1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S E M _ C H 1 3 --
-- --
-- B o d y --
-- --
-- $Revision: 1.373 $
-- --
-- Copyright (C) 1992-2001, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
-- MA 02111-1307, USA. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- It is now maintained by Ada Core Technologies Inc (http://www.gnat.com). --
-- --
------------------------------------------------------------------------------
with Atree; use Atree;
with Einfo; use Einfo;
with Errout; use Errout;
with Exp_Tss; use Exp_Tss;
with Exp_Util; use Exp_Util;
with Hostparm; use Hostparm;
with Lib; use Lib;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Opt; use Opt;
with Rtsfind; use Rtsfind;
with Sem; use Sem;
with Sem_Ch8; use Sem_Ch8;
with Sem_Eval; use Sem_Eval;
with Sem_Res; use Sem_Res;
with Sem_Type; use Sem_Type;
with Sem_Util; use Sem_Util;
with Stand; use Stand;
with Sinfo; use Sinfo;
with Snames; use Snames;
with Ttypes; use Ttypes;
with Tbuild; use Tbuild;
with Urealp; use Urealp;
with GNAT.Heap_Sort_A; use GNAT.Heap_Sort_A;
package body Sem_Ch13 is
-----------------------
-- Local Subprograms --
-----------------------
procedure Alignment_Check_For_Esize_Change (Typ : Entity_Id);
-- This routine is called after setting the Esize of type entity Typ.
-- The purpose is to deal with the situation where an aligment has been
-- inherited from a derived type that is no longer appropriate for the
-- new Esize value. In this case, we reset the Alignment to unknown.
procedure Check_Address_Alignment (E : Entity_Id; Expr : Node_Id);
-- Given an object entity E, for which the alignment is known, checks
-- to see if Expr (the expression from an Address clause) is a known
-- at compile time value, and if so posts a warning if the value is
-- not consistent with the known alignment requirement. This is not
-- an error, but rather leads to erroneous behavior, but we certainly
-- may as well give a warning if we detect this situation.
procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id);
-- Given two entities for record components or discriminants, checks
-- if they hav overlapping component clauses and issues errors if so.
function Get_Alignment_Value (Expr : Node_Id) return Uint;
-- Given the expression for an alignment value, returns the corresponding
-- Uint value. If the value is inappropriate, then error messages are
-- posted as required, and a value of No_Uint is returned.
function Is_Operational_Item (N : Node_Id) return Boolean;
-- A specification for a stream attribute is allowed before the full
-- type is declared, as explained in AI-00137 and the corrigendum.
-- Attributes that do not specify a representation characteristic are
-- operational attributes.
procedure New_Stream_Function
(N : Node_Id;
Ent : Entity_Id;
Subp : Entity_Id;
Nam : Name_Id);
-- Create a function renaming of a given stream attribute to the
-- designated subprogram and then in the tagged case, provide this as
-- a primitive operation, or in the non-tagged case make an appropriate
-- TSS entry. Used for Input. This is more properly an expansion activity
-- than just semantics, but the presence of user-defined stream functions
-- for limited types is a legality check, which is why this takes place
-- here rather than in exp_ch13, where it was previously.
procedure New_Stream_Procedure
(N : Node_Id;
Ent : Entity_Id;
Subp : Entity_Id;
Nam : Name_Id;
Out_P : Boolean := False);
-- Create a procedure renaming of a given stream attribute to the
-- designated subprogram and then in the tagged case, provide this as
-- a primitive operation, or in the non-tagged case make an appropriate
-- TSS entry. Used for Read, Output, Write.
procedure Check_Constant_Address_Clause (Expr : Node_Id; U_Ent : Entity_Id);
-- Expr is an expression for an address clause. This procedure checks
-- that the expression is constant, in the limited sense that it is safe
-- to evaluate it at the point the object U_Ent is declared, rather than
-- at the point of the address clause. The condition for this to be true
-- is that the expression has no variables, no constants declared after
-- U_Ent, and no calls to non-pure functions. If this condition is not
-- met, then an appropriate error message is posted.
procedure Warn_Overlay
(Expr : Node_Id;
Typ : Entity_Id;
Nam : Node_Id);
-- Expr is the expression for an address clause for entity Nam whose type
-- is Typ. If Typ has a default initialization, check whether the address
-- clause might overlay two entities, and emit a warning on the side effect
-- that the initialization will cause.
--------------------------------------
-- Alignment_Check_For_Esize_Change --
--------------------------------------
procedure Alignment_Check_For_Esize_Change (Typ : Entity_Id) is
begin
-- If the alignment is known, and not set by a rep clause, and is
-- inconsistent with the size being set, then reset it to unknown,
-- we assume in this case that the size overrides the inherited
-- alignment, and that the alignment must be recomputed.
if Known_Alignment (Typ)
and then not Has_Alignment_Clause (Typ)
and then Esize (Typ) mod (Alignment (Typ) * System_Storage_Unit) /= 0
then
Init_Alignment (Typ);
end if;
end Alignment_Check_For_Esize_Change;
-----------------------
-- Analyze_At_Clause --
-----------------------
-- An at clause is replaced by the corresponding Address attribute
-- definition clause that is the preferred approach in Ada 95.
procedure Analyze_At_Clause (N : Node_Id) is
begin
Rewrite (N,
Make_Attribute_Definition_Clause (Sloc (N),
Name => Identifier (N),
Chars => Name_Address,
Expression => Expression (N)));
Analyze_Attribute_Definition_Clause (N);
end Analyze_At_Clause;
-----------------------------------------
-- Analyze_Attribute_Definition_Clause --
-----------------------------------------
procedure Analyze_Attribute_Definition_Clause (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Nam : constant Node_Id := Name (N);
Attr : constant Name_Id := Chars (N);
Expr : constant Node_Id := Expression (N);
Id : constant Attribute_Id := Get_Attribute_Id (Attr);
Ent : Entity_Id;
U_Ent : Entity_Id;
FOnly : Boolean := False;
-- Reset to True for subtype specific attribute (Alignment, Size)
-- and for stream attributes, i.e. those cases where in the call
-- to Rep_Item_Too_Late, FOnly is set True so that only the freezing
-- rules are checked. Note that the case of stream attributes is not
-- clear from the RM, but see AI95-00137. Also, the RM seems to
-- disallow Storage_Size for derived task types, but that is also
-- clearly unintentional.
begin
Analyze (Nam);
Ent := Entity (Nam);
if Rep_Item_Too_Early (Ent, N) then
return;
end if;
-- Rep clause applies to full view of incomplete type or private type
-- if we have one (if not, this is a premature use of the type).
-- However, certain semantic checks need to be done on the specified
-- entity (i.e. the private view), so we save it in Ent.
if Is_Private_Type (Ent)
and then Is_Derived_Type (Ent)
and then not Is_Tagged_Type (Ent)
and then No (Full_View (Ent))
then
-- If this is a private type whose completion is a derivation
-- from another private type, there is no full view, and the
-- attribute belongs to the type itself, not its underlying parent.
U_Ent := Ent;
elsif Ekind (Ent) = E_Incomplete_Type then
Ent := Underlying_Type (Ent);
U_Ent := Ent;
else
U_Ent := Underlying_Type (Ent);
end if;
-- Complete other routine error checks
if Etype (Nam) = Any_Type then
return;
elsif Scope (Ent) /= Current_Scope then
Error_Msg_N ("entity must be declared in this scope", Nam);
return;
elsif Is_Type (U_Ent)
and then not Is_First_Subtype (U_Ent)
and then Id /= Attribute_Object_Size
and then Id /= Attribute_Value_Size
and then not From_At_Mod (N)
then
Error_Msg_N ("cannot specify attribute for subtype", Nam);
return;
end if;
-- Switch on particular attribute
case Id is
-------------
-- Address --
-------------
-- Address attribute definition clause
when Attribute_Address => Address : begin
Analyze_And_Resolve (Expr, RTE (RE_Address));
if Present (Address_Clause (U_Ent)) then
Error_Msg_N ("address already given for &", Nam);
-- Case of address clause for subprogram
elsif Is_Subprogram (U_Ent) then
if Has_Homonym (U_Ent) then
Error_Msg_N
("address clause cannot be given " &
"for overloaded subprogram",
Nam);
end if;
-- For subprograms, all address clauses are permitted,
-- and we mark the subprogram as having a deferred freeze
-- so that Gigi will not elaborate it too soon.
-- Above needs more comments, what is too soon about???
Set_Has_Delayed_Freeze (U_Ent);
-- Case of address clause for entry
elsif Ekind (U_Ent) = E_Entry then
if Nkind (Parent (N)) = N_Task_Body then
Error_Msg_N
("entry address must be specified in task spec", Nam);
end if;
-- For entries, we require a constant address
Check_Constant_Address_Clause (Expr, U_Ent);
-- Case of address clause for variable or constant
elsif
Ekind (U_Ent) = E_Variable
or else
Ekind (U_Ent) = E_Constant
then
declare
Decl : constant Node_Id := Declaration_Node (U_Ent);
Expr : constant Node_Id := Expression (N);
Typ : constant Entity_Id := Etype (U_Ent);
begin
-- Exported variables cannot have an address clause,
-- because this cancels the effect of the pragma Export
if Is_Exported (U_Ent) then
Error_Msg_N
("cannot export object with address clause", Nam);
-- Imported variables can have an address clause, but then
-- the import is pretty meaningless except to suppress
-- initializations, so we do not need such variables to
-- be statically allocated (and in fact it causes trouble
-- if the address clause is a local value).
elsif Is_Imported (U_Ent) then
Set_Is_Statically_Allocated (U_Ent, False);
end if;
-- We mark a possible modification of a variable with an
-- address clause, since it is likely aliasing is occurring.
