then
-- the check here allows proper semantic analysis of the reference.
if (Is_Entity_Name (P)
and then (Ekind (Entity (P)) = E_Task_Type
or else Ekind (Entity (P)) = E_Package
or else Ekind (Entity (P)) = E_Protected_Type
or else Is_Generic_Unit (Entity (P))))
or else
(Nkind (P) = N_Attribute_Reference
and then
Attribute_Name (P) = Name_AST_Entry)
then
Rewrite (N,
New_Occurrence_Of (RTE (RE_Null_Address), Sloc (N)));
-- The following logic is obscure, needs explanation ???
elsif Nkind (P) = N_Attribute_Reference
or else (Is_Entity_Name (P)
and then not Is_Subprogram (Entity (P))
and then not Is_Object (Entity (P))
and then Ekind (Entity (P)) /= E_Label)
then
Error_Attr ("invalid prefix for % attribute", P);
elsif Is_Entity_Name (P) then
Set_Address_Taken (Entity (P));
end if;
Set_Etype (N, RTE (RE_Address));
------------------
-- Address_Size --
------------------
when Attribute_Address_Size =>
Standard_Attribute (Ttypes.System_Address_Size);
--------------
-- Adjacent --
--------------
when Attribute_Adjacent =>
Check_Floating_Point_Type_2;
Set_Etype (N, P_Base_Type);
Resolve (E1, P_Base_Type);
Resolve (E2, P_Base_Type);
---------
-- Aft --
---------
when Attribute_Aft =>
Check_Fixed_Point_Type_0;
Set_Etype (N, Universal_Integer);
---------------
-- Alignment --
---------------
when Attribute_Alignment =>
-- Don't we need more checking here, cf Size ???
Check_E0;
Check_Not_Incomplete_Type;
Set_Etype (N, Universal_Integer);
---------------
-- Asm_Input --
---------------
when Attribute_Asm_Input =>
Check_Asm_Attribute;
Set_Etype (N, RTE (RE_Asm_Input_Operand));
----------------
-- Asm_Output --
----------------
when Attribute_Asm_Output =>
Check_Asm_Attribute;
if Etype (E2) = Any_Type then
return;
elsif Aname = Name_Asm_Output then
if not Is_Variable (E2) then
Error_Attr
("second argument for Asm_Output is not variable", E2);
end if;
end if;
Note_Possible_Modification (E2);
Set_Etype (N, RTE (RE_Asm_Output_Operand));
---------------
-- AST_Entry --
---------------
when Attribute_AST_Entry => AST_Entry : declare
S : Entity_Id;
Ent : Entity_Id;
Tsk : Entity_Id;
Pref : Node_Id;
Ptyp : Entity_Id;
Indexed : Boolean;
-- Indicates if entry family index is present. Note the coding
-- here handles the entry family case, but in fact it cannot be
-- executed currently, because pragma AST_Entry does not permit
-- the specification of an entry family.
procedure Bad_AST_Entry;
-- Signal a bad AST_Entry pragma
function OK_Entry (E : Entity_Id) return Boolean;
-- Checks that E is of an appropriate entity kind for an entry
-- (i.e. E_Entry if Index is False, or E_Entry_Family if Index
-- is set True for the entry family case). In the True case,
-- makes sure that Is_AST_Entry is set on the entry.
procedure Bad_AST_Entry is
begin
Error_Attr ("prefix for % attribute must be task entry", P);
end Bad_AST_Entry;
function OK_Entry (E : Entity_Id) return Boolean is
Result : Boolean;
begin
if Indexed then
Result := (Ekind (E) = E_Entry_Family);
else
Result := (Ekind (E) = E_Entry);
end if;
if Result then
if not Is_AST_Entry (E) then
Error_Msg_Name_2 := Aname;
Error_Attr
("% attribute requires previous % pragma", P);
end if;
end if;
return Result;
end OK_Entry;
-- Start of processing for AST_Entry
begin
Check_VMS (N);
Check_E0;
-- Deal with entry family case
if Nkind (P) = N_Indexed_Component then
Pref := Prefix (P);
Indexed := True;
else
Pref := P;
Indexed := False;
end if;
Ptyp := Etype (Pref);
if Ptyp = Any_Type or else Error_Posted (Pref) then
return;
end if;
-- If the prefix is a selected component whose prefix is of an
-- access type, then introduce an explicit dereference.
if Nkind (Pref) = N_Selected_Component
and then Is_Access_Type (Ptyp)
then
Rewrite (Pref,
Make_Explicit_Dereference (Sloc (Pref),
Relocate_Node (Pref)));
Analyze_And_Resolve (Pref, Designated_Type (Ptyp));
end if;
-- Prefix can be of the form a.b, where a is a task object
-- and b is one of the entries of the corresponding task type.
if Nkind (Pref) = N_Selected_Component
and then OK_Entry (Entity (Selector_Name (Pref)))
and then Is_Object_Reference (Prefix (Pref))
and then Is_Task_Type (Etype (Prefix (Pref)))
then
null;
-- Otherwise the prefix must be an entry of a containing task,
-- or of a variable of the enclosing task type.
else
if Nkind (Pref) = N_Identifier
or else Nkind (Pref) = N_Expanded_Name
then
Ent := Entity (Pref);
if not OK_Entry (Ent)
or else not In_Open_Scopes (Scope (Ent))
then
Bad_AST_Entry;
end if;
else
Bad_AST_Entry;
end if;
end if;
Set_Etype (N, RTE (RE_AST_Handler));
end AST_Entry;
----------
-- Base --
----------
when Attribute_Base => Base :
begin
Check_E0_Or_E1;
Find_Type (P);
Set_Etype (N, Base_Type (Entity (P)));
-- If we have an expression present, then really this is a conversion
-- and the tree must be reformed. Note that this is one of the cases
-- in which we do a replace rather than a rewrite, because the
-- original tree is junk.
if Present (E1) then
Replace (N,
Make_Type_Conversion (Loc,
Subtype_Mark =>
Make_Attribute_Reference (Loc,
Prefix => Prefix (N),
Attribute_Name => Name_Base),
Expression => Relocate_Node (E1)));
Analyze (N);
-- For other cases, set the proper type as the entity of the
-- attribute reference, and then rewrite the node to be an
-- occurrence of the referenced base type. This way, no one
-- else in the compiler has to worry about the base attribute.
else
Set_Entity (N, Base_Type (Entity (P)));
Rewrite (N,
New_Reference_To (Entity (N), Loc));
Analyze (N);
end if;
end Base;
---------
-- Bit --
---------
when Attribute_Bit => Bit :
begin
Check_E0;
if not Is_Entity_Name (P)
or else not Is_Object (Entity (P))
then
Error_Attr ("prefix for % attribute must be object", P);
-- What about the access object cases ???
else
null;
end if;
Set_Etype (N, Universal_Integer);
end Bit;
---------------
-- Bit_Order --
---------------
when Attribute_Bit_Order => Bit_Order :
begin
Check_E0;
Check_Type;
if not Is_Record_Type (P_Type) then
Error_Attr ("prefix of % attribute must be record type", P);
end if;
if Bytes_Big_Endian then
Rewrite (N,
New_Occurrence_Of (RTE (RE_High_Order_First), Loc));
else
Rewrite (N,
New_Occurrence_Of (RTE (RE_Low_Order_First), Loc));
end if;
Set_Etype (N, RTE (RE_Bit_Order));
Resolve (N, Etype (N));
-- Reset incorrect indication of staticness
Set_Is_Static_Expression (N, False);
end Bit_Order;
------------------
-- Body_Version --
------------------
when Attribute_Body_Version =>
Check_E0;
Check_Program_Unit;
Set_Etype (N, RTE (RE_Version_String));
--------------
-- Callable --
--------------
when Attribute_Callable =>
Check_E0;
Set_Etype (N, Standard_Boolean);
Check_Task_Prefix;
------------
-- Caller --
------------
when Attribute_Caller => Caller : declare
Ent : Entity_Id;
H : Entity_Id;
S : Entity_Id;
begin
Check_E0;
if Nkind (P) = N_Identifier
or else Nkind (P) = N_Expanded_Name
then
Ent := Entity (P);
if not Is_Entry (Ent) then
Error_Attr ("invalid entry name", N);
end if;
else
Error_Attr ("invalid entry name", N);
return;
end if;
for J in reverse 0 .. Scope_Stack.Last loop
S := Scope_Stack.Table (J).Entity;
if S = Scope (Ent) then
Error_Attr ("Caller must appear in matching accept or body", N);
elsif S = Ent then
exit;
end if;
end loop;
H := Homonym (Ent);
while Present (H) loop
if Scope (H) = Scope (Ent) then
Error_Attr ("ambiguous entry name", N);
return;
end if;
H := Homonym (H);
end loop;
Set_Etype (N, RTE (RO_AT_Task_ID));
end Caller;
-------------
-- Ceiling --
-------------
when Attribute_Ceiling =>
Check_Floating_Point_Type_1;
Set_Etype (N, P_Base_Type);
Resolve (E1, P_Base_Type);
-----------
-- Class --
-----------
when Attribute_Class => Class : declare
Typ : Entity_Id;
begin
Note_Feature (Class_Wide_Types, Loc);
Check_Restriction (No_Dispatch, N);
Check_E0_Or_E1;
-- If we have an expression present, then really this is a conversion
-- and the tree must be reformed into a proper conversion. This is a
-- Replace rather than a Rewrite, because the original tree is junk.
-- If expression is overloaded, propagate interpretations to new one.
if Present (E1) then
Replace (N,
Make_Type_Conversion (Loc,
Subtype_Mark =>
Make_Attribute_Reference (Loc,
Prefix => Prefix (N),
Attribute_Name => Name_Class),
Expression => Relocate_Node (E1)));
Save_Interps (E1, Expression (N));
Analyze (N);
-- Otherwise we just need to find the proper type
else
Find_Type (N);
end if;
end Class;
--------------------
-- Component_Size --
--------------------
when Attribute_Component_Size =>
Check_E0;
Set_Etype (N, Universal_Integer);
-- Note: unlike other array attributes, unconstrained arrays are OK
if Is_Array_Type (P_Type) and then not Is_Constrained (P_Type) then
null;
else
Check_Array_Type;
end if;
-------------
-- Compose --
-------------
when Attribute_Compose =>
Check_Floating_Point_Type_2;
Set_Etype (N, P_Base_Type);
Resolve (E1, P_Base_Type);
Resolve (E2, Any_Integer);
-----------------
-- Constrained --
-----------------
when Attribute_Constrained =>
Check_E0;
Set_Etype (N, Standard_Boolean);
-- Case from RM J.4(2) of constrained applied to private type
if Is_Entity_Name (P) and then Is_Type (Entity (P)) then
-- If we are within an instance, the attribute must be legal
-- because it was valid in the generic unit.
if In_Instance then
return;
-- For sure OK if we have a real private type itself, but must
-- be completed, cannot apply Constrained to incomplete type.
elsif Is_Private_Type (Entity (P)) then
Check_Not_Incomplete_Type;
return;
end if;
else
Check_Object_Reference (P);
if Has_Discriminants (P_Type)
or else (Is_Access_Type (P_Type)
and then
Has_Discriminants (Designated_Type (P_Type)))
then
return;
end if;
end if;
-- Fall through if bad prefix
Error_Attr
("prefix of % attribute must be object of discriminated type", P);
---------------
-- Copy_Sign --
---------------
when Attribute_Copy_Sign =>
Check_Floating_Point_Type_2;
Set_Etype (N, P_Base_Type);
Resolve (E1, P_Base_Type);
Resolve (E2, P_Base_Type);
-----------
-- Count --
-----------
when Attribute_Count => Count :
declare
Ent : Entity_Id;
H : Entity_Id;
S : Entity_Id;
Tsk : Entity_Id;
begin
Check_E0;
if Nkind (P) = N_Identifier
or else Nkind (P) = N_Expanded_Name
then
Ent := Entity (P);
if Ekind (Ent) /= E_Entry then
Error_Attr ("invalid entry name", N);
end if;
elsif Nkind (P) = N_Indexed_Component then
Ent := Entity (Prefix (P));
if Ekind (Ent) /= E_Entry_Family then
Error_Attr ("invalid entry family name", P);
return;
end if;
else
Error_Attr ("invalid entry name", N);
return;
end if;
for J in reverse 0 .. Scope_Stack.Last loop
S := Scope_Stack.Table (J).Entity;
if S = Scope (Ent) then
if Nkind (P) = N_Expanded_Name then
Tsk := Entity (Prefix (P));
-- The prefix denotes either the task type, or else a
-- single task whose task type is being analyzed.