Note_Possible_Modification (Nam);
-- If we have no initialization of any kind, then we can
-- safely defer the elaboration of the variable to its
-- freezing point, so that the address clause will be
-- computed at the proper point.
-- The same processing applies to all initialized scalar
-- types and all access types. Packed bit arrays of size
-- up to 64 are represented using a modular type with an
-- initialization (to zero) and can be processed like
-- other initialized scalar types.
if (No (Expression (Decl))
and then No (Base_Init_Proc (Typ)))
or else
(Present (Expression (Decl))
and then Is_Scalar_Type (Typ))
or else
Is_Access_Type (Typ)
or else
(Is_Bit_Packed_Array (Base_Type (Typ))
and then
Is_Modular_Integer_Type (Packed_Array_Type (Typ)))
then
Set_Has_Delayed_Freeze (U_Ent);
-- Otherwise, we require the address clause to be constant
else
Check_Constant_Address_Clause (Expr, U_Ent);
end if;
if Is_Exported (U_Ent) then
Error_Msg_N
("& cannot be exported if an address clause is given",
Nam);
Error_Msg_N
("\define and export a variable " &
"that holds its address instead",
Nam);
end if;
if not Error_Posted (Expr) then
Warn_Overlay (Expr, Typ, Nam);
end if;
-- Check for bad alignment
if Known_Alignment (U_Ent) then
Check_Address_Alignment (U_Ent, Expr);
end if;
-- Kill the size check code, since we are not allocating
-- the variable, it is somewhere else.
Kill_Size_Check_Code (U_Ent);
end;
-- Not a valid entity for an address clause
else
Error_Msg_N ("address cannot be given for &", Nam);
end if;
end Address;
---------------
-- Alignment --
---------------
-- Alignment attribute definition clause
when Attribute_Alignment => Alignment_Block : declare
Align : Uint := Get_Alignment_Value (Expr);
begin
FOnly := True;
if not Is_Type (U_Ent)
and then Ekind (U_Ent) /= E_Variable
and then Ekind (U_Ent) /= E_Constant
then
Error_Msg_N ("alignment cannot be given for &", Nam);
elsif Has_Alignment_Clause (U_Ent) then
Error_Msg_Sloc := Sloc (Alignment_Clause (U_Ent));
Error_Msg_N ("alignment clause previously given#", N);
elsif Align /= No_Uint then
Set_Has_Alignment_Clause (U_Ent);
Set_Alignment (U_Ent, Align);
end if;
end Alignment_Block;
---------------
-- Bit_Order --
---------------
-- Bit_Order attribute definition clause
when Attribute_Bit_Order => Bit_Order : declare
begin
if not Is_Record_Type (U_Ent) then
Error_Msg_N
("Bit_Order can only be defined for record type", Nam);
else
Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
if Etype (Expr) = Any_Type then
return;
elsif not Is_Static_Expression (Expr) then
Error_Msg_N ("Bit_Order requires static expression", Expr);
else
if (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
Set_Reverse_Bit_Order (U_Ent, True);
end if;
end if;
end if;
end Bit_Order;
--------------------
-- Component_Size --
--------------------
-- Component_Size attribute definition clause
when Attribute_Component_Size => Component_Size_Case : declare
Csize : constant Uint := Static_Integer (Expr);
Btype : Entity_Id;
Biased : Boolean;
New_Ctyp : Entity_Id;
Decl : Node_Id;
begin
if not Is_Array_Type (U_Ent) then
Error_Msg_N ("component size requires array type", Nam);
return;
end if;
Btype := Base_Type (U_Ent);
if Has_Component_Size_Clause (Btype) then
Error_Msg_N
("component size clase for& previously given", Nam);
elsif Csize /= No_Uint then
Check_Size (Expr, Component_Type (Btype), Csize, Biased);
if Has_Aliased_Components (Btype)
and then Csize < 32
and then Csize /= 8
and then Csize /= 16
then
Error_Msg_N
("component size incorrect for aliased components", N);
return;
end if;
-- For the biased case, build a declaration for a subtype
-- that will be used to represent the biased subtype that
-- reflects the biased representation of components. We need
-- this subtype to get proper conversions on referencing
-- elements of the array.
if Biased then
New_Ctyp :=
Make_Defining_Identifier (Loc,
Chars => New_External_Name (Chars (U_Ent), 'C', 0, 'T'));
Decl :=
Make_Subtype_Declaration (Loc,
Defining_Identifier => New_Ctyp,
Subtype_Indication =>
New_Occurrence_Of (Component_Type (Btype), Loc));
Set_Parent (Decl, N);
Analyze (Decl, Suppress => All_Checks);
Set_Has_Delayed_Freeze (New_Ctyp, False);
Set_Esize (New_Ctyp, Csize);
Set_RM_Size (New_Ctyp, Csize);
Init_Alignment (New_Ctyp);
Set_Has_Biased_Representation (New_Ctyp, True);
Set_Is_Itype (New_Ctyp, True);
Set_Associated_Node_For_Itype (New_Ctyp, U_Ent);
Set_Component_Type (Btype, New_Ctyp);
end if;
Set_Component_Size (Btype, Csize);
Set_Has_Component_Size_Clause (Btype, True);
Set_Has_Non_Standard_Rep (Btype, True);
end if;
end Component_Size_Case;
------------------
-- External_Tag --
------------------
when Attribute_External_Tag => External_Tag :
begin
if not Is_Tagged_Type (U_Ent) then
Error_Msg_N ("should be a tagged type", Nam);
end if;
Analyze_And_Resolve (Expr, Standard_String);
if not Is_Static_Expression (Expr) then
Error_Msg_N ("must be a static string", Nam);
end if;
Set_Has_External_Tag_Rep_Clause (U_Ent);
end External_Tag;
-----------
-- Input --
-----------
when Attribute_Input => Input : declare
Subp : Entity_Id := Empty;
I : Interp_Index;
It : Interp;
Pnam : Entity_Id;
function Has_Good_Profile (Subp : Entity_Id) return Boolean;
-- Return true if the entity is a function with an appropriate
-- profile for the Input attribute.
function Has_Good_Profile (Subp : Entity_Id) return Boolean is
F : Entity_Id;
Ok : Boolean := False;
begin
if Ekind (Subp) = E_Function then
F := First_Formal (Subp);
if Present (F) and then No (Next_Formal (F)) then
if Ekind (Etype (F)) = E_Anonymous_Access_Type
and then
Designated_Type (Etype (F)) =
Class_Wide_Type (RTE (RE_Root_Stream_Type))
then
Ok := Base_Type (Etype (Subp)) = Base_Type (Ent);
end if;
end if;
end if;
return Ok;
end Has_Good_Profile;
-- Start of processing for Input attribute definition
begin
FOnly := True;
if not Is_Type (U_Ent) then
Error_Msg_N ("local name must be a subtype", Nam);
return;
else
Pnam := TSS (Base_Type (U_Ent), Name_uInput);
if Present (Pnam)
and then Base_Type (Etype (Pnam)) = Base_Type (U_Ent)
then
Error_Msg_Sloc := Sloc (Pnam);
Error_Msg_N ("input attribute already defined #", Nam);
return;
end if;
end if;
Analyze (Expr);
if Is_Entity_Name (Expr) then
if not Is_Overloaded (Expr) then
if Has_Good_Profile (Entity (Expr)) then
Subp := Entity (Expr);
end if;
else
Get_First_Interp (Expr, I, It);
while Present (It.Nam) loop
if Has_Good_Profile (It.Nam) then
Subp := It.Nam;
exit;
end if;
Get_Next_Interp (I, It);
end loop;
end if;
end if;
if Present (Subp) then
Set_Entity (Expr, Subp);
Set_Etype (Expr, Etype (Subp));
New_Stream_Function (N, U_Ent, Subp, Name_uInput);
else
Error_Msg_N ("incorrect expression for input attribute", Expr);
return;
end if;
end Input;
-------------------
-- Machine_Radix --
-------------------
-- Machine radix attribute definition clause
when Attribute_Machine_Radix => Machine_Radix : declare
Radix : constant Uint := Static_Integer (Expr);
begin
if not Is_Decimal_Fixed_Point_Type (U_Ent) then
Error_Msg_N ("decimal fixed-point type expected for &", Nam);
elsif Has_Machine_Radix_Clause (U_Ent) then
Error_Msg_Sloc := Sloc (Alignment_Clause (U_Ent));
Error_Msg_N ("machine radix clause previously given#", N);
elsif Radix /= No_Uint then
Set_Has_Machine_Radix_Clause (U_Ent);
Set_Has_Non_Standard_Rep (Base_Type (U_Ent));
if Radix = 2 then
null;
elsif Radix = 10 then
Set_Machine_Radix_10 (U_Ent);
else
Error_Msg_N ("machine radix value must be 2 or 10", Expr);
end if;
end if;
end Machine_Radix;
-----------------
-- Object_Size --
-----------------
-- Object_Size attribute definition clause
when Attribute_Object_Size => Object_Size : declare
Size : constant Uint := Static_Integer (Expr);
Biased : Boolean;
begin
if not Is_Type (U_Ent) then
Error_Msg_N ("Object_Size cannot be given for &", Nam);
elsif Has_Object_Size_Clause (U_Ent) then
Error_Msg_N ("Object_Size already given for &", Nam);
else
Check_Size (Expr, U_Ent, Size, Biased);
if Size /= 8
and then
Size /= 16
and then
Size /= 32
and then
UI_Mod (Size, 64) /= 0
then
Error_Msg_N
("Object_Size must be 8, 16, 32, or multiple of 64",
Expr);
end if;
Set_Esize (U_Ent, Size);
Set_Has_Object_Size_Clause (U_Ent);
Alignment_Check_For_Esize_Change (U_Ent);
end if;
end Object_Size;
------------
-- Output --
------------
when Attribute_Output => Output : declare
Subp : Entity_Id := Empty;
I : Interp_Index;
It : Interp;
Pnam : Entity_Id;
function Has_Good_Profile (Subp : Entity_Id) return Boolean;
-- Return true if the entity is a procedure with an
-- appropriate profile for the output attribute.
function Has_Good_Profile (Subp : Entity_Id) return Boolean is
F : Entity_Id;
Ok : Boolean := False;
begin
if Ekind (Subp) = E_Procedure then
F := First_Formal (Subp);
if Present (F) then
if Ekind (Etype (F)) = E_Anonymous_Access_Type
and then
Designated_Type (Etype (F)) =
Class_Wide_Type (RTE (RE_Root_Stream_Type))
then
Next_Formal (F);
Ok := Present (F)
and then Parameter_Mode (F) = E_In_Parameter
and then Base_Type (Etype (F)) = Base_Type (Ent)
and then No (Next_Formal (F));
end if;
end if;
end if;
return Ok;
end Has_Good_Profile;
begin
FOnly := True;
if not Is_Type (U_Ent) then
Error_Msg_N ("local name must be a subtype", Nam);
return;
else
Pnam := TSS (Base_Type (U_Ent), Name_uOutput);
if Present (Pnam)
and then
Base_Type (Etype (Next_Formal (First_Formal (Pnam))))
= Base_Type (U_Ent)
then
Error_Msg_Sloc := Sloc (Pnam);
Error_Msg_N ("output attribute already defined #", Nam);
return;
end if;
end if;
Analyze (Expr);
if Is_Entity_Name (Expr) then
if not Is_Overloaded (Expr) then
if Has_Good_Profile (Entity (Expr)) then
Subp := Entity (Expr);
end if;
else
Get_First_Interp (Expr, I, It);
while Present (It.Nam) loop
if Has_Good_Profile (It.Nam) then
Subp := It.Nam;
exit;
end if;
Get_Next_Interp (I, It);
end loop;
end if;
end if;
if Present (Subp) then
Set_Entity (Expr, Subp);
Set_Etype (Expr, Etype (Subp));
New_Stream_Procedure (N, U_Ent, Subp, Name_uOutput);
else
Error_Msg_N ("incorrect expression for output attribute", Expr);
return;
end if;
end Output;
----------
-- Read --
----------
when Attribute_Read => Read : declare
Subp : Entity_Id := Empty;
I : Interp_Index;
It : Interp;
Pnam : Entity_Id;
function Has_Good_Profile (Subp : Entity_Id) return Boolean;
-- Return true if the entity is a procedure with an appropriate
-- profile for the Read attribute.
function Has_Good_Profile (Subp : Entity_Id) return Boolean is
F : Entity_Id;
Ok : Boolean := False;
begin
if Ekind (Subp) = E_Procedure then
F := First_Formal (Subp);
if Present (F) then
if Ekind (Etype (F)) = E_Anonymous_Access_Type
and then
Designated_Type (Etype (F)) =
Class_Wide_Type (RTE (RE_Root_Stream_Type))
then
Next_Formal (F);
Ok := Present (F)
and then Parameter_Mode (F) = E_Out_Parameter
and then Base_Type (Etype (F)) = Base_Type (Ent)
and then No (Next_Formal (F));
end if;
end if;
end if;
return Ok;
end Has_Good_Profile;
-- Start of processing for Read attribute definition
begin
FOnly := True;
if not Is_Type (U_Ent) then
Error_Msg_N ("local name must be a subtype", Nam);
return;
else
Pnam := TSS (Base_Type (U_Ent), Name_uRead);
if Present (Pnam)
and then Base_Type (Etype (Next_Formal (First_Formal (Pnam))))
= Base_Type (U_Ent)
then
Error_Msg_Sloc := Sloc (Pnam);
Error_Msg_N ("read attribute already defined #", Nam);
return;
end if;
end if;
Analyze (Expr);
if Is_Entity_Name (Expr) then
if not Is_Overloaded (Expr) then
if Has_Good_Profile (Entity (Expr)) then
Subp := Entity (Expr);
end if;
else
Get_First_Interp (Expr, I, It);
while Present (It.Nam) loop
if Has_Good_Profile (It.Nam) then
Subp := It.Nam;
exit;
end if;
Get_Next_Interp (I, It);
end loop;
end if;
end if;
if Present (Subp) then
Set_Entity (Expr, Subp);
Set_Etype (Expr, Etype (Subp));
New_Stream_Procedure (N, U_Ent, Subp, Name_uRead, True);
else
Error_Msg_N ("incorrect expression for read attribute", Expr);
return;
end if;
end Read;
----------
-- Size --
----------
-- Size attribute definition clause
when Attribute_Size => Size : declare
Size : constant Uint := Static_Integer (Expr);
Etyp : Entity_Id;
Biased : Boolean;
begin
FOnly := True;
if Has_Size_Clause (U_Ent) then
Error_Msg_N ("size already given for &", Nam);
elsif not Is_Type (U_Ent)
and then Ekind (U_Ent) /= E_Variable
and then Ekind (U_Ent) /= E_Constant
then
Error_Msg_N ("size cannot be given for &", Nam);
elsif Is_Array_Type (U_Ent)
and then not Is_Constrained (U_Ent)
then
Error_Msg_N
("size cannot be given for unconstrained array", Nam);
elsif Size /= No_Uint then
if Is_Type (U_Ent) then
Etyp := U_Ent;
else
Etyp := Etype (U_Ent);
end if;
-- Check size, note that Gigi is in charge of checking
-- that the size of an array or record type is OK. Also
-- we do not check the size in the ordinary fixed-point
-- case, since it is too early to do so (there may be a
-- subsequent small clause that affects the size). We can
-- check the size if a small clause has already been given.
if not Is_Ordinary_Fixed_Point_Type (U_Ent)
or else Has_Small_Clause (U_Ent)
then
Check_Size (Expr, Etyp, Size, Biased);
Set_Has_Biased_Representation (U_Ent, Biased);
end if;
-- For types set RM_Size and Esize if possible
if Is_Type (U_Ent) then
Set_RM_Size (U_Ent, Size);
-- For scalar types, increase Object_Size to power of 2,
-- but not less than 8 in any case, i.e. byte addressable.
if Is_Scalar_Type (U_Ent) then
if Size <= 8 then
Init_Esize (U_Ent, 8);
elsif Size <= 16 then
Init_Esize (U_Ent, 16);
elsif Size <= 32 then
Init_Esize (U_Ent, 32);
else
Set_Esize (U_Ent, (Size + 63) / 64 * 64);
end if;
-- For all other types, object size = value size. The
-- backend will adjust as needed.
else
Set_Esize (U_Ent, Size);
end if;
Alignment_Check_For_Esize_Change (U_Ent);
-- For objects, set Esize only
else
Set_Esize (U_Ent, Size);
end if;
Set_Has_Size_Clause (U_Ent);
end if;
end Size;
-----------
-- Small --
-----------
-- Small attribute definition clause
when Attribute_Small => Small : declare
Implicit_Base : constant Entity_Id := Base_Type (U_Ent);
Small : Ureal;
begin
Analyze_And_Resolve (Expr, Any_Real);
if Etype (Expr) = Any_Type then
return;
elsif not Is_Static_Expression (Expr) then
Error_Msg_N ("small requires static expression", Expr);
return;
else
Small := Expr_Value_R (Expr);
if Small <= Ureal_0 then
Error_Msg_N ("small value must be greater than zero", Expr);
return;
end if;
end if;
if not Is_Ordinary_Fixed_Point_Type (U_Ent) then
Error_Msg_N
("small requires an ordinary fixed point type", Nam);
elsif Has_Small_Clause (U_Ent) then
Error_Msg_N ("small already given for &", Nam);
elsif Small > Delta_Value (U_Ent) then
Error_Msg_N
("small value must not be greater then delta value", Nam);
else
Set_Small_Value (U_Ent, Small);
Set_Small_Value (Implicit_Base, Small);
Set_Has_Small_Clause (U_Ent);
Set_Has_Small_Clause (Implicit_Base);
Set_Has_Non_Standard_Rep (Implicit_Base);
end if;
end Small;
------------------
-- Storage_Size --
------------------
-- Storage_Size attribute definition clause
when Attribute_Storage_Size => Storage_Size : declare
Btype : constant Entity_Id := Base_Type (U_Ent);
Sprag : Node_Id;
begin
if Is_Task_Type (U_Ent) then
FOnly := True;
end if;
if not Is_Access_Type (U_Ent)
and then Ekind (U_Ent) /= E_Task_Type
then
Error_Msg_N ("storage size cannot be given for &", Nam);
elsif Is_Access_Type (U_Ent) and Is_Derived_Type (U_Ent) then
Error_Msg_N
("storage size cannot be given for a derived access type",
Nam);
elsif Has_Storage_Size_Clause (Btype) then
Error_Msg_N ("storage size already given for &", Nam);
else
Analyze_And_Resolve (Expr, Any_Integer);
if Is_Access_Type (U_Ent) then
if Present (Associated_Storage_Pool (U_Ent)) then
Error_Msg_N ("storage pool already given for &", Nam);
return;
end if;
if Compile_Time_Known_Value (Expr)
and then Expr_Value (Expr) = 0
then
Set_No_Pool_Assigned (Btype);
end if;
else -- Is_Task_Type (U_Ent)
Sprag := Get_Rep_Pragma (Btype, Name_Storage_Size);
if Present (Sprag) then
Error_Msg_Sloc := Sloc (Sprag);
Error_Msg_N
("Storage_Size already specified#", Nam);
return;
end if;
end if;
Set_Has_Storage_Size_Clause (Btype);
end if;
end Storage_Size;
------------------
-- Storage_Pool --
------------------
-- Storage_Pool attribute definition clause
when Attribute_Storage_Pool => Storage_Pool : declare
Pool : Entity_Id;
begin
if Ekind (U_Ent) /= E_Access_Type
and then Ekind (U_Ent) /= E_General_Access_Type
then
Error_Msg_N (
"storage pool can only be given for access types", Nam);
return;
elsif Is_Derived_Type (U_Ent) then
Error_Msg_N
("storage pool cannot be given for a derived access type",
Nam);
elsif Has_Storage_Size_Clause (U_Ent) then
Error_Msg_N ("storage size already given for &", Nam);
return;
elsif Present (Associated_Storage_Pool (U_Ent)) then
Error_Msg_N ("storage pool already given for &", Nam);
return;
end if;
Analyze_And_Resolve
(Expr, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
-- If the argument is a name that is not an entity name, then
-- we construct a renaming operation to define an entity of
-- type storage pool.