if (Is_Type (Tsk)
and then Tsk = S)
or else (not Is_Type (Tsk)
and then Etype (Tsk) = S
and then not (Comes_From_Source (S)))
then
null;
else
Error_Msg_N
("Count must apply to entry of current task", N);
end if;
end if;
exit;
elsif Ekind (Scope (Ent)) in Task_Kind
and then Ekind (S) /= E_Loop
and then Ekind (S) /= E_Block
and then Ekind (S) /= E_Entry
and then Ekind (S) /= E_Entry_Family
then
Error_Attr ("Count cannot appear in inner unit", N);
end if;
end loop;
H := Homonym (Ent);
while Present (H) loop
if Scope (H) = Scope (Ent) then
Error_Attr ("ambiguous entry name", N);
return;
end if;
H := Homonym (H);
end loop;
Set_Etype (N, Universal_Integer);
end Count;
-----------------------
-- Default_Bit_Order --
-----------------------
when Attribute_Default_Bit_Order => Default_Bit_Order :
begin
Check_Standard_Prefix;
Check_E0;
if Bytes_Big_Endian then
Rewrite (N,
Make_Integer_Literal (Loc, False_Value));
else
Rewrite (N,
Make_Integer_Literal (Loc, True_Value));
end if;
Set_Etype (N, Universal_Integer);
Set_Is_Static_Expression (N);
end Default_Bit_Order;
--------------
-- Definite --
--------------
when Attribute_Definite =>
Check_Generic_Type;
-----------
-- Delta --
-----------
when Attribute_Delta =>
Check_Fixed_Point_Type_0;
Set_Etype (N, Universal_Real);
------------
-- Denorm --
------------
when Attribute_Denorm =>
Check_Floating_Point_Type_0;
Set_Etype (N, Standard_Boolean);
------------
-- Digits --
------------
when Attribute_Digits =>
Check_E0;
Check_Type;
if not Is_Floating_Point_Type (P_Type)
and then not Is_Decimal_Fixed_Point_Type (P_Type)
then
Error_Attr
("prefix of % attribute must be float or decimal type", P);
end if;
Set_Etype (N, Universal_Integer);
---------------
-- Elab_Body --
---------------
when Attribute_Elab_Body =>
Check_E0;
Check_Library_Unit;
Set_Etype (N, Standard_Void_Type);
---------------
-- Elab_Spec --
---------------
when Attribute_Elab_Spec =>
Check_E0;
Check_Library_Unit;
Set_Etype (N, Standard_Void_Type);
----------------
-- Elaborated --
----------------
when Attribute_Elaborated =>
Check_E0;
Check_Library_Unit;
Set_Etype (N, Standard_Boolean);
----------
-- Emax --
----------
when Attribute_Emax =>
Check_Floating_Point_Type_0;
Set_Etype (N, Universal_Integer);
--------------
-- Enum_Rep --
--------------
when Attribute_Enum_Rep => Enum_Rep : declare
begin
Check_E1;
Check_Enumeration_Type;
Resolve (E1, P_Base_Type);
Set_Etype (N, Universal_Integer);
end Enum_Rep;
-------------
-- Epsilon --
-------------
when Attribute_Epsilon =>
Check_Floating_Point_Type_0;
Set_Etype (N, Universal_Real);
--------------
-- Exponent --
--------------
when Attribute_Exponent =>
Check_Floating_Point_Type_1;
Set_Etype (N, Universal_Integer);
Resolve (E1, P_Base_Type);
------------------
-- External_Tag --
------------------
when Attribute_External_Tag =>
Check_E0;
Check_Type;
Set_Etype (N, Standard_String);
if not Is_Tagged_Type (P_Type) then
Error_Attr ("prefix of % attribute must be tagged", P);
end if;
-----------
-- First --
-----------
when Attribute_First =>
Check_Array_Or_Scalar_Type;
---------------
-- First_Bit --
---------------
when Attribute_First_Bit =>
Check_Component;
Set_Etype (N, Universal_Integer);
-----------------
-- Fixed_Value --
-----------------
when Attribute_Fixed_Value =>
Check_E1;
Check_Fixed_Point_Type;
Resolve (E1, Any_Integer);
Set_Etype (N, P_Base_Type);
-----------
-- Floor --
-----------
when Attribute_Floor =>
Check_Floating_Point_Type_1;
Set_Etype (N, P_Base_Type);
Resolve (E1, P_Base_Type);
----------
-- Fore --
----------
when Attribute_Fore =>
Check_Fixed_Point_Type_0;
Set_Etype (N, Universal_Integer);
--------------
-- Fraction --
--------------
when Attribute_Fraction =>
Check_Floating_Point_Type_1;
Set_Etype (N, P_Base_Type);
Resolve (E1, P_Base_Type);
-----------------------
-- Has_Discriminants --
-----------------------
when Attribute_Has_Discriminants =>
Check_Generic_Type;
--------------
-- Identity --
--------------
when Attribute_Identity =>
Check_E0;
Analyze (P);
if Etype (P) = Standard_Exception_Type then
Set_Etype (N, RTE (RE_Exception_Id));
elsif Is_Task_Type (Etype (P))
or else (Is_Access_Type (Etype (P))
and then Is_Task_Type (Designated_Type (Etype (P))))
then
Resolve (P, Etype (P));
Set_Etype (N, RTE (RO_AT_Task_ID));
else
Error_Attr ("prefix of % attribute must be a task or an "
& "exception", P);
end if;
-----------
-- Image --
-----------
when Attribute_Image => Image :
begin
Set_Etype (N, Standard_String);
Check_Scalar_Type;
if Is_Real_Type (P_Type) then
Note_Feature (Image_Attribute_For_Real, Loc);
if Ada_83 and then Comes_From_Source (N) then
Error_Msg_Name_1 := Aname;
Error_Msg_N
("(Ada 83) % attribute not allowed for real types", N);
end if;
end if;
Check_E1;
Resolve (E1, P_Base_Type);
Validate_Non_Static_Attribute_Function_Call;
end Image;
---------
-- Img --
---------
when Attribute_Img => Img :
begin
Set_Etype (N, Standard_String);
if not Is_Scalar_Type (P_Type)
or else (Is_Entity_Name (P) and then Is_Type (Entity (P)))
then
Error_Attr
("prefix of % attribute must be scalar object name", N);
end if;
end Img;
-----------
-- Input --
-----------
when Attribute_Input =>
Check_E1;
Check_Stream_Attribute (Name_uInput);
Set_Etype (N, P_Base_Type);
-------------------
-- Integer_Value --
-------------------
when Attribute_Integer_Value =>
Check_E1;
Check_Integer_Type;
Resolve (E1, Any_Fixed);
Set_Etype (N, P_Base_Type);
-----------
-- Large --
-----------
when Attribute_Large =>
Check_E0;
Check_Real_Type;
Set_Etype (N, Universal_Real);
----------
-- Last --
----------
when Attribute_Last =>
Check_Array_Or_Scalar_Type;
--------------
-- Last_Bit --
--------------
when Attribute_Last_Bit =>
Check_Component;
Set_Etype (N, Universal_Integer);
------------------
-- Leading_Part --
------------------
when Attribute_Leading_Part =>
Check_Floating_Point_Type_2;
Set_Etype (N, P_Base_Type);
Resolve (E1, P_Base_Type);
Resolve (E2, Any_Integer);
------------
-- Length --
------------
when Attribute_Length =>
Check_Array_Type;
Set_Etype (N, Universal_Integer);
-------------
-- Machine --
-------------
when Attribute_Machine =>
Check_Floating_Point_Type_1;
Set_Etype (N, P_Base_Type);
Resolve (E1, P_Base_Type);
------------------
-- Machine_Emax --
------------------
when Attribute_Machine_Emax =>
Check_Floating_Point_Type_0;
Set_Etype (N, Universal_Integer);
------------------
-- Machine_Emin --
------------------
when Attribute_Machine_Emin =>
Check_Floating_Point_Type_0;
Set_Etype (N, Universal_Integer);
----------------------
-- Machine_Mantissa --
----------------------
when Attribute_Machine_Mantissa =>
Check_Floating_Point_Type_0;
Set_Etype (N, Universal_Integer);
-----------------------
-- Machine_Overflows --
-----------------------
when Attribute_Machine_Overflows =>
Check_Real_Type;
Check_E0;
Set_Etype (N, Standard_Boolean);
-------------------
-- Machine_Radix --
-------------------
when Attribute_Machine_Radix =>
Check_Real_Type;
Check_E0;
Set_Etype (N, Universal_Integer);
--------------------
-- Machine_Rounds --
--------------------
when Attribute_Machine_Rounds =>
Check_Real_Type;
Check_E0;
Set_Etype (N, Standard_Boolean);
------------------
-- Machine_Size --
------------------
when Attribute_Machine_Size =>
Check_E0;
Check_Type;
Check_Not_Incomplete_Type;
Set_Etype (N, Universal_Integer);
--------------
-- Mantissa --
--------------
when Attribute_Mantissa =>
Check_E0;
Check_Real_Type;
Set_Etype (N, Universal_Integer);
---------
-- Max --
---------
when Attribute_Max =>
Check_E2;
Check_Scalar_Type;
Resolve (E1, P_Base_Type);
Resolve (E2, P_Base_Type);
Set_Etype (N, P_Base_Type);
----------------------------
-- Max_Interrupt_Priority --
----------------------------
when Attribute_Max_Interrupt_Priority =>
Standard_Attribute (Ttypes.System_Max_Interrupt_Priority);
------------------
-- Max_Priority --
------------------
when Attribute_Max_Priority =>
Standard_Attribute (Ttypes.System_Max_Priority);
----------------------------------
-- Max_Size_In_Storage_Elements --
----------------------------------
when Attribute_Max_Size_In_Storage_Elements =>
Check_E0;
Check_Type;
Set_Etype (N, Universal_Integer);
-----------------------
-- Maximum_Alignment --
-----------------------
when Attribute_Maximum_Alignment =>
Standard_Attribute (Ttypes.Maximum_Alignment);
--------------------
-- Mechanism_Code --
--------------------
when Attribute_Mechanism_Code =>
if not Is_Entity_Name (P)
or else not Is_Subprogram (Entity (P))
then
Error_Attr ("prefix of % attribute must be subprogram", P);
end if;
Check_E0_Or_E1;
if Present (E1) then
Resolve (E1, Any_Integer);
Set_Etype (E1, Standard_Integer);
if not Is_Static_Expression (E1) then
Error_Attr
("expression for parameter number must be static", E1);
elsif UI_To_Int (Intval (E1)) > Number_Formals (Entity (P))
or else UI_To_Int (Intval (E1)) < 0
then
Error_Attr ("invalid parameter number for %attribute", E1);
end if;
end if;
Set_Etype (N, Universal_Integer);
---------
-- Min --
---------
when Attribute_Min =>
Check_E2;
Check_Scalar_Type;
Resolve (E1, P_Base_Type);
Resolve (E2, P_Base_Type);
Set_Etype (N, P_Base_Type);
-----------
-- Model --
-----------
when Attribute_Model =>
Check_Floating_Point_Type_1;
Set_Etype (N, P_Base_Type);
Resolve (E1, P_Base_Type);
----------------
-- Model_Emin --
----------------
when Attribute_Model_Emin =>
Check_Floating_Point_Type_0;
Set_Etype (N, Universal_Integer);
-------------------
-- Model_Epsilon --
-------------------
when Attribute_Model_Epsilon =>
Check_Floating_Point_Type_0;
Set_Etype (N, Universal_Real);
--------------------
-- Model_Mantissa --
--------------------
when Attribute_Model_Mantissa =>
Check_Floating_Point_Type_0;
Set_Etype (N, Universal_Integer);
-----------------
-- Model_Small --
-----------------
when Attribute_Model_Small =>
Check_Floating_Point_Type_0;
Set_Etype (N, Universal_Real);
-------------
-- Modulus --
-------------
when Attribute_Modulus =>
Check_Type;
if not Is_Modular_Integer_Type (P_Type) then
Error_Attr ("prefix of % attribute must be modular type", P);
end if;
Set_Etype (N, Universal_Integer);
--------------------
-- Null_Parameter --
--------------------
when Attribute_Null_Parameter => Null_Parameter : declare
Parnt : constant Node_Id := Parent (N);
GParnt : constant Node_Id := Parent (Parnt);
procedure Bad_Null_Parameter (Msg : String);
-- Used if bad Null parameter attribute node is found. Issues
-- given error message, and also sets the type to Any_Type to
-- avoid blowups later on from dealing with a junk node.
procedure Must_Be_Imported (Proc_Ent : Entity_Id);
-- Called to check that Proc_Ent is imported subprogram
------------------------
-- Bad_Null_Parameter --
------------------------
procedure Bad_Null_Parameter (Msg : String) is
begin
Error_Msg_N (Msg, N);
Set_Etype (N, Any_Type);
end Bad_Null_Parameter;
----------------------
-- Must_Be_Imported --
----------------------
procedure Must_Be_Imported (Proc_Ent : Entity_Id) is
Pent : Entity_Id := Proc_Ent;
begin
while Present (Alias (Pent)) loop
Pent := Alias (Pent);
end loop;
-- Ignore check if procedure not frozen yet (we will get
-- another chance when the default parameter is reanalyzed)
if not Is_Frozen (Pent) then
return;
elsif not Is_Imported (Pent) then
Bad_Null_Parameter
("Null_Parameter can only be used with imported subprogram");
else
return;
end if;
end Must_Be_Imported;
-- Start of processing for Null_Parameter
begin
Check_Type;
Check_E0;
Set_Etype (N, P_Type);
-- Case of attribute used as default expression
if Nkind (Parnt) = N_Parameter_Specification then
Must_Be_Imported (Defining_Entity (GParnt));
-- Case of attribute used as actual for subprogram (positional)
elsif (Nkind (Parnt) = N_Procedure_Call_Statement
or else
Nkind (Parnt) = N_Function_Call)
and then Is_Entity_Name (Name (Parnt))
then
Must_Be_Imported (Entity (Name (Parnt)));
-- Case of attribute used as actual for subprogram (named)
elsif Nkind (Parnt) = N_Parameter_Association
and then (Nkind (GParnt) = N_Procedure_Call_Statement
or else
Nkind (GParnt) = N_Function_Call)
and then Is_Entity_Name (Name (GParnt))
then
Must_Be_Imported (Entity (Name (GParnt)));
-- Not an allowed case
else
Bad_Null_Parameter
("Null_Parameter must be actual or default parameter");
end if;
end Null_Parameter;
-----------------
-- Object_Size --
-----------------
when Attribute_Object_Size =>
Check_E0;
Check_Type;
Check_Not_Incomplete_Type;
Set_Etype (N, Universal_Integer);
------------
-- Output --
------------
when Attribute_Output =>
Check_E2;
Check_Stream_Attribute (Name_uInput);
Set_Etype (N, Standard_Void_Type);
Resolve (N, Standard_Void_Type);
------------------
-- Partition_ID --
------------------
when Attribute_Partition_ID =>
Check_E0;
if P_Type /= Any_Type then
if not Is_Library_Level_Entity (Entity (P)) then
Error_Attr
("prefix of % attribute must be library-level entity", P);
-- The defining entity of prefix should not be declared inside
-- a Pure unit. RM E.1(8).
-- The Is_Pure flag has been set during declaration.
elsif Is_Entity_Name (P)
and then Is_Pure (Entity (P))
then
Error_Attr
("prefix of % attribute must not be declared pure", P);
end if;
end if;
Set_Etype (N, Universal_Integer);
-------------------------
-- Passed_By_Reference --
-------------------------
when Attribute_Passed_By_Reference =>
Check_E0;
Check_Type;
Set_Etype (N, Standard_Boolean);
---------
-- Pos --
---------
when Attribute_Pos =>
Check_Discrete_Type;
Check_E1;
Resolve (E1, P_Base_Type);
Set_Etype (N, Universal_Integer);
--------------
-- Position --
--------------
when Attribute_Position =>
Check_Component;
Set_Etype (N, Universal_Integer);
----------
-- Pred --
----------
when Attribute_Pred =>
Check_Scalar_Type;
Check_E1;
Resolve (E1, P_Base_Type);
Set_Etype (N, P_Base_Type);
-- Nothing to do for real type case except note the usage
if Is_Real_Type (P_Type) then
Note_Feature (Pred_Succ_Attribute_For_Real, Loc);
-- If not modular type, test for overflow check required
else
if not Is_Modular_Integer_Type (P_Type)
and then not Range_Checks_Suppressed (P_Base_Type)
then
Set_Do_Range_Check (E1);
end if;
end if;
-----------
-- Range --
-----------
when Attribute_Range =>
Check_Array_Or_Scalar_Type;
if Ada_83
and then Is_Scalar_Type (P_Type)
and then Comes_From_Source (N)
then
Error_Attr
("(Ada 83) % attribute not allowed for scalar type", P);
end if;
------------------
-- Range_Length --
------------------
when Attribute_Range_Length =>
Check_Discrete_Type;
Set_Etype (N, Universal_Integer);
----------
-- Read --
----------
when Attribute_Read =>
Check_E2;
Check_Stream_Attribute (Name_uRead);
Set_Etype (N, Standard_Void_Type);
Resolve (N, Standard_Void_Type);
Note_Possible_Modification (E2);
---------------
-- Remainder --
---------------
when Attribute_Remainder =>
Check_Floating_Point_Type_2;
Set_Etype (N, P_Base_Type);
Resolve (E1, P_Base_Type);
Resolve (E2, P_Base_Type);
-----------
-- Round --
-----------
when Attribute_Round =>
Check_E1;
Check_Decimal_Fixed_Point_Type;
Set_Etype (N, P_Base_Type);
-- Because the context is universal_real (3.5.10(12)) it is a legal
-- context for a universal fixed expression. This is the only
-- attribute whose functional description involves U_R.
if Etype (E1) = Universal_Fixed then
declare
Conv : constant Node_Id := Make_Type_Conversion (Loc,
Subtype_Mark => New_Occurrence_Of (Universal_Real, Loc),
Expression => Relocate_Node (E1));
begin
Rewrite (E1, Conv);
Analyze (E1);
end;
end if;
Resolve (E1, Any_Real);
--------------
-- Rounding --
--------------
when Attribute_Rounding =>
Check_Floating_Point_Type_1;
Set_Etype (N, P_Base_Type);
Resolve (E1, P_Base_Type);
---------------
-- Safe_Emax --
---------------
when Attribute_Safe_Emax =>
Check_Floating_Point_Type_0;
Set_Etype (N, Universal_Integer);
----------------
-- Safe_First --
----------------
when Attribute_Safe_First =>
Check_Floating_Point_Type_0;
Set_Etype (N, Universal_Real);
----------------
-- Safe_Large --
----------------
when Attribute_Safe_Large =>
Check_E0;
Check_Real_Type;
Set_Etype (N, Universal_Real);
---------------
-- Safe_Last --
---------------
when Attribute_Safe_Last =>
Check_Floating_Point_Type_0;
Set_Etype (N, Universal_Real);
----------------
-- Safe_Small --
----------------
when Attribute_Safe_Small =>
Check_E0;
Check_Real_Type;
Set_Etype (N, Universal_Real);
-----------
-- Scale --
-----------
when Attribute_Scale =>
Check_E0;
Check_Decimal_Fixed_Point_Type;
Set_Etype (N, Universal_Integer);
-------------
-- Scaling --
-------------
when Attribute_Scaling =>
Check_Floating_Point_Type_2;
Set_Etype (N, P_Base_Type);
Resolve (E1, P_Base_Type);
------------------
-- Signed_Zeros --
------------------
when Attribute_Signed_Zeros =>
Check_Floating_Point_Type_0;
Set_Etype (N, Standard_Boolean);
----------
-- Size --
----------
when Attribute_Size =>
Check_E0;
if Is_Object_Reference (P)
or else (Is_Entity_Name (P)
and then
Ekind (Entity (P)) = E_Function)
then
Check_Object_Reference (P);
elsif Nkind (P) = N_Attribute_Reference
or else
(Nkind (P) = N_Selected_Component
and then (Is_Entry (Entity (Selector_Name (P)))
or else
Is_Subprogram (Entity (Selector_Name (P)))))
or else
(Is_Entity_Name (P)
and then not Is_Type (Entity (P))
and then not Is_Object (Entity (P)))
then
Error_Attr ("invalid prefix for % attribute", P);
end if;
Check_Not_Incomplete_Type;
Set_Etype (N, Universal_Integer);
-----------
-- Small --
-----------
when Attribute_Small =>
Check_E0;
Check_Real_Type;
Set_Etype (N, Universal_Real);
------------------
-- Storage_Pool --
------------------
when Attribute_Storage_Pool =>
if Is_Access_Type (P_Type) then
Check_E0;
-- Set appropriate entity
if Present (Associated_Storage_Pool (Root_Type (P_Type))) then
Set_Entity (N, Associated_Storage_Pool (Root_Type (P_Type)));
else
Set_Entity (N, RTE (RE_Global_Pool_Object));
end if;
Set_Etype (N, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
-- Validate_Remote_Access_To_Class_Wide_Type for attribute
-- Storage_Pool since this attribute is not defined for such
-- types (RM E.2.3(22)).
Validate_Remote_Access_To_Class_Wide_Type (N);
else
Error_Attr ("prefix of % attribute must be access type", P);
end if;
------------------
-- Storage_Size --
------------------
when Attribute_Storage_Size =>
if Is_Task_Type (P_Type) then
Check_E0;
Set_Etype (N, Universal_Integer);
elsif Is_Access_Type (P_Type) then
Check_E0;
Check_Type;
Set_Etype (N, Universal_Integer);
-- Validate_Remote_Access_To_Class_Wide_Type for attribute
-- Storage_Size since this attribute is not defined for
-- such types (RM E.2.3(22)).
Validate_Remote_Access_To_Class_Wide_Type (N);
else
Error_Attr
("prefix of % attribute must be access or task type", P);
end if;
------------------
-- Storage_Unit --
------------------
when Attribute_Storage_Unit =>
Standard_Attribute (Ttypes.System_Storage_Unit);
----------
-- Succ --
----------
when Attribute_Succ =>
Check_Scalar_Type;
Check_E1;
Resolve (E1, P_Base_Type);
Set_Etype (N, P_Base_Type);
-- Nothing to do for real type case except note the usage
if Is_Real_Type (P_Type) then
Note_Feature (Pred_Succ_Attribute_For_Real, Loc);
-- If not modular type, test for overflow check required.
else
if not Is_Modular_Integer_Type (P_Type)
and then not Range_Checks_Suppressed (P_Base_Type)
then
Set_Do_Range_Check (E1);
end if;
end if;
---------
-- Tag --
---------
when Attribute_Tag =>
Check_E0;
Check_Dereference;
if not Is_Tagged_Type (P_Type) then
Error_Attr ("prefix of % attribute must be tagged", P);
-- Next test does not apply to generated code
-- why not, and what does the illegal reference mean???
elsif Is_Object_Reference (P)
and then not Is_Class_Wide_Type (P_Type)
and then Comes_From_Source (N)
then
Error_Attr
("% attribute can only be applied to objects of class-wide type",
P);
end if;
Set_Etype (N, RTE (RE_Tag));
----------------
-- Terminated --
----------------
when Attribute_Terminated =>
Check_E0;
Set_Etype (N, Standard_Boolean);
Check_Task_Prefix;
----------
-- Tick --
----------
when Attribute_Tick =>
Check_Standard_Prefix;
Rewrite (N,
Make_Real_Literal (Loc,
UR_From_Components (
Num => UI_From_Int (Ttypes.System_Tick_Nanoseconds),
Den => UI_From_Int (9),
Rbase => 10)));
Analyze (N);
----------------
-- Truncation --
----------------
when Attribute_Truncation =>
Check_Floating_Point_Type_1;
Resolve (E1, P_Base_Type);
Set_Etype (N, P_Base_Type);
----------------
-- Type_Class --
----------------
when Attribute_Type_Class =>
Check_E0;
Check_Type;
Check_Not_Incomplete_Type;
Set_Etype (N, RTE (RE_Type_Class));
-----------------------
-- Unbiased_Rounding --
-----------------------
when Attribute_Unbiased_Rounding =>
Check_Floating_Point_Type_1;
Set_Etype (N, P_Base_Type);
Resolve (E1, P_Base_Type);
----------------------
-- Unchecked_Access --
----------------------
when Attribute_Unchecked_Access =>
Check_Restriction (No_Unchecked_Access, N);
Access_Attribute;
------------------------------
-- Universal_Literal_String --
------------------------------
-- This is a GNAT specific attribute whose prefix must be a named
-- number where the expression is either a single numeric literal,
-- or a numeric literal immediately preceded by a minus sign. The
-- result is equivalent to a string literal containing the text of
-- the literal as it appeared in the source program with a possible
-- leading minus sign.
when Attribute_Universal_Literal_String => Universal_Literal_String :
begin
Check_E0;
if not Is_Entity_Name (P)
or else Ekind (Entity (P)) not in Named_Kind
then
Error_Attr ("prefix for % attribute must be named number", P);
else
declare
Expr : Node_Id;
Negative : Boolean;
S : Source_Ptr;
Src : Source_Buffer_Ptr;
begin
Expr := Original_Node (Expression (Parent (Entity (P))));
if Nkind (Expr) = N_Op_Minus then
Negative := True;
Expr := Original_Node (Right_Opnd (Expr));
else
Negative := False;
end if;
if Nkind (Expr) /= N_Integer_Literal
and then Nkind (Expr) /= N_Real_Literal
then
Error_Attr
("named number for % attribute must be simple literal", N);
end if;
-- Build string literal corresponding to source literal text
Start_String;
if Negative then
Store_String_Char (Get_Char_Code ('-'));
end if;
S := Sloc (Expr);
Src := Source_Text (Get_Source_File_Index (S));
while Src (S) /= ';' and then Src (S) /= ' ' loop
Store_String_Char (Get_Char_Code (Src (S)));
S := S + 1;
end loop;
-- Now we rewrite the attribute with the string literal
Rewrite (N,
Make_String_Literal (Loc, End_String));
Analyze (N);
end;
end if;
end Universal_Literal_String;
-------------------------
-- Unrestricted_Access --
-------------------------
-- This is a GNAT specific attribute which is like Access except that
-- all scope checks and checks for aliased views are omitted.
when Attribute_Unrestricted_Access =>
Check_Restriction (No_Unchecked_Access, N);
if Is_Entity_Name (P) then
Set_Address_Taken (Entity (P));
end if;
Access_Attribute;
---------
-- Val --
---------
when Attribute_Val => Val : declare
begin
Check_E1;
Check_Discrete_Type;
Resolve (E1, Any_Integer);
Set_Etype (N, P_Base_Type);
if not Range_Checks_Suppressed (P_Base_Type) then
Set_Do_Range_Check (E1);
end if;
end Val;
-----------
-- Valid --
-----------
when Attribute_Valid =>
Check_E0;
Check_Object_Reference (P);
if not Is_Scalar_Type (P_Type) then
Error_Attr ("object for % attribute must be of scalar type", P);
end if;
Set_Etype (N, Standard_Boolean);
-----------
-- Value --
-----------
when Attribute_Value => Value :
begin
Check_E1;
Check_Scalar_Type;
if Is_Floating_Point_Type (P_Type) then
Note_Feature (Value_Attribute_For_Real, Loc);
end if;
-- Set Etype before resolving expression because expansion
-- of expression may require enclosing type.
Set_Etype (N, P_Type);
Resolve (E1, Standard_String);
Validate_Non_Static_Attribute_Function_Call;
end Value;
----------------
-- Value_Size --
----------------
when Attribute_Value_Size =>
Check_E0;
Check_Type;
Check_Not_Incomplete_Type;
Set_Etype (N, Universal_Integer);
-------------
-- Version --
-------------
when Attribute_Version =>
Check_E0;
Check_Program_Unit;
Set_Etype (N, RTE (RE_Version_String));
----------------
-- Wide_Image --
----------------
when Attribute_Wide_Image => Wide_Image :
begin
Check_Scalar_Type;
Set_Etype (N, Standard_Wide_String);
Check_E1;
Resolve (E1, P_Base_Type);
Validate_Non_Static_Attribute_Function_Call;
end Wide_Image;
----------------
-- Wide_Value --
----------------
when Attribute_Wide_Value => Wide_Value :
begin
Check_E1;
Check_Scalar_Type;
-- Set Etype before resolving expression because expansion
-- of expression may require enclosing type.
Set_Etype (N, P_Type);
Resolve (E1, Standard_Wide_String);
Validate_Non_Static_Attribute_Function_Call;
end Wide_Value;
----------------
-- Wide_Width --
----------------
when Attribute_Wide_Width =>
Check_E0;
Check_Scalar_Type;
Set_Etype (N, Universal_Integer);
-----------
-- Width --
-----------
when Attribute_Width =>
Check_E0;
Check_Scalar_Type;
Set_Etype (N, Universal_Integer);
---------------
-- Word_Size --
---------------
when Attribute_Word_Size =>
Standard_Attribute (System_Word_Size);
-----------
-- Write --
-----------
when Attribute_Write =>
Check_E2;
Check_Stream_Attribute (Name_uWrite);
Set_Etype (N, Standard_Void_Type);
Resolve (N, Standard_Void_Type);
end case;
-- All errors raise Bad_Attribute, so that we get out before any further
-- damage occurs when an error is detected (for example, if we check for
-- one attribute expression, and the check succeeds, we want to be able
-- to proceed securely assuming that an expression is in fact present.
exception
when Bad_Attribute =>
Set_Etype (N, Any_Type);
return;
end Analyze_Attribute;
--------------------
-- Eval_Attribute --
--------------------
procedure Eval_Attribute (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Aname : constant Name_Id := Attribute_Name (N);
Id : constant Attribute_Id := Get_Attribute_Id (Aname);
P : constant Node_Id := Prefix (N);
C_Type : constant Entity_Id := Etype (N);
-- The type imposed by the context.