if not Is_Entity_Name (Expr)
and then Is_Object_Reference (Expr)
then
Pool :=
Make_Defining_Identifier (Loc,
Chars => New_Internal_Name ('P'));
declare
Rnode : constant Node_Id :=
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Pool,
Subtype_Mark =>
New_Occurrence_Of (Etype (Expr), Loc),
Name => Expr);
begin
Insert_Before (N, Rnode);
Analyze (Rnode);
Set_Associated_Storage_Pool (U_Ent, Pool);
end;
elsif Is_Entity_Name (Expr) then
Pool := Entity (Expr);
-- If pool is a renamed object, get original one. This can
-- happen with an explicit renaming, and within instances.
while Present (Renamed_Object (Pool))
and then Is_Entity_Name (Renamed_Object (Pool))
loop
Pool := Entity (Renamed_Object (Pool));
end loop;
if Present (Renamed_Object (Pool))
and then Nkind (Renamed_Object (Pool)) = N_Type_Conversion
and then Is_Entity_Name (Expression (Renamed_Object (Pool)))
then
Pool := Entity (Expression (Renamed_Object (Pool)));
end if;
if Present (Etype (Pool))
and then Etype (Pool) /= RTE (RE_Stack_Bounded_Pool)
and then Etype (Pool) /= RTE (RE_Unbounded_Reclaim_Pool)
then
Set_Associated_Storage_Pool (U_Ent, Pool);
else
Error_Msg_N ("Non sharable GNAT Pool", Expr);
end if;
-- The pool may be specified as the Storage_Pool of some other
-- type. It is rewritten as a class_wide conversion of the
-- corresponding pool entity.
elsif Nkind (Expr) = N_Type_Conversion
and then Is_Entity_Name (Expression (Expr))
and then Nkind (Original_Node (Expr)) = N_Attribute_Reference
then
Pool := Entity (Expression (Expr));
if Present (Etype (Pool))
and then Etype (Pool) /= RTE (RE_Stack_Bounded_Pool)
and then Etype (Pool) /= RTE (RE_Unbounded_Reclaim_Pool)
then
Set_Associated_Storage_Pool (U_Ent, Pool);
else
Error_Msg_N ("Non sharable GNAT Pool", Expr);
end if;
else
Error_Msg_N ("incorrect reference to a Storage Pool", Expr);
return;
end if;
end Storage_Pool;
----------------
-- Value_Size --
----------------
-- Value_Size attribute definition clause
when Attribute_Value_Size => Value_Size : declare
Size : constant Uint := Static_Integer (Expr);
Biased : Boolean;
begin
if not Is_Type (U_Ent) then
Error_Msg_N ("Value_Size cannot be given for &", Nam);
elsif Present
(Get_Attribute_Definition_Clause
(U_Ent, Attribute_Value_Size))
then
Error_Msg_N ("Value_Size already given for &", Nam);
else
if Is_Elementary_Type (U_Ent) then
Check_Size (Expr, U_Ent, Size, Biased);
Set_Has_Biased_Representation (U_Ent, Biased);
end if;
Set_RM_Size (U_Ent, Size);
end if;
end Value_Size;
-----------
-- Write --
-----------
-- Write attribute definition clause
-- check for class-wide case will be performed later
when Attribute_Write => Write : declare
Subp : Entity_Id := Empty;
I : Interp_Index;
It : Interp;
Pnam : Entity_Id;
function Has_Good_Profile (Subp : Entity_Id) return Boolean;
-- Return true if the entity is a procedure with an
-- appropriate profile for the write attribute.
function Has_Good_Profile (Subp : Entity_Id) return Boolean is
F : Entity_Id;
Ok : Boolean := False;
begin
if Ekind (Subp) = E_Procedure then
F := First_Formal (Subp);
if Present (F) then
if Ekind (Etype (F)) = E_Anonymous_Access_Type
and then
Designated_Type (Etype (F)) =
Class_Wide_Type (RTE (RE_Root_Stream_Type))
then
Next_Formal (F);
Ok := Present (F)
and then Parameter_Mode (F) = E_In_Parameter
and then Base_Type (Etype (F)) = Base_Type (Ent)
and then No (Next_Formal (F));
end if;
end if;
end if;
return Ok;
end Has_Good_Profile;
-- Start of processing for Write attribute definition
begin
FOnly := True;
if not Is_Type (U_Ent) then
Error_Msg_N ("local name must be a subtype", Nam);
return;
end if;
Pnam := TSS (Base_Type (U_Ent), Name_uWrite);
if Present (Pnam)
and then Base_Type (Etype (Next_Formal (First_Formal (Pnam))))
= Base_Type (U_Ent)
then
Error_Msg_Sloc := Sloc (Pnam);
Error_Msg_N ("write attribute already defined #", Nam);
return;
end if;
Analyze (Expr);
if Is_Entity_Name (Expr) then
if not Is_Overloaded (Expr) then
if Has_Good_Profile (Entity (Expr)) then
Subp := Entity (Expr);
end if;
else
Get_First_Interp (Expr, I, It);
while Present (It.Nam) loop
if Has_Good_Profile (It.Nam) then
Subp := It.Nam;
exit;
end if;
Get_Next_Interp (I, It);
end loop;
end if;
end if;
if Present (Subp) then
Set_Entity (Expr, Subp);
Set_Etype (Expr, Etype (Subp));
New_Stream_Procedure (N, U_Ent, Subp, Name_uWrite);
else
Error_Msg_N ("incorrect expression for write attribute", Expr);
return;
end if;
end Write;
-- All other attributes cannot be set
when others =>
Error_Msg_N
("attribute& cannot be set with definition clause", N);
end case;
-- The test for the type being frozen must be performed after
-- any expression the clause has been analyzed since the expression
-- itself might cause freezing that makes the clause illegal.
if Rep_Item_Too_Late (Ent, N, FOnly) then
return;
end if;
end Analyze_Attribute_Definition_Clause;
----------------------------
-- Analyze_Code_Statement --
----------------------------
procedure Analyze_Code_Statement (N : Node_Id) is
HSS : constant Node_Id := Parent (N);
SBody : constant Node_Id := Parent (HSS);
Subp : constant Entity_Id := Current_Scope;
Stmt : Node_Id;
Decl : Node_Id;
StmtO : Node_Id;
DeclO : Node_Id;
begin
-- Analyze and check we get right type, note that this implements the
-- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that
-- is the only way that Asm_Insn could possibly be visible.
Analyze_And_Resolve (Expression (N));
if Etype (Expression (N)) = Any_Type then
return;
elsif Etype (Expression (N)) /= RTE (RE_Asm_Insn) then
Error_Msg_N ("incorrect type for code statement", N);
return;
end if;
-- Make sure we appear in the handled statement sequence of a
-- subprogram (RM 13.8(3)).
if Nkind (HSS) /= N_Handled_Sequence_Of_Statements
or else Nkind (SBody) /= N_Subprogram_Body
then
Error_Msg_N
("code statement can only appear in body of subprogram", N);
return;
end if;
-- Do remaining checks (RM 13.8(3)) if not already done
if not Is_Machine_Code_Subprogram (Subp) then
Set_Is_Machine_Code_Subprogram (Subp);
-- No exception handlers allowed
if Present (Exception_Handlers (HSS)) then
Error_Msg_N
("exception handlers not permitted in machine code subprogram",
First (Exception_Handlers (HSS)));
end if;
-- No declarations other than use clauses and pragmas (we allow
-- certain internally generated declarations as well).
Decl := First (Declarations (SBody));
while Present (Decl) loop
DeclO := Original_Node (Decl);
if Comes_From_Source (DeclO)
and then Nkind (DeclO) /= N_Pragma
and then Nkind (DeclO) /= N_Use_Package_Clause
and then Nkind (DeclO) /= N_Use_Type_Clause
and then Nkind (DeclO) /= N_Implicit_Label_Declaration
then
Error_Msg_N
("this declaration not allowed in machine code subprogram",
DeclO);
end if;
Next (Decl);
end loop;
-- No statements other than code statements, pragmas, and labels.
-- Again we allow certain internally generated statements.
Stmt := First (Statements (HSS));
while Present (Stmt) loop
StmtO := Original_Node (Stmt);
if Comes_From_Source (StmtO)
and then Nkind (StmtO) /= N_Pragma
and then Nkind (StmtO) /= N_Label
and then Nkind (StmtO) /= N_Code_Statement
then
Error_Msg_N
("this statement is not allowed in machine code subprogram",
StmtO);
end if;
Next (Stmt);
end loop;
end if;
end Analyze_Code_Statement;
-----------------------------------------------
-- Analyze_Enumeration_Representation_Clause --
-----------------------------------------------
procedure Analyze_Enumeration_Representation_Clause (N : Node_Id) is
Ident : constant Node_Id := Identifier (N);
Aggr : constant Node_Id := Array_Aggregate (N);
Enumtype : Entity_Id;
Elit : Entity_Id;
Expr : Node_Id;
Assoc : Node_Id;
Choice : Node_Id;
Val : Uint;
Err : Boolean := False;
Lo : constant Uint := Expr_Value (Type_Low_Bound (Universal_Integer));
Hi : constant Uint := Expr_Value (Type_High_Bound (Universal_Integer));
Min : Uint;
Max : Uint;
begin
-- First some basic error checks
Find_Type (Ident);
Enumtype := Entity (Ident);
if Enumtype = Any_Type
or else Rep_Item_Too_Early (Enumtype, N)
then
return;
else
Enumtype := Underlying_Type (Enumtype);
end if;
if not Is_Enumeration_Type (Enumtype) then
Error_Msg_NE
("enumeration type required, found}",
Ident, First_Subtype (Enumtype));
return;
end if;
if Scope (Enumtype) /= Current_Scope then
Error_Msg_N ("type must be declared in this scope", Ident);
return;
elsif not Is_First_Subtype (Enumtype) then
Error_Msg_N ("cannot give enumeration rep clause for subtype", N);
return;
elsif Has_Enumeration_Rep_Clause (Enumtype) then
Error_Msg_N ("duplicate enumeration rep clause ignored", N);
return;
elsif Root_Type (Enumtype) = Standard_Character
or else Root_Type (Enumtype) = Standard_Wide_Character
then
Error_Msg_N ("enumeration rep clause not allowed for this type", N);
else
Set_Has_Enumeration_Rep_Clause (Enumtype);
Set_Has_Enumeration_Rep_Clause (Base_Type (Enumtype));
end if;
-- Now we process the aggregate. Note that we don't use the normal
-- aggregate code for this purpose, because we don't want any of the
-- normal expansion activities, and a number of special semantic
-- rules apply (including the component type being any integer type)
-- Badent signals that we found some incorrect entries processing
-- the list. The final checks for completeness and ordering are
-- skipped in this case.
Elit := First_Literal (Enumtype);
-- First the positional entries if any
if Present (Expressions (Aggr)) then
Expr := First (Expressions (Aggr));
while Present (Expr) loop
if No (Elit) then
Error_Msg_N ("too many entries in aggregate", Expr);
return;
end if;
Val := Static_Integer (Expr);
if Val = No_Uint then
Err := True;
elsif Val < Lo or else Hi < Val then
Error_Msg_N ("value outside permitted range", Expr);
Err := True;
end if;
Set_Enumeration_Rep (Elit, Val);
Set_Enumeration_Rep_Expr (Elit, Expr);
Next (Expr);
Next (Elit);
end loop;
end if;
-- Now process the named entries if present
if Present (Component_Associations (Aggr)) then
Assoc := First (Component_Associations (Aggr));
while Present (Assoc) loop
Choice := First (Choices (Assoc));
if Present (Next (Choice)) then
Error_Msg_N
("multiple choice not allowed here", Next (Choice));
Err := True;
end if;
if Nkind (Choice) = N_Others_Choice then
Error_Msg_N ("others choice not allowed here", Choice);
Err := True;
elsif Nkind (Choice) = N_Range then
-- ??? should allow zero/one element range here
Error_Msg_N ("range not allowed here", Choice);
Err := True;
else
Analyze_And_Resolve (Choice, Enumtype);
if Is_Entity_Name (Choice)
and then Is_Type (Entity (Choice))
then
Error_Msg_N ("subtype name not allowed here", Choice);
Err := True;
-- ??? should allow static subtype with zero/one entry
elsif Etype (Choice) = Base_Type (Enumtype) then
if not Is_Static_Expression (Choice) then
Error_Msg_N
("non-static expression used for choice", Choice);
Err := True;
else
Elit := Expr_Value_E (Choice);
if Present (Enumeration_Rep_Expr (Elit)) then
Error_Msg_Sloc := Sloc (Enumeration_Rep_Expr (Elit));
Error_Msg_NE
("representation for& previously given#",
Choice, Elit);
Err := True;
end if;
Set_Enumeration_Rep_Expr (Elit, Choice);
Val := Static_Integer (Expression (Assoc));
if Val = No_Uint then
Err := True;
elsif Val < Lo or else Hi < Val then
Error_Msg_N ("value outside permitted range", Expr);
Err := True;
end if;
Set_Enumeration_Rep (Elit, Val);
end if;
end if;
end if;
Next (Assoc);
end loop;
end if;
-- Aggregate is fully processed. Now we check that a full set of
-- representations was given, and that they are in range and in order.
-- These checks are only done if no other errors occurred.
if not Err then
Min := No_Uint;
Max := No_Uint;
Elit := First_Literal (Enumtype);
while Present (Elit) loop
if No (Enumeration_Rep_Expr (Elit)) then
Error_Msg_NE ("missing representation for&!", N, Elit);
else
Val := Enumeration_Rep (Elit);
if Min = No_Uint then
Min := Val;
end if;
if Val /= No_Uint then
if Max /= No_Uint and then Val <= Max then
Error_Msg_NE
("enumeration value for& not ordered!",
Enumeration_Rep_Expr (Elit), Elit);
end if;
Max := Val;
end if;
-- If there is at least one literal whose representation
-- is not equal to the Pos value, then note that this
-- enumeration type has a non-standard representation.
if Val /= Enumeration_Pos (Elit) then
Set_Has_Non_Standard_Rep (Base_Type (Enumtype));
end if;
end if;
Next (Elit);
end loop;
end if;
declare
Minsize : Uint := UI_From_Int (Minimum_Size (Enumtype));
begin
if Has_Size_Clause (Enumtype) then
if Esize (Enumtype) >= Minsize then
null;
else
Minsize :=
UI_From_Int (Minimum_Size (Enumtype, Biased => True));
if Esize (Enumtype) < Minsize then
Error_Msg_N ("previously given size is too small", N);
else
Set_Has_Biased_Representation (Enumtype);
end if;
end if;
else
Set_RM_Size (Enumtype, Minsize);
Set_Enum_Esize (Enumtype);
end if;
Set_RM_Size (Base_Type (Enumtype), RM_Size (Enumtype));
Set_Esize (Base_Type (Enumtype), Esize (Enumtype));
Set_Alignment (Base_Type (Enumtype), Alignment (Enumtype));
end;
-- We repeat the too late test in case it froze itself!
if Rep_Item_Too_Late (Enumtype, N) then
null;
end if;
end Analyze_Enumeration_Representation_Clause;
----------------------------
-- Analyze_Free_Statement --
----------------------------
procedure Analyze_Free_Statement (N : Node_Id) is
begin
Analyze (Expression (N));
end Analyze_Free_Statement;
------------------------------------------
-- Analyze_Record_Representation_Clause --
------------------------------------------
procedure Analyze_Record_Representation_Clause (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Ident : constant Node_Id := Identifier (N);
Rectype : Entity_Id;
Fent : Entity_Id;
CC : Node_Id;
Posit : Uint;
Fbit : Uint;
Lbit : Uint;
Hbit : Uint := Uint_0;
Comp : Entity_Id;
Ocomp : Entity_Id;
Biased : Boolean;
Max_Bit_So_Far : Uint;
-- Records the maximum bit position so far. If all field positoins
-- are monotonically increasing, then we can skip the circuit for
-- checking for overlap, since no overlap is possible.
Overlap_Check_Required : Boolean;
-- Used to keep track of whether or not an overlap check is required
Ccount : Natural := 0;
-- Number of component clauses in record rep clause
begin
Find_Type (Ident);
Rectype := Entity (Ident);
if Rectype = Any_Type
or else Rep_Item_Too_Early (Rectype, N)
then
return;
else
Rectype := Underlying_Type (Rectype);
end if;
-- First some basic error checks
if not Is_Record_Type (Rectype) then
Error_Msg_NE
("record type required, found}", Ident, First_Subtype (Rectype));
return;
elsif Is_Unchecked_Union (Rectype) then
Error_Msg_N
("record rep clause not allowed for Unchecked_Union", N);
elsif Scope (Rectype) /= Current_Scope then
Error_Msg_N ("type must be declared in this scope", N);
return;
elsif not Is_First_Subtype (Rectype) then
Error_Msg_N ("cannot give record rep clause for subtype", N);
return;
elsif Has_Record_Rep_Clause (Rectype) then
Error_Msg_N ("duplicate record rep clause ignored", N);
return;
elsif Rep_Item_Too_Late (Rectype, N) then
return;
end if;
if Present (Mod_Clause (N)) then
declare
Loc : constant Source_Ptr := Sloc (N);
M : constant Node_Id := Mod_Clause (N);
P : constant List_Id := Pragmas_Before (M);
Mod_Val : Uint;
AtM_Nod : Node_Id;
begin
-- Get the alignment value to perform error checking
Mod_Val := Get_Alignment_Value (Expression (M));
if Present (P) then
Analyze_List (P);
end if;
-- In Tree_Output mode, expansion is disabled, but we must
-- convert the Mod clause into an alignment clause anyway, so
-- that the back-end can compute and back-annotate properly the
-- size and alignment of types that may include this record.
if Mod_Val /= No_Uint
and then Operating_Mode = Check_Semantics
and then Tree_Output
then
AtM_Nod :=
Make_Attribute_Definition_Clause (Loc,
Name => New_Reference_To (Base_Type (Rectype), Loc),
Chars => Name_Alignment,
Expression => Make_Integer_Literal (Loc, Mod_Val));
Set_From_At_Mod (AtM_Nod);
Insert_After (N, AtM_Nod);
Set_Mod_Clause (N, Empty);
end if;
end;
end if;
-- Clear any existing component clauses for the type (this happens
-- with derived types, where we are now overriding the original)
Fent := First_Entity (Rectype);
Comp := Fent;
while Present (Comp) loop
if Ekind (Comp) = E_Component
or else Ekind (Comp) = E_Discriminant
then
Set_Component_Clause (Comp, Empty);
end if;
Next_Entity (Comp);
end loop;
-- All done if no component clauses
CC := First (Component_Clauses (N));
if No (CC) then
return;
end if;
-- If a tag is present, then create a component clause that places
-- it at the start of the record (otherwise gigi may place it after
-- other fields that have rep clauses).