E1 : Node_Id;
-- First expression, or Empty if none
E2 : Node_Id;
-- Second expression, or Empty if none
P_Entity : Entity_Id;
-- Entity denoted by prefix
P_Type : Entity_Id;
-- The type of the prefix
P_Base_Type : Entity_Id;
-- The base type of the prefix type
P_Root_Type : Entity_Id;
-- The root type of the prefix type
Static : Boolean;
-- True if prefix type is static
Lo_Bound, Hi_Bound : Node_Id;
-- Expressions for low and high bounds of type or array index referenced
-- by First, Last, or Length attribute for array, set by Set_Bounds.
CE_Node : Node_Id;
-- Constraint error node used if we have an attribute reference has
-- an argument that raises a constraint error. In this case we replace
-- the attribute with a raise constraint_error node. This is important
-- processing, since otherwise gigi might see an attribute which it is
-- unprepared to deal with.
function Aft_Value return Nat;
-- Computes Aft value for current attribute prefix (used by Aft itself
-- and also by Width for computing the Width of a fixed point type).
procedure Check_Expressions;
-- In case where the attribute is not foldable, the expressions, if
-- any, of the attribute, are in a non-static context. This procedure
-- performs the required additional checks.
procedure Float_Attribute_Boolean
(IEEES_Val : Boolean;
IEEEL_Val : Boolean;
IEEEX_Val : Boolean;
VAXFF_Val : Boolean;
VAXDF_Val : Boolean;
VAXGF_Val : Boolean);
-- This procedure evaluates a float attribute with no arguments that
-- returns a Boolean result. The six parameters give the values for
-- the possible floating-point root types. See ttypef for details.
-- The prefix type is a float type (and is thus not a generic type).
procedure Float_Attribute_Universal_Integer
(IEEES_Val : Int;
IEEEL_Val : Int;
IEEEX_Val : Int;
VAXFF_Val : Int;
VAXDF_Val : Int;
VAXGF_Val : Int);
-- This procedure evaluates a float attribute with no arguments that
-- returns a universal integer result. The parameters give the values
-- for the possible floating-point root types. See ttypef for details.
-- The prefix type is a float type (and is thus not a generic type).
procedure Float_Attribute_Universal_Real
(IEEES_Val : String;
IEEEL_Val : String;
IEEEX_Val : String;
VAXFF_Val : String;
VAXDF_Val : String;
VAXGF_Val : String);
-- This procedure evaluates a float attribute with no arguments that
-- returns a universal real result. The parameters give the values
-- required for the possible floating-point root types in string
-- format as real literals with a possible leading minus sign.
-- The prefix type is a float type (and is thus not a generic type).
function Fore_Value return Nat;
-- Computes the Fore value for the current attribute prefix, which is
-- known to be a static fixed-point type. Used by Fore and Width.
procedure Set_Bounds;
-- Used for First, Last and Length attributes applied to an array or
-- array subtype. Sets the variables Index_Lo and Index_Hi to the low
-- and high bound expressions for the index referenced by the attribute
-- designator (i.e. the first index if no expression is present, and
-- the N'th index if the value N is present as an expression).
---------------
-- Aft_Value --
---------------
function Aft_Value return Nat is
Result : Nat;
Delta_Val : Ureal;
begin
Result := 1;
Delta_Val := Delta_Value (P_Type);
while Delta_Val < Ureal_Tenth loop
Delta_Val := Delta_Val * Ureal_10;
Result := Result + 1;
end loop;
return Result;
end Aft_Value;
-----------------------
-- Check_Expressions --
-----------------------
procedure Check_Expressions is
E : Node_Id := E1;
begin
while Present (E) loop
Check_Non_Static_Context (E);
E := Next (E);
end loop;
end Check_Expressions;
-----------------------------
-- Float_Attribute_Boolean --
-----------------------------
procedure Float_Attribute_Boolean
(IEEES_Val : Boolean;
IEEEL_Val : Boolean;
IEEEX_Val : Boolean;
VAXFF_Val : Boolean;
VAXDF_Val : Boolean;
VAXGF_Val : Boolean)
is
Val : Boolean;
Digs : constant Nat := UI_To_Int (Digits_Value (P_Base_Type));
begin
if not Vax_Float (P_Base_Type) then
if Digs = IEEES_Digits then
Val := IEEES_Val;
elsif Digs = IEEEL_Digits then
Val := IEEEL_Val;
elsif Digs = IEEEX_Digits then
Val := IEEEX_Val;
else
pragma Assert (False);
raise Program_Error;
end if;
else
if Digs = VAXFF_Digits then
Val := VAXFF_Val;
elsif Digs = VAXDF_Digits then
Val := VAXDF_Val;
elsif Digs = VAXGF_Digits then
Val := VAXGF_Val;
else
pragma Assert (False);
raise Program_Error;
end if;
end if;
if Val then
Fold_Uint (N, True_Value);
else
Fold_Uint (N, False_Value);
end if;
end Float_Attribute_Boolean;
---------------------------------------
-- Float_Attribute_Universal_Integer --
---------------------------------------
procedure Float_Attribute_Universal_Integer
(IEEES_Val : Int;
IEEEL_Val : Int;
IEEEX_Val : Int;
VAXFF_Val : Int;
VAXDF_Val : Int;
VAXGF_Val : Int)
is
Val : Int;
Digs : constant Nat := UI_To_Int (Digits_Value (P_Base_Type));
begin
if not Vax_Float (P_Base_Type) then
if Digs = IEEES_Digits then
Val := IEEES_Val;
elsif Digs = IEEEL_Digits then
Val := IEEEL_Val;
elsif Digs = IEEEX_Digits then
Val := IEEEX_Val;
else
pragma Assert (False);
raise Program_Error;
end if;
else
if Digs = VAXFF_Digits then
Val := VAXFF_Val;
elsif Digs = VAXDF_Digits then
Val := VAXDF_Val;
elsif Digs = VAXGF_Digits then
Val := VAXGF_Val;
else
pragma Assert (False);
raise Program_Error;
end if;
end if;
Fold_Uint (N, UI_From_Int (Val));
end Float_Attribute_Universal_Integer;
------------------------------------
-- Float_Attribute_Universal_Real --
------------------------------------
procedure Float_Attribute_Universal_Real
(IEEES_Val : String;
IEEEL_Val : String;
IEEEX_Val : String;
VAXFF_Val : String;
VAXDF_Val : String;
VAXGF_Val : String)
is
Val : Node_Id;
Digs : constant Nat := UI_To_Int (Digits_Value (P_Base_Type));
begin
if not Vax_Float (P_Base_Type) then
if Digs = IEEES_Digits then
Val := Real_Convert (IEEES_Val);
elsif Digs = IEEEL_Digits then
Val := Real_Convert (IEEEL_Val);
elsif Digs = IEEEX_Digits then
Val := Real_Convert (IEEEX_Val);
else
pragma Assert (False);
raise Program_Error;
end if;
else
if Digs = VAXFF_Digits then
Val := Real_Convert (VAXFF_Val);
elsif Digs = VAXDF_Digits then
Val := Real_Convert (VAXDF_Val);
elsif Digs = VAXGF_Digits then
Val := Real_Convert (VAXGF_Val);
else
pragma Assert (False);
raise Program_Error;
end if;
end if;
Set_Sloc (Val, Loc);
Rewrite (N, Val);
Analyze_And_Resolve (N, C_Type);
end Float_Attribute_Universal_Real;
----------------
-- Fore_Value --
----------------
-- Note that the Fore calculation is based on the actual values
-- of the bounds, and does not take into account possible rounding.
function Fore_Value return Nat is
Lo : constant Uint := Expr_Value (Type_Low_Bound (P_Type));
Hi : constant Uint := Expr_Value (Type_High_Bound (P_Type));
Small : constant Ureal := Small_Value (P_Type);
Lo_Real : constant Ureal := Lo * Small;
Hi_Real : constant Ureal := Hi * Small;
T : Ureal;
R : Nat;
begin
-- Bounds are given in terms of small units, so first compute
-- proper values as reals.
T := UR_Max (abs Lo_Real, abs Hi_Real);
R := 2;
-- Loop to compute proper value if more than one digit required
while T >= Ureal_10 loop
R := R + 1;
T := T / Ureal_10;
end loop;
return R;
end Fore_Value;
----------------
-- Set_Bounds --
----------------
procedure Set_Bounds is
Ndim : Nat;
Indx : Node_Id;
Ityp : Entity_Id;
begin
-- For a string literal subtype, we have to construct the bounds.
-- Valid Ada code never applies attributes to string literals, but
-- it is convenient to allow the expander to generate attribute
-- references of this type (e.g. First and Last applied to a string
-- literal).
-- Note that the whole point of the E_String_Literal_Subtype is to
-- avoid this construction of bounds, but the cases in which we
-- have to materialize them are rare enough that we don't worry!
-- The low bound is simply the low bound of the base type. The
-- high bound is computed from the length of the string and this
-- low bound.
if Ekind (P_Type) = E_String_Literal_Subtype then
Lo_Bound := Type_Low_Bound (Base_Type (P_Type));
Hi_Bound :=
Make_Integer_Literal (Sloc (P),
Intval =>
Expr_Value (Lo_Bound) + String_Literal_Length (P_Type) - 1);
Set_Parent (Hi_Bound, P);
Analyze_And_Resolve (Hi_Bound, Etype (Lo_Bound));
return;
-- For non-array case, just get bounds of scalar type
elsif Is_Scalar_Type (P_Type) then
Ityp := P_Type;
-- For array case, get type of proper index
else
if No (E1) then
Ndim := 1;
else
Ndim := UI_To_Int (Expr_Value (E1));
end if;
Indx := First_Index (P_Type);
for J in 1 .. Ndim - 1 loop
Indx := Next_Index (Indx);
end loop;
Ityp := Etype (Indx);
end if;
-- A discrete range in an index constraint is allowed to be a
-- subtype indication. This is syntactically a pain, but should
-- not propagate to the entity for the corresponding index subtype.
-- After checking that the subtype indication is legal, the range
-- of the subtype indication should be transfered to the entity.
-- The attributes for the bounds should remain the simple retrievals
-- that they are now.
Lo_Bound := Type_Low_Bound (Ityp);
Hi_Bound := Type_High_Bound (Ityp);
end Set_Bounds;
--------------------
-- Eval_Attribute --
--------------------
begin
-- Acquire first two expressions (at the moment, no attributes
-- take more than two expressions in any case).
if Present (Expressions (N)) then
E1 := First (Expressions (N));
E2 := Next (E1);
else
E1 := Empty;
E2 := Empty;
end if;
-- Attribute definitely is not foldable if prefix is not an entity
if not Is_Entity_Name (P) then
Check_Expressions;
return;
else
P_Entity := Entity (P);
end if;
-- First foldable possibility is a scalar or array type (RM 4.9(7))
-- that is not generic (generic types are eliminated by RM 4.9(25)).
-- Note we allow non-static non-generic types at this stage as further
-- described below.
if Is_Type (P_Entity)
and then (Is_Scalar_Type (P_Entity) or Is_Array_Type (P_Entity))
and then (not Is_Generic_Type (P_Entity))
then
P_Type := P_Entity;
-- Second foldable possibility is an array object (RM 4.9(8))
elsif (Ekind (P_Entity) = E_Variable
or else Ekind (P_Entity) = E_Constant)
and then Is_Array_Type (Etype (P_Entity))
and then (not Is_Generic_Type (Etype (P_Entity)))
then
P_Type := Etype (P_Entity);
-- Definite must be folded if the prefix is not a generic type,
-- that is to say if we are within an instantiation. Same processing
-- applies to the GNAT attributes Has_Discriminants and Type_Class
elsif (Id = Attribute_Definite
or else
Id = Attribute_Has_Discriminants
or else
Id = Attribute_Type_Class)
and then not In_Generic_Unit
then
P_Type := P_Entity;
-- No other cases are foldable (they certainly aren't static, and at
-- the moment we don't try to fold any cases other than the two above)
else
Check_Expressions;
return;
end if;
-- If either attribute or the prefix is Any_Type, then propagate
-- Any_Type to the result and don't do anything else at all.
if P_Type = Any_Type
or else (Present (E1) and then Etype (E1) = Any_Type)
or else (Present (E2) and then Etype (E2) = Any_Type)
then
Set_Etype (N, Any_Type);
return;
end if;
-- Scalar subtype case. We have not yet enforced the static requirement
-- of (RM 4.9(7)) and we don't intend to just yet, since there are cases
-- of non-static attribute references (e.g. S'Digits for a non-static
-- floating-point type, which we can compute at compile time).
-- Note: this folding of non-static attributes is not simply a case of
-- optimization. For many of the attributes affected, Gigi cannot handle
-- the attribute and depends on the front end having folded them away.
-- Note: although we don't require staticness at this stage, we do set
-- the Static variable to record the staticness, for easy reference by
-- those attributes where it matters (e.g. Succ and Pred), and also to
-- be used to ensure that non-static folded things are not marked as
-- being static (a check that is done right at the end).
P_Root_Type := Root_Type (P_Type);
P_Base_Type := Base_Type (P_Type);
-- If the root type or base type is generic, then we cannot fold. This
-- test is needed because subtypes of generic types are not always
-- marked as being generic themselves (which seems odd???)
if Is_Generic_Type (P_Root_Type)
or else Is_Generic_Type (P_Base_Type)
then
return;
end if;
if Is_Scalar_Type (P_Type) then
Static := Is_Static_Subtype (P_Type);
-- Array case. We enforce the constrained requirement of (RM 4.9(7-8))
-- since we can't do anything with unconstrained arrays. In addition,
-- only the First, Last and Length attributes are possibly static.
-- In addition Component_Size is possibly foldable, even though it
-- can never be static.
-- Definite, Has_Discriminants and Type_Class are again exceptions,
-- because they apply as well to unconstrained types.
elsif Id = Attribute_Definite
or else
Id = Attribute_Has_Discriminants
or else
Id = Attribute_Type_Class
then
null;
else
if not Is_Constrained (P_Type)
or else (Id /= Attribute_Component_Size and then
Id /= Attribute_First and then
Id /= Attribute_Last and then
Id /= Attribute_Length)
then
Check_Expressions;
return;
end if;
-- The rules in (RM 4.9(7,8)) require a static array, but as in the
-- scalar case, we hold off on enforcing staticness, since there are
-- cases which we can fold at compile time even though they are not
-- static (e.g. 'Length applied to a static index, even though other
-- non-static indexes make the array type non-static). This is only
-- ab optimization, but it falls out essentially free, so why not.
-- Again we compute the variable Static for easy reference later
-- (note that no array attributes are static in Ada 83).
Static := Ada_95;
declare
N : Node_Id;
begin
N := First_Index (P_Type);
while Present (N) loop
Static := Static and Is_Static_Subtype (Etype (N));
N := Next_Index (N);
end loop;
end;
end if;
-- Check any expressions that are present. Note that these expressions,
-- depending on the particular attribute type, are either part of the
-- attribute designator, or they are arguments in a case where the
-- attribute reference returns a function. In the latter case, the
-- rule in (RM 4.9(22)) applies and in particular requires the type
-- of the expressions to be scalar in order for the attribute to be
-- considered to be static.
declare
E : Node_Id;
begin
E := E1;
while Present (E) loop
-- If expression is not static, then the attribute reference
-- certainly is neither foldable nor static, so we can quit
-- after calling Apply_Range_Check for 'Pos attributes.
-- We can also quit if the expression is not of a scalar type
-- as noted above.
if not Is_Static_Expression (E)
or else not Is_Scalar_Type (Etype (E))
then
if Id = Attribute_Pos then
if Is_Integer_Type (Etype (E)) then
Apply_Range_Check (E, Etype (N));
end if;
end if;
Check_Expressions;
return;
-- If the expression raises a constraint error, then so does
-- the attribute reference. We keep going in this case because
-- we are still interested in whether the attribute reference
-- is static even if it is not static.
elsif Raises_Constraint_Error (E) then
Set_Raises_Constraint_Error (N);
end if;
E := Next (E);
end loop;
end;
-- Deal with the case of a static attribute reference that raises
-- constraint error. The Raises_Constraint_Error flag will already
-- have been set, and the Static flag shows whether the attribute
-- reference is static. In any case we certainly can't fold such an
-- attribute reference.
-- Note that the rewriting of the attribute node with the constraint
-- error node is essential in this case, because otherwise Gigi might
-- blow up on one of the attributes it never expects to see.
-- The constraint_error node must have the type imposed by the context,
-- to avoid spurious errors in the enclosing expression.
if Raises_Constraint_Error (N) then
CE_Node :=
Make_Raise_Constraint_Error (Sloc (N));
Set_Etype (CE_Node, Etype (N));
Set_Raises_Constraint_Error (CE_Node);
Check_Expressions;
Rewrite (N, Relocate_Node (CE_Node));
Set_Is_Static_Expression (N, Static);
return;
end if;
-- At this point we have a potentially foldable attribute reference.
-- If Static is set, then the attribute reference definitely obeys
-- the requirements in (RM 4.9(7,8,22)), and it definitely can be
-- folded. If Static is not set, then the attribute may or may not
-- be foldable, and the individual attribute processing routines
-- test Static as required in cases where it makes a difference.
case Id is
--------------
-- Adjacent --
--------------
when Attribute_Adjacent =>
if Static then
Fold_Ureal (N,
Eval_Fat.Adjacent
(P_Root_Type, Expr_Value_R (E1), Expr_Value_R (E2)));
end if;
---------
-- Aft --
---------
when Attribute_Aft =>
Fold_Uint (N, UI_From_Int (Aft_Value));
---------------
-- Alignment --
---------------
when Attribute_Alignment => Alignment : declare
P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
begin
-- If alignment clause given, get value from clause
if Has_Alignment_Clause (P_TypeA) then
Fold_Uint
(N, Expr_Value (Expression (Alignment_Clause (P_TypeA))));
-- For all non-scalar types, no folding
elsif not (Is_Scalar_Type (P_TypeA)) then
null;
-- For scalar types, we calculate the alignment as the largest power
-- of two multiple of System.Storage_Unit that does not exceed either
-- the actual size of the type, or the maximum required alignment
else
declare
S : constant Int :=
UI_To_Int (Esize (P_TypeA)) / Ttypes.System_Storage_Unit;
A : Int;
begin
A := 1;
while 2 * A <= Ttypes.Maximum_Alignment
and then 2 * A <= S
loop
A := 2 * A;
end loop;
Fold_Uint (N, UI_From_Int (A));
end;
end if;
end Alignment;
---------------
-- AST_Entry --
---------------
-- Can only be folded in No_Ast_Handler case
when Attribute_AST_Entry =>
if not Is_AST_Entry (P_Entity) then
Rewrite (N,
New_Occurrence_Of (RTE (RE_No_AST_Handler), Loc));
else
null;
end if;
---------
-- Bit --
---------
-- Bit can never be folded
when Attribute_Bit =>
null;
------------------
-- Body_Version --
------------------
-- Body_version can never be static
when Attribute_Body_Version =>
null;
-------------
-- Ceiling --
-------------
when Attribute_Ceiling =>
if Static then
Fold_Ureal (N,
Eval_Fat.Ceiling (P_Root_Type, Expr_Value_R (E1)));
end if;
--------------------
-- Component_Size --
--------------------
when Attribute_Component_Size =>
if Component_Size (P_Type) /= 0 then
Fold_Uint (N, Component_Size (P_Type));
end if;
-------------
-- Compose --
-------------
when Attribute_Compose =>
if Static then
Fold_Ureal (N,
Eval_Fat.Compose
(P_Root_Type, Expr_Value_R (E1), Expr_Value (E2)));
end if;
-----------------
-- Constrained --
-----------------
-- For now, we never fold Constrained, but we could later get at
-- least some cases at compile time ???
when Attribute_Constrained =>
null;
---------------
-- Copy_Sign --
---------------
when Attribute_Copy_Sign =>
if Static then
Fold_Ureal (N,
Eval_Fat.Copy_Sign
(P_Root_Type, Expr_Value_R (E1), Expr_Value_R (E2)));
end if;
-----------
-- Delta --
-----------
when Attribute_Delta =>
Fold_Ureal (N, Delta_Value (P_Type));
--------------
-- Definite --
--------------
when Attribute_Definite =>
declare
Result : Node_Id;
begin
if Is_Indefinite_Subtype (P_Entity) then
Result := New_Occurrence_Of (Standard_False, Loc);
else
Result := New_Occurrence_Of (Standard_True, Loc);
end if;
Rewrite (N, Result);
Analyze_And_Resolve (N, Standard_Boolean);
end;
------------
-- Denorm --
------------
when Attribute_Denorm =>
Float_Attribute_Boolean (
IEEES_Denorm,
IEEEL_Denorm,
IEEEX_Denorm,
VAXFF_Denorm,
VAXDF_Denorm,
VAXGF_Denorm);
------------
-- Digits --
------------
when Attribute_Digits =>
Fold_Uint (N, Digits_Value (P_Type));
----------
-- Emax --
----------
when Attribute_Emax =>
Float_Attribute_Universal_Integer (
IEEES_Emax,
IEEEL_Emax,
IEEEX_Emax,
VAXFF_Emax,
VAXDF_Emax,
VAXGF_Emax);
--------------
-- Enum_Rep --
--------------
when Attribute_Enum_Rep =>
if Static then
Fold_Uint (N, Enumeration_Rep (Expr_Value_E (E1)));
end if;
-------------
-- Epsilon --
-------------
when Attribute_Epsilon =>
Float_Attribute_Universal_Real (
IEEES_Epsilon'Universal_Literal_String,
IEEEL_Epsilon'Universal_Literal_String,
IEEEX_Epsilon'Universal_Literal_String,
VAXFF_Epsilon'Universal_Literal_String,
VAXDF_Epsilon'Universal_Literal_String,
VAXGF_Epsilon'Universal_Literal_String);
--------------
-- Exponent --
--------------
when Attribute_Exponent =>
if Static then
Fold_Uint (N,
Eval_Fat.Exponent (P_Root_Type, Expr_Value_R (E1)));
end if;
-----------
-- First --
-----------
when Attribute_First => First_Attr :
begin
Set_Bounds;
if Compile_Time_Known_Value (Lo_Bound) then
if Is_Real_Type (P_Type) then
Fold_Ureal (N, Expr_Value_R (Lo_Bound));
else
Fold_Uint (N, Expr_Value (Lo_Bound));
end if;
end if;
end First_Attr;
-----------------
-- Fixed_Value --
-----------------
when Attribute_Fixed_Value =>
if Static then
Fold_Ureal
(N, UR_From_Uint (Expr_Value (E1)) * Small_Value (P_Type));
end if;
-----------
-- Floor --
-----------
when Attribute_Floor =>
if Static then
Fold_Ureal (N,
Eval_Fat.Floor (P_Root_Type, Expr_Value_R (E1)));
end if;
----------
-- Fore --
----------
when Attribute_Fore =>
if Static then
Fold_Uint (N, UI_From_Int (Fore_Value));
end if;
--------------
-- Fraction --
--------------
when Attribute_Fraction =>
if Static then
Fold_Ureal (N,
Eval_Fat.Fraction (P_Root_Type, Expr_Value_R (E1)));
end if;
-----------------------
-- Has_Discriminants --
-----------------------
when Attribute_Has_Discriminants =>
declare
Result : Node_Id;
begin
if Has_Discriminants (P_Entity) then
Result := New_Occurrence_Of (Standard_True, Loc);
else
Result := New_Occurrence_Of (Standard_False, Loc);
end if;
Rewrite (N, Result);
Analyze_And_Resolve (N, Standard_Boolean);
end;
--------------
-- Identity --
--------------
when Attribute_Identity =>
null;
-----------
-- Image --
-----------
-- Image is a scalar attribute, but is never static, because it is
-- not a static function (having a non-scalar argument (RM 4.9(22))
when Attribute_Image =>
null;
---------
-- Img --
---------
-- Img is a scalar attribute, but is never static, because it is
-- not a static function (having a non-scalar argument (RM 4.9(22))
when Attribute_Img =>
null;
-------------------
-- Integer_Value --
-------------------
when Attribute_Integer_Value =>
if Static then
Fold_Uint (N, Expr_Value (E1));
end if;
-----------
-- Large --
-----------
when Attribute_Large =>
if Is_Fixed_Point_Type (P_Type) then
Fold_Ureal (N, Expr_Value_R (Type_High_Bound (P_Base_Type)));
else
Float_Attribute_Universal_Real (
IEEES_Large'Universal_Literal_String,
IEEEL_Large'Universal_Literal_String,
IEEEX_Large'Universal_Literal_String,
VAXFF_Large'Universal_Literal_String,
VAXDF_Large'Universal_Literal_String,
VAXGF_Large'Universal_Literal_String);
end if;
----------
-- Last --
----------
when Attribute_Last => Last :
begin
Set_Bounds;
if Compile_Time_Known_Value (Hi_Bound) then
if Is_Real_Type (P_Type) then
Fold_Ureal (N, Expr_Value_R (Hi_Bound));
else
Fold_Uint (N, Expr_Value (Hi_Bound));
end if;
end if;
end Last;
------------------
-- Leading_Part --
------------------
when Attribute_Leading_Part =>
if Static then
Fold_Ureal (N,
Eval_Fat.Leading_Part
(P_Root_Type, Expr_Value_R (E1), Expr_Value (E2)));
end if;
------------
-- Length --
------------
when Attribute_Length => Length :
begin
Set_Bounds;
if Compile_Time_Known_Value (Lo_Bound)
and then Compile_Time_Known_Value (Hi_Bound)
then
Fold_Uint (N,
UI_Max (0, 1 + (Expr_Value (Hi_Bound) - Expr_Value (Lo_Bound))));
end if;
end Length;
-------------
-- Machine --
-------------
when Attribute_Machine =>
if Static then
Fold_Ureal (N,
Eval_Fat.Machine (P_Root_Type, Expr_Value_R (E1)));
end if;
------------------
-- Machine_Emax --
------------------
when Attribute_Machine_Emax =>
Float_Attribute_Universal_Integer (
IEEES_Machine_Emax,
IEEEL_Machine_Emax,
IEEEX_Machine_Emax,
VAXFF_Machine_Emax,
VAXDF_Machine_Emax,
VAXGF_Machine_Emax);
------------------
-- Machine_Emin --
------------------
when Attribute_Machine_Emin =>
Float_Attribute_Universal_Integer (
IEEES_Machine_Emin,
IEEEL_Machine_Emin,
IEEEX_Machine_Emin,
VAXFF_Machine_Emin,
VAXDF_Machine_Emin,
VAXGF_Machine_Emin);
----------------------
-- Machine_Mantissa --
----------------------
when Attribute_Machine_Mantissa =>
Float_Attribute_Universal_Integer (
IEEES_Machine_Mantissa,
IEEEL_Machine_Mantissa,
IEEEX_Machine_Mantissa,
VAXFF_Machine_Mantissa,
VAXDF_Machine_Mantissa,
VAXGF_Machine_Mantissa);
-----------------------
-- Machine_Overflows --
-----------------------
when Attribute_Machine_Overflows =>
-- Always true for fixed-point
if Is_Fixed_Point_Type (P_Type) then
Fold_Uint (N, True_Value);
-- Floating point case
else
Float_Attribute_Boolean (
IEEES_Machine_Overflows,
IEEEL_Machine_Overflows,
IEEEX_Machine_Overflows,
VAXFF_Machine_Overflows,
VAXDF_Machine_Overflows,
VAXGF_Machine_Overflows);
end if;
-------------------
-- Machine_Radix --
-------------------
when Attribute_Machine_Radix =>
if Is_Fixed_Point_Type (P_Type) then
if Is_Decimal_Fixed_Point_Type (P_Type)
and then Machine_Radix_10 (P_Type)
then
Fold_Uint (N, Uint_10);
else
Fold_Uint (N, Uint_2);
end if;
-- All floating-point type always have radix 2
else
Fold_Uint (N, Uint_2);
end if;
--------------------
-- Machine_Rounds --
--------------------
when Attribute_Machine_Rounds =>
-- Always False for fixed-point
if Is_Fixed_Point_Type (P_Type) then
Fold_Uint (N, False_Value);
-- Else yield proper floating-point result
else
Float_Attribute_Boolean (
IEEES_Machine_Rounds,
IEEEL_Machine_Rounds,
IEEEX_Machine_Rounds,
VAXFF_Machine_Rounds,
VAXDF_Machine_Rounds,
VAXGF_Machine_Rounds);
end if;
------------------
-- Machine_Size --
------------------
-- The Machine_Size attribute for a type returns the Esize of the
-- type. This an always be folded for scalar types, and can also
-- be folded for non-scalar types if the Esize is set.