if Nkind (Fent) = N_Defining_Identifier
and then Chars (Fent) = Name_uTag
then
Set_Component_First_Bit (Fent, Uint_0);
Init_Esize (Fent, System_Address_Size);
Set_Component_Clause (Fent,
Make_Component_Clause (Loc,
Component_Name =>
Make_Identifier (Loc,
Chars => Name_uTag),
Position =>
Make_Integer_Literal (Loc,
Intval => Uint_0),
First_Bit =>
Make_Integer_Literal (Loc,
Intval => Uint_0),
Last_Bit =>
Make_Integer_Literal (Loc,
UI_From_Int (System_Address_Size))));
Ccount := Ccount + 1;
end if;
Set_Has_Record_Rep_Clause (Rectype);
Set_Has_Specified_Layout (Rectype);
-- A representation like this applies to the base type as well
Set_Has_Record_Rep_Clause (Base_Type (Rectype));
Set_Has_Non_Standard_Rep (Base_Type (Rectype));
Set_Has_Specified_Layout (Base_Type (Rectype));
Max_Bit_So_Far := Uint_Minus_1;
Overlap_Check_Required := False;
-- Process the component clauses
while Present (CC) loop
-- If pragma, just analyze it
if Nkind (CC) = N_Pragma then
Analyze (CC);
-- Processing for real component clause
else
Ccount := Ccount + 1;
Posit := Static_Integer (Position (CC));
Fbit := Static_Integer (First_Bit (CC));
Lbit := Static_Integer (Last_Bit (CC));
if Posit /= No_Uint
and then Fbit /= No_Uint
and then Lbit /= No_Uint
then
if Posit < 0 then
Error_Msg_N
("position cannot be negative", Position (CC));
elsif Fbit < 0 then
Error_Msg_N
("first bit cannot be negative", First_Bit (CC));
-- Values look OK, so find the corresponding record component
-- Even though the syntax allows an attribute reference for
-- implementation-defined components, GNAT does not allow the
-- tag to get an explicit position.
elsif Nkind (Component_Name (CC)) = N_Attribute_Reference then
if Attribute_Name (Component_Name (CC)) = Name_Tag then
Error_Msg_N ("position of tag cannot be specified", CC);
else
Error_Msg_N ("illegal component name", CC);
end if;
else
Comp := First_Entity (Rectype);
while Present (Comp) loop
exit when Chars (Comp) = Chars (Component_Name (CC));
Next_Entity (Comp);
end loop;
if No (Comp) then
-- Maybe component of base type that is absent from
-- statically constrained first subtype.
Comp := First_Entity (Base_Type (Rectype));
while Present (Comp) loop
exit when Chars (Comp) = Chars (Component_Name (CC));
Next_Entity (Comp);
end loop;
end if;
if No (Comp) then
Error_Msg_N
("component clause is for non-existent field", CC);
elsif Present (Component_Clause (Comp)) then
Error_Msg_Sloc := Sloc (Component_Clause (Comp));
Error_Msg_N
("component clause previously given#", CC);
else
-- Update Fbit and Lbit to the actual bit number.
Fbit :=
Fbit + UI_From_Int (System_Storage_Unit) * Posit;
Lbit :=
Lbit + UI_From_Int (System_Storage_Unit) * Posit;
if Fbit <= Max_Bit_So_Far then
Overlap_Check_Required := True;
else
Max_Bit_So_Far := Lbit;
end if;
if Has_Size_Clause (Rectype)
and then Esize (Rectype) <= Lbit
then
Error_Msg_N
("bit number out of range of specified size",
Last_Bit (CC));
else
Set_Component_Clause (Comp, CC);
Set_Component_First_Bit (Comp, Fbit);
Set_Esize (Comp, 1 + (Lbit - Fbit));
if Is_Tagged_Type (Rectype)
and then Fbit < System_Address_Size
then
Error_Msg_NE
("component overlaps tag field of&",
CC, Rectype);
end if;
-- Test for large object that is not on a byte
-- boundary, defined as a large packed array not
-- represented by a modular type, or an object for
-- which a size of greater than 64 bits is specified.
if Fbit mod System_Storage_Unit /= 0 then
if (Is_Packed_Array_Type (Etype (Comp))
and then Is_Array_Type
(Packed_Array_Type (Etype (Comp))))
or else Esize (Etype (Comp)) > 64
then
Error_Msg_N
("large component must be on byte boundary",
First_Bit (CC));
end if;
end if;
-- This information is also set in the
-- corresponding component of the base type,
-- found by accessing the Original_Record_Component
-- link if it is present.
Ocomp := Original_Record_Component (Comp);
if Hbit < Lbit then
Hbit := Lbit;
end if;
Check_Size
(Component_Name (CC),
Etype (Comp),
Esize (Comp),
Biased);
Set_Has_Biased_Representation (Comp, Biased);
if Present (Ocomp) then
Set_Component_Clause
(Ocomp, CC);
Set_Component_First_Bit
(Ocomp, Fbit);
Set_Esize
(Ocomp, 1 + (Lbit - Fbit));
Set_Has_Biased_Representation
(Ocomp, Has_Biased_Representation (Comp));
end if;
if Esize (Comp) < 0 then
Error_Msg_N ("component size is negative", CC);
end if;
end if;
end if;
end if;
end if;
end if;
Next (CC);
end loop;
-- Now that we have processed all the component clauses, check for
-- overlap. We have to leave this till last, since the components
-- can appear in any arbitrary order in the representation clause.
-- We do not need this check if all specified ranges were monotonic,
-- as recorded by Overlap_Check_Required being False at this stage.
-- This first section checks if there are any overlapping entries
-- at all. It does this by sorting all entries and then seeing if
-- there are any overlaps. If there are none, then that is decisive,
-- but if there are overlaps, they may still be OK (they may result
-- from fields in different variants).
if Overlap_Check_Required then
Overlap_Check1 : declare
OC_Fbit : array (0 .. Ccount) of Uint;
-- First-bit values for component clauses, the value is the
-- offset of the first bit of the field from start of record.
-- The zero entry is for use in sorting.
OC_Lbit : array (0 .. Ccount) of Uint;
-- Last-bit values for component clauses, the value is the
-- offset of the last bit of the field from start of record.
-- The zero entry is for use in sorting.
OC_Count : Natural := 0;
-- Count of entries in OC_Fbit and OC_Lbit
function OC_Lt (Op1, Op2 : Natural) return Boolean;
-- Compare routine for Sort (See GNAT.Heap_Sort_A)
procedure OC_Move (From : Natural; To : Natural);
-- Move routine for Sort (see GNAT.Heap_Sort_A)
function OC_Lt (Op1, Op2 : Natural) return Boolean is
begin
return OC_Fbit (Op1) < OC_Fbit (Op2);
end OC_Lt;
procedure OC_Move (From : Natural; To : Natural) is
begin
OC_Fbit (To) := OC_Fbit (From);
OC_Lbit (To) := OC_Lbit (From);
end OC_Move;
begin
CC := First (Component_Clauses (N));
while Present (CC) loop
if Nkind (CC) /= N_Pragma then
Posit := Static_Integer (Position (CC));
Fbit := Static_Integer (First_Bit (CC));
Lbit := Static_Integer (Last_Bit (CC));
if Posit /= No_Uint
and then Fbit /= No_Uint
and then Lbit /= No_Uint
then
OC_Count := OC_Count + 1;
Posit := Posit * System_Storage_Unit;
OC_Fbit (OC_Count) := Fbit + Posit;
OC_Lbit (OC_Count) := Lbit + Posit;
end if;
end if;
Next (CC);
end loop;
Sort
(OC_Count,
OC_Move'Unrestricted_Access,
OC_Lt'Unrestricted_Access);
Overlap_Check_Required := False;
for J in 1 .. OC_Count - 1 loop
if OC_Lbit (J) >= OC_Fbit (J + 1) then
Overlap_Check_Required := True;
exit;
end if;
end loop;
end Overlap_Check1;
end if;
-- If Overlap_Check_Required is still True, then we have to do
-- the full scale overlap check, since we have at least two fields
-- that do overlap, and we need to know if that is OK since they
-- are in the same variant, or whether we have a definite problem
if Overlap_Check_Required then
Overlap_Check2 : declare
C1_Ent, C2_Ent : Entity_Id;
-- Entities of components being checked for overlap
Clist : Node_Id;
-- Component_List node whose Component_Items are being checked
Citem : Node_Id;
-- Component declaration for component being checked
begin
C1_Ent := First_Entity (Base_Type (Rectype));
-- Loop through all components in record. For each component check
-- for overlap with any of the preceding elements on the component
-- list containing the component, and also, if the component is in
-- a variant, check against components outside the case structure.
-- This latter test is repeated recursively up the variant tree.
Main_Component_Loop : while Present (C1_Ent) loop
if Ekind (C1_Ent) /= E_Component
and then Ekind (C1_Ent) /= E_Discriminant
then
goto Continue_Main_Component_Loop;
end if;
-- Skip overlap check if entity has no declaration node. This
-- happens with discriminants in constrained derived types.
-- Probably we are missing some checks as a result, but that
-- does not seem terribly serious ???
if No (Declaration_Node (C1_Ent)) then
goto Continue_Main_Component_Loop;
end if;
Clist := Parent (List_Containing (Declaration_Node (C1_Ent)));
-- Loop through component lists that need checking. Check the
-- current component list and all lists in variants above us.