-- Note: Machine_Size is identical to Object_Size
when Attribute_Machine_Size => Machine_Size : declare
P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
begin
if Is_Scalar_Type (P_TypeA) or else Esize (P_TypeA) /= 0 then
Fold_Uint (N, Esize (P_TypeA));
end if;
end Machine_Size;
--------------
-- Mantissa --
--------------
when Attribute_Mantissa =>
-- Fixed-point mantissa
if Is_Fixed_Point_Type (P_Type) then
-- Compile time foldable case
if Compile_Time_Known_Value (Type_Low_Bound (P_Type))
and then
Compile_Time_Known_Value (Type_High_Bound (P_Type))
then
-- The calculation of the obsolete Ada 83 attribute Mantissa
-- is annoying, because of AI00143, quoted here:
-- !question 84-01-10
-- Consider the model numbers for F:
-- type F is delta 1.0 range -7.0 .. 8.0;
-- The wording requires that F'MANTISSA be the SMALLEST
-- integer number for which each bound of the specified
-- range is either a model number or lies at most small
-- distant from a model number. This means F'MANTISSA
-- is required to be 3 since the range -7.0 .. 7.0 fits
-- in 3 signed bits, and 8 is "at most" 1.0 from a model
-- number, namely, 7. Is this analysis correct? Note that
-- this implies the upper bound of the range is not
-- represented as a model number.
-- !response 84-03-17
-- The analysis is correct. The upper and lower bounds for
-- a fixed point type can lie outside the range of model
-- numbers.
declare
Siz : Uint;
LBound : Ureal;
UBound : Ureal;
Bound : Ureal;
Max_Man : Uint;
begin
LBound := Expr_Value_R (Type_Low_Bound (P_Type));
UBound := Expr_Value_R (Type_High_Bound (P_Type));
Bound := UR_Max (UR_Abs (LBound), UR_Abs (UBound));
Max_Man := UR_Trunc (Bound / Small_Value (P_Type));
-- If the Bound is exactly a model number, i.e. a multiple
-- of Small, then we back it off by one to get the integer
-- value that must be representable.
if Small_Value (P_Type) * Max_Man = Bound then
Max_Man := Max_Man - 1;
end if;
-- Now find corresponding size = Mantissa value
Siz := Uint_0;
while 2 ** Siz < Max_Man loop
Siz := Siz + 1;
end loop;
Fold_Uint (N, Siz);
end;
else
-- The case of dynamic bounds cannot be evaluated at compile
-- time. Instead we use a runtime routine (see Exp_Attr).
null;
end if;
-- Floating-point Mantissa
else
declare
D : constant Uint := 10 ** Digits_Value (P_Type);
begin
for B in Nat range 1 .. 64 loop
if Uint_2 ** (B - 1) > D then
Fold_Uint (N, UI_From_Int (B));
exit;
end if;
end loop;
end;
end if;
---------
-- Max --
---------
when Attribute_Max => Max :
begin
if Is_Real_Type (P_Type) then
Fold_Ureal (N, UR_Max (Expr_Value_R (E1), Expr_Value_R (E2)));
else
Fold_Uint (N, UI_Max (Expr_Value (E1), Expr_Value (E2)));
end if;
end Max;
----------------------------------
-- Max_Size_In_Storage_Elements --
----------------------------------
-- Max_Size_In_Storage_Elements is simply the Size rounded up to a
-- Storage_Unit boundary. We can fold any cases for which the size
-- is known by the front end.
when Attribute_Max_Size_In_Storage_Elements =>
if Esize (P_Type) /= 0 then
Fold_Uint (N,
(Esize (P_Type) + System_Storage_Unit - 1) /
System_Storage_Unit);
end if;
--------------------
-- Mechanism_Code --
--------------------
when Attribute_Mechanism_Code =>
declare
Val : Int;
Formal : Entity_Id;
Mech : Mechanism_Type;
begin
if No (E1) then
Mech := Mechanism (P_Entity);
else
Val := UI_To_Int (Expr_Value (E1));
Formal := First_Formal (P_Entity);
for J in 1 .. Val - 1 loop
Formal := Next_Formal (Formal);
end loop;
Mech := Mechanism (Formal);
end if;
if Mech < 0 then
Fold_Uint (N, UI_From_Int (Int (-Mech)));
end if;
end;
---------
-- Min --
---------
when Attribute_Min => Min :
begin
if Is_Real_Type (P_Type) then
Fold_Ureal (N, UR_Min (Expr_Value_R (E1), Expr_Value_R (E2)));
else
Fold_Uint (N, UI_Min (Expr_Value (E1), Expr_Value (E2)));
end if;
end Min;
-----------
-- Model --
-----------
when Attribute_Model =>
if Static then
Fold_Ureal (N,
Eval_Fat.Model (P_Root_Type, Expr_Value_R (E1)));
end if;
----------------
-- Model_Emin --
----------------
when Attribute_Model_Emin =>
Float_Attribute_Universal_Integer (
IEEES_Model_Emin,
IEEEL_Model_Emin,
IEEEX_Model_Emin,
VAXFF_Model_Emin,
VAXDF_Model_Emin,
VAXGF_Model_Emin);
-------------------
-- Model_Epsilon --
-------------------
when Attribute_Model_Epsilon =>
Float_Attribute_Universal_Real (
IEEES_Model_Epsilon'Universal_Literal_String,
IEEEL_Model_Epsilon'Universal_Literal_String,
IEEEX_Model_Epsilon'Universal_Literal_String,
VAXFF_Model_Epsilon'Universal_Literal_String,
VAXDF_Model_Epsilon'Universal_Literal_String,
VAXGF_Model_Epsilon'Universal_Literal_String);
--------------------
-- Model_Mantissa --
--------------------
when Attribute_Model_Mantissa =>
Float_Attribute_Universal_Integer (
IEEES_Model_Mantissa,
IEEEL_Model_Mantissa,
IEEEX_Model_Mantissa,
VAXFF_Model_Mantissa,
VAXDF_Model_Mantissa,
VAXGF_Model_Mantissa);
-----------------
-- Model_Small --
-----------------
when Attribute_Model_Small =>
Float_Attribute_Universal_Real (
IEEES_Model_Small'Universal_Literal_String,
IEEEL_Model_Small'Universal_Literal_String,
IEEEX_Model_Small'Universal_Literal_String,
VAXFF_Model_Small'Universal_Literal_String,
VAXDF_Model_Small'Universal_Literal_String,
VAXGF_Model_Small'Universal_Literal_String);
-------------
-- Modulus --
-------------
when Attribute_Modulus =>
Fold_Uint (N, Modulus (P_Type));
--------------------
-- Null_Parameter --
--------------------
-- Cannot fold, we know the value sort of, but the whole point is
-- that there is no way to talk about this imaginary value except
-- by using the attribute, so we leave it the way it is.
when Attribute_Null_Parameter =>
null;
-----------------
-- Object_Size --
-----------------
-- The Object_Size attribute for a type returns the Esize of the
-- type. This an always be folded for scalar types, and can also
-- be folded for non-scalar types if the Esize is set.
when Attribute_Object_Size => Object_Size : declare
P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
begin
if Is_Scalar_Type (P_TypeA) then
Fold_Uint (N, Esize (P_TypeA));
-- For non-scalar types, we let Gigi handle the reference, even
-- if the Esize is set, since Gigi pads this up and we don't know
-- by how much, since it depends on alignments etc.
-- The one case we do something special with is the three byte
-- record case, where we set the size to 24. See the routine in
-- Sem_Util for full details on what is going on here!
elsif Is_Three_Byte_Record (P_TypeA) then
Fold_Uint (N, Uint_24);
end if;
end Object_Size;
-------------------------
-- Passed_By_Reference --
-------------------------
-- Scalar types are never passed by reference
when Attribute_Passed_By_Reference =>
Fold_Uint (N, False_Value);
---------
-- Pos --
---------
when Attribute_Pos =>
Fold_Uint (N, Expr_Value (E1));
----------
-- Pred --
----------
when Attribute_Pred => Pred :
begin
if Static then
-- Floating-point case. For now, do not fold this, since we
-- don't know how to do it right (see fixed bug 3512-001 ???)
if Is_Floating_Point_Type (P_Type) then
Fold_Ureal (N,
Eval_Fat.Pred (P_Root_Type, Expr_Value_R (E1)));
-- Fixed-point case
elsif Is_Fixed_Point_Type (P_Type) then
Fold_Ureal (N,
Expr_Value_R (E1) + Small_Value (P_Type));
-- Modular integer case (wraps)
elsif Is_Modular_Integer_Type (P_Type) then
Fold_Uint (N, (Expr_Value (E1) - 1) mod Modulus (P_Type));
-- Other scalar cases
else
pragma Assert (Is_Scalar_Type (P_Type));
if Expr_Value (E1) =
Expr_Value (Type_Low_Bound (P_Base_Type))
then
Apply_Compile_Time_Constraint_Error
(N, "Pred of type''First");
Check_Expressions;
return;
else
Fold_Uint (N, Expr_Value (E1) - 1);
end if;
end if;
end if;
end Pred;
-----------
-- Range --
-----------
-- No processing required, because by this stage, Range has been
-- replaced by First .. Last, so this branch can never be taken.
when Attribute_Range =>
pragma Assert (False);
raise Program_Error;
------------------
-- Range_Length --
------------------
when Attribute_Range_Length =>
Set_Bounds;
if Compile_Time_Known_Value (Hi_Bound)
and then Compile_Time_Known_Value (Lo_Bound)
then
Fold_Uint (N,
UI_Max
(0, Expr_Value (Hi_Bound) - Expr_Value (Lo_Bound) + 1));
end if;
---------------
-- Remainder --
---------------
when Attribute_Remainder =>
if Static then
Fold_Ureal (N,
Eval_Fat.Remainder
(P_Root_Type, Expr_Value_R (E1), Expr_Value_R (E2)));
end if;
-----------
-- Round --
-----------
when Attribute_Round => Round :
declare
Sr : Ureal;
Si : Uint;
begin
if Static then
-- First we get the (exact result) in units of small
Sr := Expr_Value_R (E1) / Small_Value (C_Type);
-- Now round that exactly to an integer
Si := UR_To_Uint (Sr);
-- Finally the result is obtained by converting back to real
Fold_Ureal (N, Si * Small_Value (C_Type));
end if;
end Round;
--------------
-- Rounding --
--------------
when Attribute_Rounding =>
if Static then
Fold_Ureal (N,
Eval_Fat.Rounding (P_Root_Type, Expr_Value_R (E1)));
end if;
---------------
-- Safe_Emax --
---------------
when Attribute_Safe_Emax =>
Float_Attribute_Universal_Integer (
IEEES_Safe_Emax,
IEEEL_Safe_Emax,
IEEEX_Safe_Emax,
VAXFF_Safe_Emax,
VAXDF_Safe_Emax,
VAXGF_Safe_Emax);
----------------
-- Safe_First --
----------------
when Attribute_Safe_First =>
Float_Attribute_Universal_Real (
IEEES_Safe_First'Universal_Literal_String,
IEEEL_Safe_First'Universal_Literal_String,
IEEEX_Safe_First'Universal_Literal_String,
VAXFF_Safe_First'Universal_Literal_String,
VAXDF_Safe_First'Universal_Literal_String,
VAXGF_Safe_First'Universal_Literal_String);
----------------
-- Safe_Large --
----------------
when Attribute_Safe_Large =>
if Is_Fixed_Point_Type (P_Type) then
Fold_Ureal (N, Expr_Value_R (Type_High_Bound (P_Base_Type)));
else
Float_Attribute_Universal_Real (
IEEES_Safe_Large'Universal_Literal_String,
IEEEL_Safe_Large'Universal_Literal_String,
IEEEX_Safe_Large'Universal_Literal_String,
VAXFF_Safe_Large'Universal_Literal_String,
VAXDF_Safe_Large'Universal_Literal_String,
VAXGF_Safe_Large'Universal_Literal_String);
end if;
---------------
-- Safe_Last --
---------------
when Attribute_Safe_Last =>
Float_Attribute_Universal_Real (
IEEES_Safe_Last'Universal_Literal_String,
IEEEL_Safe_Last'Universal_Literal_String,
IEEEX_Safe_Last'Universal_Literal_String,
VAXFF_Safe_Last'Universal_Literal_String,
VAXDF_Safe_Last'Universal_Literal_String,
VAXGF_Safe_Last'Universal_Literal_String);
----------------
-- Safe_Small --
----------------
when Attribute_Safe_Small =>
-- In Ada 95, the old Ada 83 attribute Safe_Small is redundant
-- for fixed-point, since is the same as Small, but we implement
-- it for backwards compatibility.
if Is_Fixed_Point_Type (P_Type) then
Fold_Ureal (N, Small_Value (P_Type));
-- Ada 83 Safe_Small for floating-point cases
else
Float_Attribute_Universal_Real (
IEEES_Safe_Small'Universal_Literal_String,
IEEEL_Safe_Small'Universal_Literal_String,
IEEEX_Safe_Small'Universal_Literal_String,
VAXFF_Safe_Small'Universal_Literal_String,
VAXDF_Safe_Small'Universal_Literal_String,
VAXGF_Safe_Small'Universal_Literal_String);
end if;
-----------
-- Scale --
-----------
when Attribute_Scale =>
Fold_Uint (N, Scale_Value (P_Type));
-------------
-- Scaling --
-------------
when Attribute_Scaling =>
if Static then
Fold_Ureal (N,
Eval_Fat.Scaling
(P_Root_Type, Expr_Value_R (E1), Expr_Value (E2)));
end if;
------------------
-- Signed_Zeros --
------------------
when Attribute_Signed_Zeros =>
Float_Attribute_Boolean (
IEEES_Signed_Zeros,
IEEEL_Signed_Zeros,
IEEEX_Signed_Zeros,
VAXFF_Signed_Zeros,
VAXDF_Signed_Zeros,
VAXGF_Signed_Zeros);
----------
-- Size --
----------
-- Size attribute returns the RM size. All scalar types can be folded,
-- as well as any types for which the size is known by the front end,
-- including any type for which a size attribute is specified.
when Attribute_Size => Size : declare
P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
begin
-- This is one of the places where we use RM_Size instead of
-- Esize to give the proper RM semantics for the value of the
-- size attrbute applied to a type.
if Is_Discrete_Or_Fixed_Point_Type (P_TypeA) then
Fold_Uint (N, RM_Size (P_TypeA));
-- For other than discrete and fixed-point types, we only fold
-- if the size is known at front end compile time.
elsif Esize (P_TypeA) /= 0 then
Fold_Uint (N, Esize (P_TypeA));
end if;
end Size;
-----------
-- Small --
-----------
when Attribute_Small =>
-- The floating-point case is present only for Ada 83 compatability.
-- Note that strictly this is an illegal addition, since we are
-- extending an Ada 95 defined attribute, but we anticipate an
-- ARG ruling that will permit this.
if Is_Floating_Point_Type (P_Type) then
Float_Attribute_Universal_Real (
IEEES_Model_Small'Universal_Literal_String,
IEEEL_Model_Small'Universal_Literal_String,
IEEEX_Model_Small'Universal_Literal_String,
VAXFF_Model_Small'Universal_Literal_String,
VAXDF_Model_Small'Universal_Literal_String,
VAXGF_Model_Small'Universal_Literal_String);
-- Normal Ada 95 fixed-point case
else
Fold_Ureal (N, Small_Value (P_Type));
end if;
----------
-- Succ --
----------
when Attribute_Succ => Succ :
begin
if Static then
-- Floating-point case. For now, do not fold this, since we
-- don't know how to do it right (see fixed bug 3512-001 ???)
if Is_Floating_Point_Type (P_Type) then
Fold_Ureal (N,
Eval_Fat.Succ (P_Root_Type, Expr_Value_R (E1)));
-- Fixed-point case
elsif Is_Fixed_Point_Type (P_Type) then
Fold_Ureal (N,
Expr_Value_R (E1) + Small_Value (P_Type));
-- Modular integer case (wraps)
elsif Is_Modular_Integer_Type (P_Type) then
Fold_Uint (N, (Expr_Value (E1) + 1) mod Modulus (P_Type));
-- Other scalar cases
else
pragma Assert (Is_Scalar_Type (P_Type));
if Expr_Value (E1) =
Expr_Value (Type_High_Bound (P_Base_Type))
then
Apply_Compile_Time_Constraint_Error
(N, "Succ of type''Last");
Check_Expressions;
return;
else
Fold_Uint (N, Expr_Value (E1) + 1);
end if;
end if;
end if;
end Succ;
----------------
-- Truncation --
----------------
when Attribute_Truncation =>
if Static then
Fold_Ureal (N,
Eval_Fat.Truncation (P_Root_Type, Expr_Value_R (E1)));
end if;
----------------
-- Type_Class --
----------------
when Attribute_Type_Class => Type_Class : declare
Typ : constant Entity_Id := Underlying_Type (P_Base_Type);
Id : RE_Id;
begin
if Is_RTE (P_Root_Type, RE_Address) then
Id := RE_Type_Class_Address;
elsif Is_Enumeration_Type (Typ) then
Id := RE_Type_Class_Enumeration;
elsif Is_Integer_Type (Typ) then
Id := RE_Type_Class_Integer;
elsif Is_Fixed_Point_Type (Typ) then
Id := RE_Type_Class_Fixed_Point;
elsif Is_Floating_Point_Type (Typ) then
Id := RE_Type_Class_Floating_Point;
elsif Is_Array_Type (Typ) then
Id := RE_Type_Class_Array;
elsif Is_Record_Type (Typ) then
Id := RE_Type_Class_Record;
elsif Is_Access_Type (Typ) then
Id := RE_Type_Class_Access;
elsif Is_Enumeration_Type (Typ) then
Id := RE_Type_Class_Enumeration;
elsif Is_Task_Type (Typ) then
Id := RE_Type_Class_Task;
-- We treat protected types like task types. It would make more
-- sense to have another enumeration value, but after all the
-- whole point of this feature is to be exactly DEC compatible,
-- and changing the type Type_Clas would not meet this requirement.
elsif Is_Protected_Type (Typ) then
Id := RE_Type_Class_Task;
-- Not clear if there are any other possibilities, but if there
-- are, then we will treat them as the address case.
else
Id := RE_Type_Class_Address;
end if;
Rewrite (N, New_Occurrence_Of (RTE (Id), Loc));
end Type_Class;
-----------------------
-- Unbiased_Rounding --
-----------------------
when Attribute_Unbiased_Rounding =>
if Static then
Fold_Ureal (N,
Eval_Fat.Unbiased_Rounding (P_Root_Type, Expr_Value_R (E1)));
end if;
---------
-- Val --
---------
when Attribute_Val => Val :
begin
if Static then
if Expr_Value (E1) < Expr_Value (Type_Low_Bound (P_Base_Type))
or else
Expr_Value (E1) > Expr_Value (Type_High_Bound (P_Base_Type))
then
Apply_Compile_Time_Constraint_Error
(N, "Pos out of range");
Check_Expressions;
return;
else
Fold_Uint (N, Expr_Value (E1));
end if;
end if;
end Val;
----------------
-- Value_Size --
----------------
-- The Value_Size attribute for a type returns the RM size of the
-- type. This an always be folded for scalar types, and can also
-- be folded for non-scalar types if the Esize is set.
when Attribute_Value_Size => Value_Size : declare
P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
begin
if Is_Scalar_Type (P_TypeA) or else Esize (P_TypeA) /= 0 then
Fold_Uint (N, Get_RM_Size (P_TypeA));
end if;
end Value_Size;
-------------
-- Version --
-------------
-- Version can never be static
when Attribute_Version =>
null;
----------------
-- Wide_Image --
----------------
-- Wide_Image is a scalar attribute, but is never static, because it
-- is not a static function (having a non-scalar argument (RM 4.9(22))
when Attribute_Wide_Image =>
null;
----------------
-- Wide_Width --
----------------
-- Processing for Wide_Width is combined with Width
-----------
-- Width --
-----------
-- This processing also handles the case of Wide_Width
when Attribute_Width | Attribute_Wide_Width => Width :
begin
if Static then
-- Floating-point types
if Is_Floating_Point_Type (P_Type) then
-- Width is zero for a null range (RM 3.5 (38))
if Expr_Value_R (Type_High_Bound (P_Type)) <
Expr_Value_R (Type_Low_Bound (P_Type))
then
Fold_Uint (N, Uint_0);
else
-- For floating-point, we have +N.dddE+nnn where length
-- of ddd is determined by type'Digits - 1, but is one
-- if Digits is one (RM 3.5 (33)).
-- nnn is set to 2 for Short_Float and Float (32 bit
-- floats), and 3 for Long_Float and Long_Long_Float.
-- This is not quite right, but is good enough.
declare
Len : Int :=
Int'Max (2, UI_To_Int (Digits_Value (P_Type)));
begin
if Esize (P_Type) <= 32 then
Len := Len + 6;
else
Len := Len + 7;
end if;
Fold_Uint (N, UI_From_Int (Len));
end;
end if;
-- Fixed-point types
elsif Is_Fixed_Point_Type (P_Type) then
-- Width is zero for a null range (RM 3.5 (38))
if Expr_Value (Type_High_Bound (P_Type)) <
Expr_Value (Type_Low_Bound (P_Type))
then
Fold_Uint (N, Uint_0);
-- The non-null case depends on the specific real type
else
-- For fixed-point type width is Fore + 1 + Aft (RM 3.5(34))
Fold_Uint (N, UI_From_Int (Fore_Value + 1 + Aft_Value));
end if;
-- Discrete types
else
declare
R : constant Entity_Id := Root_Type (P_Type);
Lo : constant Uint :=
Expr_Value (Type_Low_Bound (P_Type));
Hi : constant Uint :=
Expr_Value (Type_High_Bound (P_Type));
W : Nat;
Wt : Nat;
T : Uint;
L : Node_Id;
C : Character;
begin
-- Empty ranges
if Lo > Hi then
W := 0;
-- Width for types derived from Standard.Character
-- and Standard.Wide_Character.
elsif R = Standard_Character
or else R = Standard_Wide_Character
then
W := 0;
-- Set W larger if needed
for J in UI_To_Int (Lo) .. UI_To_Int (Hi) loop
-- Assume all wide-character escape sequences are
-- same length, so we can quit when we reach one.
if J > 255 then
if Id = Attribute_Wide_Width then
W := Int'Max (W, 3);
exit;
else
W := Int'Max (W, Length_Wide);
exit;
end if;
else
C := Character'Val (J);
-- Test for all cases where Character'Image
-- yields an image that is longer than three
-- characters. First the cases of Reserved_xxx
-- names (length = 12).
case C is
when Reserved_128 | Reserved_129 |
Reserved_132 | Reserved_153
=> Wt := 12;
when BS | HT | LF | VT | FF | CR |
SO | SI | EM | FS | GS | RS |
US | RI | MW | ST | PM
=> Wt := 2;
when NUL | SOH | STX | ETX | EOT |
ENQ | ACK | BEL | DLE | DC1 |
DC2 | DC3 | DC4 | NAK | SYN |
ETB | CAN | SUB | ESC | DEL |
BPH | NBH | NEL | SSA | ESA |
HTS | HTJ | VTS | PLD | PLU |
SS2 | SS3 | DCS | PU1 | PU2 |
STS | CCH | SPA | EPA | SOS |
SCI | CSI | OSC | APC
=> Wt := 3;
when Space .. Tilde |
No_Break_Space .. LC_Y_Diaeresis
=> Wt := 3;
end case;
W := Int'Max (W, Wt);
end if;
end loop;
-- Width for types derived from Standard.Boolean
elsif R = Standard_Boolean then
if Lo = 0 then
W := 5; -- FALSE
else
W := 4; -- TRUE
end if;
-- Width for integer types
elsif Is_Integer_Type (P_Type) then
T := UI_Max (abs Lo, abs Hi);
W := 2;
while T >= 10 loop
W := W + 1;
T := T / 10;
end loop;
-- Only remaining possibility is user declared enum type
else
pragma Assert (Is_Enumeration_Type (P_Type));
W := 0;
L := First_Literal (P_Type);
while Present (L) loop
-- Only pay attention to in range characters
if Lo <= Enumeration_Pos (L)
and then Enumeration_Pos (L) <= Hi
then
-- For Width case, use decoded name
if Id = Attribute_Width then
Get_Decoded_Name_String (Chars (L));
Wt := Nat (Name_Len);
-- For Wide_Width, use encoded name, and then
-- adjust for the encoding.
else
Get_Name_String (Chars (L));
-- Character literals are always of length 3
if Name_Buffer (1) = 'Q' then
Wt := 3;
-- Otherwise loop to adjust for upper/wide chars
else
Wt := Nat (Name_Len);
for J in 1 .. Name_Len loop
if Name_Buffer (J) = 'U' then
Wt := Wt - 2;
elsif Name_Buffer (J) = 'W' then
Wt := Wt - 4;
end if;
end loop;
end if;
end if;
W := Int'Max (W, Wt);
end if;
L := Next_Literal (L);
end loop;
end if;
Fold_Uint (N, UI_From_Int (W));
end;
end if;
end if;
end Width;
-- The following attributes can never be folded, and furthermore we
-- should not even have entered the case statement for any of these.
-- Note that in some cases, the values have already been folded as
-- a result of the processing in Analyze_Attribute.
when Attribute_Abort_Signal |
Attribute_Access |
Attribute_Address |
Attribute_Address_Size |
Attribute_Asm_Input |
Attribute_Asm_Output |
Attribute_Base |
Attribute_Bit_Order |
Attribute_Callable |
Attribute_Caller |
Attribute_Class |
Attribute_Count |
Attribute_Default_Bit_Order |
Attribute_Elaborated |
Attribute_Elab_Body |
Attribute_Elab_Spec |
Attribute_External_Tag |
Attribute_First_Bit |
Attribute_Input |
Attribute_Last_Bit |
Attribute_Max_Interrupt_Priority |
Attribute_Max_Priority |
Attribute_Maximum_Alignment |
Attribute_Output |
Attribute_Partition_ID |
Attribute_Position |
Attribute_Read |
Attribute_Storage_Pool |
Attribute_Storage_Size |
Attribute_Storage_Unit |
Attribute_Tag |
Attribute_Terminated |
Attribute_Tick |
Attribute_Unchecked_Access |
Attribute_Universal_Literal_String |
Attribute_Unrestricted_Access |
Attribute_Valid |
Attribute_Value |
Attribute_Wide_Value |
Attribute_Word_Size |
Attribute_Write =>
pragma Assert (False);
raise Program_Error;
end case;
-- At the end of the case, one more check. If we did a static evaluation
-- so that the result is now a literal, then set Is_Static_Expression
-- in the constant only if the prefix type is a static subtype. For
-- non-static subtypes, the folding is still OK, but not static.
if Nkind (N) = N_Integer_Literal
or else Nkind (N) = N_Real_Literal
or else Nkind (N) = N_Character_Literal
or else Nkind (N) = N_String_Literal
or else (Is_Entity_Name (N)
and then Ekind (Entity (N)) = E_Enumeration_Literal)
then
Set_Is_Static_Expression (N, Static);
-- If this is still an attribute reference, then it has not been folded
-- and that means that its expressions are in a non-static context.
elsif Nkind (N) = N_Attribute_Reference then
Check_Expressions;
-- Note: the else case not covered here are odd cases where the
-- processing has transformed the attribute into something other
-- than a constant. Nothing more to do in such cases.
else
null;
end if;
end Eval_Attribute;
-----------------------
-- Resolve_Attribute --
-----------------------
procedure Resolve_Attribute (N : Node_Id; Typ : Entity_Id) is
Loc : constant Source_Ptr := Sloc (N);
P : constant Node_Id := Prefix (N);
Aname : constant Name_Id := Attribute_Name (N);
Index : Interp_Index;
It : Interp;
Btyp : Entity_Id := Base_Type (Typ);
Nom_Subt : Entity_Id;
begin
-- If attribute was universal type, reset to actual type
if Etype (N) = Universal_Integer
or else Etype (N) = Universal_Real
then
Set_Etype (N, Typ);
end if;
-- Remaining processing depends on attribute
case Get_Attribute_Id (Aname) is
------------
-- Access --
------------
-- For access attributes, if the prefix denotes an entity, it is
-- interpreted as a name, never as a call. It may be overloaded,
-- in which case resolution uses the profile of the context type.