Component_List_Loop : loop
-- If derived type definition, go to full declaration
-- If at outer level, check discriminants if there are any
if Nkind (Clist) = N_Derived_Type_Definition then
Clist := Parent (Clist);
end if;
-- Outer level of record definition, check discriminants
if Nkind (Clist) = N_Full_Type_Declaration
or else Nkind (Clist) = N_Private_Type_Declaration
then
if Has_Discriminants (Defining_Identifier (Clist)) then
C2_Ent :=
First_Discriminant (Defining_Identifier (Clist));
while Present (C2_Ent) loop
exit when C1_Ent = C2_Ent;
Check_Component_Overlap (C1_Ent, C2_Ent);
Next_Discriminant (C2_Ent);
end loop;
end if;
-- Record extension case
elsif Nkind (Clist) = N_Derived_Type_Definition then
Clist := Empty;
-- Otherwise check one component list
else
Citem := First (Component_Items (Clist));
while Present (Citem) loop
if Nkind (Citem) = N_Component_Declaration then
C2_Ent := Defining_Identifier (Citem);
exit when C1_Ent = C2_Ent;
Check_Component_Overlap (C1_Ent, C2_Ent);
end if;
Next (Citem);
end loop;
end if;
-- Check for variants above us (the parent of the Clist can
-- be a variant, in which case its parent is a variant part,
-- and the parent of the variant part is a component list
-- whose components must all be checked against the current
-- component for overlap.
if Nkind (Parent (Clist)) = N_Variant then
Clist := Parent (Parent (Parent (Clist)));
-- Check for possible discriminant part in record, this is
-- treated essentially as another level in the recursion.
-- For this case we have the parent of the component list
-- is the record definition, and its parent is the full
-- type declaration which contains the discriminant
-- specifications.
elsif Nkind (Parent (Clist)) = N_Record_Definition then
Clist := Parent (Parent ((Clist)));
-- If neither of these two cases, we are at the top of
-- the tree
else
exit Component_List_Loop;
end if;
end loop Component_List_Loop;
<<Continue_Main_Component_Loop>>
Next_Entity (C1_Ent);
end loop Main_Component_Loop;
end Overlap_Check2;
end if;
-- For records that have component clauses for all components, and
-- whose size is less than or equal to 32, we need to know the size
-- in the front end to activate possible packed array processing
-- where the component type is a record.
-- At this stage Hbit + 1 represents the first unused bit from all
-- the component clauses processed, so if the component clauses are
-- complete, then this is the length of the record.
-- For records longer than System.Storage_Unit, and for those where
-- not all components have component clauses, the back end determines
-- the length (it may for example be appopriate to round up the size
-- to some convenient boundary, based on alignment considerations etc).
if Unknown_RM_Size (Rectype)
and then Hbit + 1 <= 32
then
-- Nothing to do if at least one component with no component clause
Comp := First_Entity (Rectype);
while Present (Comp) loop
if Ekind (Comp) = E_Component
or else Ekind (Comp) = E_Discriminant
then
if No (Component_Clause (Comp)) then
return;
end if;
end if;
Next_Entity (Comp);
end loop;
-- If we fall out of loop, all components have component clauses
-- and so we can set the size to the maximum value.
Set_RM_Size (Rectype, Hbit + 1);
end if;
end Analyze_Record_Representation_Clause;
-----------------------------
-- Check_Address_Alignment --
-----------------------------
procedure Check_Address_Alignment (E : Entity_Id; Expr : Node_Id) is
Arg : Node_Id;
begin
if Nkind (Expr) = N_Unchecked_Type_Conversion then
Arg := Expression (Expr);
elsif Nkind (Expr) = N_Function_Call
and then Is_RTE (Entity (Name (Expr)), RE_To_Address)
then
Arg := First (Parameter_Associations (Expr));
if Nkind (Arg) = N_Parameter_Association then
Arg := Explicit_Actual_Parameter (Arg);
end if;
else
return;
end if;
-- Here Arg is the address value
if Compile_Time_Known_Value (Arg) then
if Expr_Value (Arg) mod Alignment (E) /= 0 then
Error_Msg_NE
("?specified address for& not consistent with alignment",
Arg, E);
end if;
end if;
end Check_Address_Alignment;
-----------------------------
-- Check_Component_Overlap --
-----------------------------
procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id) is
begin
if Present (Component_Clause (C1_Ent))
and then Present (Component_Clause (C2_Ent))
then
-- Exclude odd case where we have two tag fields in the same
-- record, both at location zero. This seems a bit strange,
-- but it seems to happen in some circumstances ???
if Chars (C1_Ent) = Name_uTag
and then Chars (C2_Ent) = Name_uTag
then
return;
end if;
-- Here we check if the two fields overlap
declare
S1 : constant Uint := Component_First_Bit (C1_Ent);
S2 : constant Uint := Component_First_Bit (C2_Ent);
E1 : constant Uint := S1 + Esize (C1_Ent);
E2 : constant Uint := S2 + Esize (C2_Ent);
begin
if E2 <= S1 or else E1 <= S2 then
null;
else
Error_Msg_Node_2 :=
Component_Name (Component_Clause (C2_Ent));
Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
Error_Msg_Node_1 :=
Component_Name (Component_Clause (C1_Ent));
Error_Msg_N
("component& overlaps & #",
Component_Name (Component_Clause (C1_Ent)));
end if;
end;
end if;
end Check_Component_Overlap;
-----------------------------------
-- Check_Constant_Address_Clause --
-----------------------------------
procedure Check_Constant_Address_Clause
(Expr : Node_Id;
U_Ent : Entity_Id)
is
procedure Check_At_Constant_Address (Nod : Node_Id);
-- Checks that the given node N represents a name whose 'Address
-- is constant (in the same sense as OK_Constant_Address_Clause,
-- i.e. the address value is the same at the point of declaration
-- of U_Ent and at the time of elaboration of the address clause.
procedure Check_Expr_Constants (Nod : Node_Id);
-- Checks that Nod meets the requirements for a constant address
-- clause in the sense of the enclosing procedure.
procedure Check_List_Constants (Lst : List_Id);
-- Check that all elements of list Lst meet the requirements for a
-- constant address clause in the sense of the enclosing procedure.
-------------------------------
-- Check_At_Constant_Address --
-------------------------------
procedure Check_At_Constant_Address (Nod : Node_Id) is
begin
if Is_Entity_Name (Nod) then
if Present (Address_Clause (Entity ((Nod)))) then
Error_Msg_NE
("invalid address clause for initialized object &!",
Nod, U_Ent);
Error_Msg_NE
("address for& cannot" &
" depend on another address clause! ('R'M 13.1(22))!",
Nod, U_Ent);
elsif In_Same_Source_Unit (Entity (Nod), U_Ent)
and then Sloc (U_Ent) < Sloc (Entity (Nod))
then
Error_Msg_NE
("invalid address clause for initialized object &!",
Nod, U_Ent);
Error_Msg_Name_1 := Chars (Entity (Nod));
Error_Msg_Name_2 := Chars (U_Ent);
Error_Msg_N
("\% must be defined before % ('R'M 13.1(22))!",
Nod);
end if;
elsif Nkind (Nod) = N_Selected_Component then
if Is_Record_Type (Etype (Prefix (Nod)))
and then Has_Discriminants (Etype (Prefix (Nod)))
then
Error_Msg_NE
("invalid address clause for initialized object &!",
Nod, U_Ent);
Error_Msg_N
("\ address cannot depend on component"
& " of discriminated record ('R'M 13.1(22))!",
Nod);
else
Check_At_Constant_Address (Prefix (Nod));
end if;
elsif Nkind (Nod) = N_Indexed_Component then
Check_At_Constant_Address (Prefix (Nod));
Check_List_Constants (Expressions (Nod));
else
Check_Expr_Constants (Nod);
end if;
end Check_At_Constant_Address;
--------------------------
-- Check_Expr_Constants --
--------------------------
procedure Check_Expr_Constants (Nod : Node_Id) is
begin
if Nkind (Nod) in N_Has_Etype
and then Etype (Nod) = Any_Type
then
return;
end if;
case Nkind (Nod) is
when N_Empty | N_Error =>
return;
when N_Identifier | N_Expanded_Name =>
declare
Ent : constant Entity_Id := Entity (Nod);
Loc_Ent : constant Source_Ptr := Sloc (Ent);
Loc_U_Ent : constant Source_Ptr := Sloc (U_Ent);
begin
if Ekind (Ent) = E_Named_Integer
or else
Ekind (Ent) = E_Named_Real
or else
Is_Type (Ent)
then
return;
elsif
Ekind (Ent) = E_Constant
or else
Ekind (Ent) = E_In_Parameter
then
-- This is the case where we must have Ent defined
-- before U_Ent. Clearly if they are in different
-- units this requirement is met since the unit
-- containing Ent is already processed.
if not In_Same_Source_Unit (Ent, U_Ent) then
return;
-- Otherwise location of Ent must be before the
-- location of U_Ent, that's what prior defined means.