-- Otherwise prefix must be resolved.
when Attribute_Access
| Attribute_Unchecked_Access
| Attribute_Unrestricted_Access =>
if Is_Variable (P) then
Note_Possible_Modification (P);
end if;
if Is_Entity_Name (P) then
if Is_Overloaded (P) then
Get_First_Interp (P, Index, It);
while Present (It.Nam) loop
if Type_Conformant (Designated_Type (Typ), It.Nam) then
Set_Entity (P, It.Nam);
-- The prefix is definitely NOT overloaded anymore
-- at this point, so we reset the Is_Overloaded
-- flag to avoid any confusion when reanalyzing
-- the node.
Set_Is_Overloaded (P, False);
exit;
end if;
Get_Next_Interp (Index, It);
end loop;
-- If it is a subprogram name or a type, there is nothing
-- to resolve.
elsif not Is_Overloadable (Entity (P))
and then not Is_Type (Entity (P))
then
Resolve (P, Etype (P));
end if;
if not Is_Entity_Name (P) then
null;
elsif Is_Abstract (Entity (P))
and then Is_Overloadable (Entity (P))
then
Error_Msg_Name_1 := Aname;
Error_Msg_N ("prefix of % attribute cannot be abstract", P);
Set_Etype (N, Any_Type);
elsif Convention (Entity (P)) = Convention_Intrinsic then
Error_Msg_Name_1 := Aname;
Error_Msg_N ("prefix of % attribute cannot be intrinsic", P);
Set_Etype (N, Any_Type);
-- if this is a renaming, an inherited operation, or a
-- subprogram instance, use the original entity.
elsif Is_Overloadable (Entity (P))
and then Present (Alias (Entity (P)))
then
Rewrite (P,
New_Occurrence_Of (Alias (Entity (P)), Sloc (P)));
end if;
-- Assignments, return statements, components of aggregates,
-- generic instantiations will require convention checks if
-- the type is an access to subprogram. Given that there will
-- also be accessibility checks on those, this is where the
-- checks can eventually be centralized ???
if Ekind (Btyp) = E_Access_Subprogram_Type then
if Convention (Btyp) /= Convention (Entity (P)) then
Error_Msg_N
("subprogram has invalid convention for context", P);
else
Check_Subtype_Conformant
(New_Id => Entity (P),
Old_Id => Designated_Type (Btyp),
Err_Loc => P);
end if;
if Get_Attribute_Id (Aname) = Attribute_Unchecked_Access then
Error_Msg_Name_1 := Aname;
Error_Msg_N
("attribute% cannot be applied to a subprogram", P);
elsif Aname = Name_Unrestricted_Access then
null; -- Nothing to check
-- Check the static accessibility rule of 3.10.2(32)
elsif Get_Attribute_Id (Aname) = Attribute_Access
and then Subprogram_Access_Level (Entity (P))
> Type_Access_Level (Btyp)
then
Error_Msg_N
("subprogram must not be deeper than access type", P);
-- Check the restriction of 3.10.2(32) that disallows
-- the type of the access attribute to be declared
-- outside a generic body when the attribute occurs
-- within that generic body.
elsif Enclosing_Generic_Body (Entity (P))
/= Enclosing_Generic_Body (Btyp)
then
Error_Msg_N
("access type must not be outside generic body", P);
end if;
end if;
elsif Nkind (P) = N_Selected_Component
and then Is_Overloadable (Entity (Selector_Name (P)))
then
-- Protected operation. If operation is overloaded, must
-- disambiguate. Prefix that denotes protected object itself
-- is resolved with its own type.
Resolve (Prefix (P), Etype (Prefix (P)));
else
Resolve (P, Etype (P));
end if;
if (Get_Attribute_Id (Aname) = Attribute_Access
or else
Get_Attribute_Id (Aname) = Attribute_Unchecked_Access)
and then (Ekind (Btyp) = E_General_Access_Type
or else Ekind (Btyp) = E_Anonymous_Access_Type)
then
if Is_Dependent_Component_Of_Mutable_Object (P) then
Error_Msg_N
("illegal attribute for discriminant-dependent component",
P);
end if;
-- Check the static matching rule of 3.10.2(27). The
-- nominal subtype of the prefix must statically
-- match the designated type.
Nom_Subt := Etype (P);
if Is_Constr_Subt_For_U_Nominal (Nom_Subt) then
Nom_Subt := Etype (Nom_Subt);
end if;
if Is_Tagged_Type (Designated_Type (Typ)) then
if not Covers (Designated_Type (Typ), Nom_Subt) then
Error_Msg_N
("designated type must cover type of object", P);
end if;
elsif not Subtypes_Statically_Match
(Designated_Type (Typ), Nom_Subt)
and then
not (Has_Discriminants (Designated_Type (Typ))
and then not Is_Constrained (Designated_Type (Typ)))
then
Error_Msg_N
("object subtype must statically match "
& "designated subtype", P);
end if;
-- Check the static accessibility rule of 3.10.2(28).
-- Note that this check is not performed for the
-- case of an anonymous access type, since the access
-- attribute is always legal in such a context.
if Get_Attribute_Id (Aname) /= Attribute_Unchecked_Access
and then Object_Access_Level (P) > Type_Access_Level (Btyp)
and then Ekind (Btyp) = E_General_Access_Type
then
Error_Msg_N
("object has deeper accessibility level than access type",
P);
end if;
end if;
if Ekind (Btyp) = E_Access_Protected_Subprogram_Type
and then Is_Entity_Name (P)
and then not Is_Protected_Type (Scope (Entity (P)))
then
Error_Msg_N ("context requires a protected subprogram", P);
elsif Ekind (Btyp) = E_Access_Subprogram_Type
and then Ekind (Etype (N)) = E_Access_Protected_Subprogram_Type
then
Error_Msg_N ("context requires a non-protected subprogram", P);
end if;
-- X'Access is illegal if X denotes a constant and the access
-- type is access-to-variable. Same for 'Unchecked_Access.
-- The rule does not apply to 'Unrestricted_Access.
if not (Ekind (Btyp) = E_Access_Subprogram_Type
or else Ekind (Btyp) = E_Access_Protected_Subprogram_Type
or else Is_Access_Constant (Btyp)
or else Is_Variable (P)
or else
Get_Attribute_Id (Aname) =
Attribute_Unrestricted_Access)
then
if Comes_From_Source (N) then
Error_Msg_N ("access-to-variable designates constant", P);
end if;
end if;
Set_Etype (N, Typ);
-------------
-- Address --
-------------
-- Deal with resolving the type for Address attribute, overloading
-- is not permitted here, since there is no context to resolve it.
when Attribute_Address =>
-- To be safe, assume that if the address of a variable is taken,
-- it may be modified via this address, so note modification.
if Is_Variable (P) then
Note_Possible_Modification (P);
end if;
if Nkind (P) in N_Subexpr
and then Is_Overloaded (P)
then
Get_First_Interp (P, Index, It);
Get_Next_Interp (Index, It);
if Present (It.Nam) then
Error_Msg_Name_1 := Aname;
Error_Msg_N
("prefix of % attribute cannot be overloaded", N);
return;
end if;
end if;
-- Do not permit address to be applied to entry
if (Is_Entity_Name (P) and then Is_Entry (Entity (P)))
or else Nkind (P) = N_Entry_Call_Statement
or else (Nkind (P) = N_Selected_Component
and then Is_Entry (Entity (Selector_Name (P))))
or else (Nkind (P) = N_Indexed_Component
and then Nkind (Prefix (P)) = N_Selected_Component
and then Is_Entry (Entity (Selector_Name (Prefix (P)))))
then
Error_Msg_Name_1 := Aname;
Error_Msg_N
("prefix of % attribute cannot be entry", N);
return;
end if;
if not Is_Entity_Name (P)
or else not Is_Overloadable (Entity (P))
then
if not Is_Task_Type (Etype (P))
or else Nkind (P) = N_Explicit_Dereference
then
Resolve (P, Etype (P));
end if;
end if;
-- Do not permit address to be applied to a component or
-- slice of a bit-packed array. Note that we do not permit
-- packing of arrays with aliased components in any case.
if (Nkind (P) = N_Indexed_Component
or else
Nkind (P) = N_Slice)
and then Is_Bit_Packed_Array (Etype (Prefix (P)))
then
Error_Msg_Name_1 := Aname;
Error_Msg_N
("% attribute not supported for packed array reference", N);
return;
end if;
-- If this is the name of a derived subprogram, or that of a
-- generic actual, the address is that of the original entity.
if Is_Entity_Name (P)
and then Is_Overloadable (Entity (P))
and then Present (Alias (Entity (P)))
then
Rewrite (P,
New_Occurrence_Of (Alias (Entity (P)), Sloc (P)));
end if;
---------------
-- AST_Entry --
---------------
-- Prefix of the AST_Entry attribute is an entry name which must
-- not be resolved, since this is definitely not an entry call.
when Attribute_AST_Entry =>
null;
------------------
-- Body_Version --
------------------
-- Prefix of Body_Version attribute can be a subprogram name which
-- must not be resolved, since this is not a call.
when Attribute_Body_Version =>
null;
------------
-- Caller --
------------
-- Prefix of Caller attribute is an entry name which must not
-- be resolved, since this is definitely not an entry call.
when Attribute_Caller =>
null;
-----------
-- Count --
-----------
-- Prefix of the Count attribute is an entry name which must not
-- be resolved, since this is definitely not an entry call.
when Attribute_Count =>
null;
----------------
-- Elaborated --
----------------
-- Prefix of the Elaborated attribute is a subprogram name which
-- must not be resolved, since this is definitely not a call. Note
-- that it is a library unit, so it cannot be overloaded here.
when Attribute_Elaborated =>
null;
--------------------
-- Mechanism_Code --
--------------------
-- Prefix of the Mechanism_Code attribute is a function name
-- which must not be resolved. Should we check for overloaded ???
when Attribute_Mechanism_Code =>
null;
------------------
-- Partition_ID --
------------------
-- Most processing is done in sem_dist, after determining the
-- context type. Node is rewritten as a conversion to a runtime call.
when Attribute_Partition_ID =>
Process_Partition_Id (N);
return;
-----------
-- Range --
-----------
-- We replace the Range attribute node with a range expression
-- whose bounds are the 'First and 'Last attributes applied to the
-- same prefix. The reason that we do this transformation here
-- instead of in the expander is that it simplifies other parts of
-- the semantic analysis which assume that the Range has been
-- replaced; thus it must be done even when in semantic-only mode
-- (note that the RM specifically mentions this equivalence, we
-- take care that the prefix is only evaluated once).
when Attribute_Range =>
declare
LB : Node_Id;
HB : Node_Id;
begin
if not Is_Entity_Name (P)
or else not Is_Type (Entity (P))
then
Resolve (P, Etype (P));
end if;
HB :=
Make_Attribute_Reference (Loc,
Prefix => Duplicate_Subexpr (P),
Attribute_Name => Name_Last,
Expressions => Expressions (N));
LB :=
Make_Attribute_Reference (Loc,
Prefix => P,
Attribute_Name => Name_First,
Expressions => Expressions (N));
-- If the original was marked as Must_Not_Freeze (see code
-- in Sem_Ch3.Make_Index), then make sure the rewriting
-- does not freeze either.
if Must_Not_Freeze (N) then
Set_Must_Not_Freeze (HB);
Set_Must_Not_Freeze (LB);
Set_Must_Not_Freeze (Prefix (HB));
Set_Must_Not_Freeze (Prefix (LB));
end if;
Rewrite (N, Make_Range (Loc, LB, HB));
Analyze_And_Resolve (N, Typ);
-- Normally after resolving attribute nodes, Eval_Attribute
-- is called to do any possible static evaluation of the node.
-- However, here since the Range attribute has just been
-- transformed into a range expression it is no longer an
-- attribute node and therefore the call needs to be avoided
-- and is accomplished by simply returning from the procedure.
return;
end;
----------------------
-- Unchecked_Access --
----------------------
-- Processing is shared with Access
-------------------------
-- Unrestricted_Access --
-------------------------
-- Processing is shared with Access
-------------
-- Version --
-------------
-- Prefix of Version attribute can be a subprogram name which
-- must not be resolved, since this is not a call.
when Attribute_Version =>
null;
----------------------
-- Other Attributes --
----------------------
-- For other attributes, resolve prefix unless it is a type. If
-- the attribute reference itself is a type name ('Base and 'Class)
-- then this is only legal within a task or protected record.
when others =>
if not Is_Entity_Name (P)
or else not Is_Type (Entity (P))
then
Resolve (P, Etype (P));
end if;
-- If the attribute reference itself is a type name ('Base,
-- 'Class) then this is only legal within a task or protected
-- record. What is this all about ???
if Is_Entity_Name (N)
and then Is_Type (Entity (N))
then
if Is_Concurrent_Type (Entity (N))
and then In_Open_Scopes (Entity (P))
then
null;
else
Error_Msg_N
("Invalid use of subtype name in expression or call", N);
end if;
end if;
end case;
-- Normally the Freezing is done by Resolve but sometimes the Prefix
-- is not resolved, in which case the freezing must be done now.
Freeze_Expression (P);
-- Finally we evaluate the attribute reference if it is static
Eval_Attribute (N);
end Resolve_Attribute;
---------------------
-- In_Generic_Unit --
---------------------
function In_Generic_Unit return Boolean is
S : Entity_Id := Current_Scope;
begin
while Present (S)
and then S /= Standard_Standard
loop
if Ekind (S) = E_Generic_Function
or else Ekind (S) = E_Generic_Package
or else Ekind (S) = E_Generic_Procedure
then
return True;
elsif Is_Generic_Instance (S) then
return False;
end if;
S := Scope (S);
end loop;
return False;
end In_Generic_Unit;
end Sem_Attr;
|