elsif Loc_Ent < Loc_U_Ent then
return;
else
Error_Msg_NE
("invalid address clause for initialized object &!",
Nod, U_Ent);
Error_Msg_Name_1 := Chars (Ent);
Error_Msg_Name_2 := Chars (U_Ent);
Error_Msg_N
("\% must be defined before % ('R'M 13.1(22))!",
Nod);
end if;
elsif Nkind (Original_Node (Nod)) = N_Function_Call then
Check_Expr_Constants (Original_Node (Nod));
else
Error_Msg_NE
("invalid address clause for initialized object &!",
Nod, U_Ent);
Error_Msg_Name_1 := Chars (Ent);
Error_Msg_N
("\reference to variable% not allowed ('R'M 13.1(22))!",
Nod);
end if;
end;
when N_Integer_Literal |
N_Real_Literal |
N_String_Literal |
N_Character_Literal =>
return;
when N_Range =>
Check_Expr_Constants (Low_Bound (Nod));
Check_Expr_Constants (High_Bound (Nod));
when N_Explicit_Dereference =>
Check_Expr_Constants (Prefix (Nod));
when N_Indexed_Component =>
Check_Expr_Constants (Prefix (Nod));
Check_List_Constants (Expressions (Nod));
when N_Slice =>
Check_Expr_Constants (Prefix (Nod));
Check_Expr_Constants (Discrete_Range (Nod));
when N_Selected_Component =>
Check_Expr_Constants (Prefix (Nod));
when N_Attribute_Reference =>
if (Attribute_Name (Nod) = Name_Address
or else
Attribute_Name (Nod) = Name_Access
or else
Attribute_Name (Nod) = Name_Unchecked_Access
or else
Attribute_Name (Nod) = Name_Unrestricted_Access)
then
Check_At_Constant_Address (Prefix (Nod));
else
Check_Expr_Constants (Prefix (Nod));
Check_List_Constants (Expressions (Nod));
end if;
when N_Aggregate =>
Check_List_Constants (Component_Associations (Nod));
Check_List_Constants (Expressions (Nod));
when N_Component_Association =>
Check_Expr_Constants (Expression (Nod));
when N_Extension_Aggregate =>
Check_Expr_Constants (Ancestor_Part (Nod));
Check_List_Constants (Component_Associations (Nod));
Check_List_Constants (Expressions (Nod));
when N_Null =>
return;
when N_Binary_Op | N_And_Then | N_Or_Else | N_In | N_Not_In =>
Check_Expr_Constants (Left_Opnd (Nod));
Check_Expr_Constants (Right_Opnd (Nod));
when N_Unary_Op =>
Check_Expr_Constants (Right_Opnd (Nod));
when N_Type_Conversion |
N_Qualified_Expression |
N_Allocator |
N_Unchecked_Type_Conversion =>
Check_Expr_Constants (Expression (Nod));
when N_Function_Call =>
if not Is_Pure (Entity (Name (Nod))) then
Error_Msg_NE
("invalid address clause for initialized object &!",
Nod, U_Ent);
Error_Msg_NE
("\function & is not pure ('R'M 13.1(22))!",
Nod, Entity (Name (Nod)));
else
Check_List_Constants (Parameter_Associations (Nod));
end if;
when N_Parameter_Association =>
Check_Expr_Constants (Explicit_Actual_Parameter (Nod));
when others =>
Error_Msg_NE
("invalid address clause for initialized object &!",
Nod, U_Ent);
Error_Msg_NE
("\must be constant defined before& ('R'M 13.1(22))!",
Nod, U_Ent);
end case;
end Check_Expr_Constants;
--------------------------
-- Check_List_Constants --
--------------------------
procedure Check_List_Constants (Lst : List_Id) is
Nod1 : Node_Id;
begin
if Present (Lst) then
Nod1 := First (Lst);
while Present (Nod1) loop
Check_Expr_Constants (Nod1);
Next (Nod1);
end loop;
end if;
end Check_List_Constants;
-- Start of processing for Check_Constant_Address_Clause
begin
Check_Expr_Constants (Expr);
end Check_Constant_Address_Clause;
----------------
-- Check_Size --
----------------
procedure Check_Size
(N : Node_Id;
T : Entity_Id;
Siz : Uint;
Biased : out Boolean)
is
UT : constant Entity_Id := Underlying_Type (T);
M : Uint;
begin
Biased := False;
-- Immediate return if size is same as standard size or if composite
-- item with no size available (i.e. none was given explicitly) or
-- generic type, or type with previous errors.
if No (UT)
or else UT = Any_Type
or else Is_Generic_Type (UT)
or else Is_Generic_Type (Root_Type (UT))
or else (Is_Composite_Type (UT) and then Esize (UT) = 0)
or else (Known_Esize (UT) and then Siz = Esize (UT))
then
return;
-- If the type is a fat pointer, then allow specifying a thin
-- pointer.
elsif Is_Access_Type (UT)
and then Esize (UT) = System_Address_Size * 2
and then Siz >= System_Address_Size
and then Siz < System_Address_Size * 2
then
null;
-- If the type is a thin pointer to a non-Taft-amendment type that
-- is an unconstrained array, allow it to be a fat pointer.
elsif Is_Access_Type (UT)
and then not Has_Completion_In_Body (Designated_Type (UT))
and then Is_Array_Type (Designated_Type (UT))
and then not Is_Constrained (Designated_Type (UT))
and then Esize (UT) = System_Address_Size
and then Siz >= System_Address_Size * 2
then
null;
-- For most types, we can be bigger than, but not smaller
-- than, the standard size.
elsif Is_Composite_Type (UT)
or else Is_Floating_Point_Type (UT)
or else Is_Access_Type (UT)
then
if Known_Esize (UT) and then Siz < Esize (UT) then
if Is_Access_Type (UT) then
Error_Msg_Uint_1 := UI_From_Int (System_Address_Size);
else
Error_Msg_Uint_1 := Esize (UT);
end if;
Error_Msg_NE
("size for& too small, minimum allowed is ^", N, T);
end if;
-- For fixed-point types, don't check minimum if type is not frozen,
-- since type is not known till then
-- at freeze time.
elsif Is_Fixed_Point_Type (UT)
and then not Is_Frozen (UT)
then
null;
-- Cases for which a minimum check is required
else
M := UI_From_Int (Minimum_Size (UT));
if Siz < M then
M := UI_From_Int (Minimum_Size (UT, Biased => True));
if Siz < M then
Error_Msg_Uint_1 := M;
Error_Msg_NE
("size for& too small, minimum allowed is ^", N, T);
else
Biased := True;
end if;
end if;
end if;
end Check_Size;
-------------------------
-- Get_Alignment_Value --
-------------------------
function Get_Alignment_Value (Expr : Node_Id) return Uint is
Align : constant Uint := Static_Integer (Expr);
begin
if Align = No_Uint then
return No_Uint;
elsif Align <= 0 then
Error_Msg_N ("alignment value must be positive", Expr);
return No_Uint;
else
for J in Int range 0 .. 64 loop
declare
M : constant Uint := Uint_2 ** J;
begin
exit when M = Align;
if M > Align then
Error_Msg_N
("alignment value must be power of 2", Expr);
return No_Uint;
end if;
end;
end loop;
return Align;
end if;
end Get_Alignment_Value;
-------------------------------------
-- Get_Attribute_Definition_Clause --
-------------------------------------
function Get_Attribute_Definition_Clause
(E : Entity_Id;
Id : Attribute_Id)
return Node_Id
is
N : Node_Id;
begin
N := First_Rep_Item (E);
while Present (N) loop
if Nkind (N) = N_Attribute_Definition_Clause
and then Get_Attribute_Id (Chars (N)) = Id
then
return N;
else
Next_Rep_Item (N);
end if;
end loop;
return Empty;
end Get_Attribute_Definition_Clause;
--------------------
-- Get_Rep_Pragma --
--------------------
function Get_Rep_Pragma (E : Entity_Id; Nam : Name_Id) return Node_Id is
N : Node_Id;
Typ : Entity_Id;
begin
N := First_Rep_Item (E);
while Present (N) loop
if Nkind (N) = N_Pragma and then Chars (N) = Nam then
if Nam = Name_Stream_Convert then
-- For tagged types this pragma is not inherited, so we
-- must verify that it is defined for the given type and
-- not an ancestor.
Typ := Entity (Expression
(First (Pragma_Argument_Associations (N))));
if not Is_Tagged_Type (E)
or else E = Typ
or else (Is_Private_Type (Typ)
and then E = Full_View (Typ))
then
return N;
else
Next_Rep_Item (N);
end if;
else
return N;
end if;
else
Next_Rep_Item (N);
end if;
end loop;
return Empty;
end Get_Rep_Pragma;
-------------------------
-- Is_Operational_Item --
-------------------------
function Is_Operational_Item (N : Node_Id) return Boolean is
begin
if Nkind (N) /= N_Attribute_Definition_Clause then
return False;
else
declare
Id : constant Attribute_Id := Get_Attribute_Id (Chars (N));
begin
return Id = Attribute_Input
or else Id = Attribute_Output
or else Id = Attribute_Read
or else Id = Attribute_Write;
end;
end if;
end Is_Operational_Item;
------------------
-- Minimum_Size --
------------------
function Minimum_Size
(T : Entity_Id;
Biased : Boolean := False)
return Nat
is
Lo : Uint;
Hi : Uint;
LoR : Ureal;
HiR : Ureal;
LoSet : Boolean := False;
HiSet : Boolean := False;
B : Uint;
S : Nat;
Ancest : Entity_Id;
begin
-- If bad type, return 0
if T = Any_Type then
return 0;
-- For generic types, just return zero. There cannot be any legitimate
-- need to know such a size, but this routine may be called with a
-- generic type as part of normal processing.
elsif Is_Generic_Type (Root_Type (T)) then
return 0;
-- Discrete types
elsif Is_Discrete_Type (T) then
-- The following loop is looking for the nearest compile time
-- known bounds following the ancestor subtype chain. The idea
-- is to find the most restrictive known bounds information.
Ancest := T;
loop
if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
return 0;
end if;
if not LoSet then
if Compile_Time_Known_Value (Type_Low_Bound (Ancest)) then
Lo := Expr_Rep_Value (Type_Low_Bound (Ancest));
LoSet := True;
exit when HiSet;
end if;
end if;
if not HiSet then
if Compile_Time_Known_Value (Type_High_Bound (Ancest)) then
Hi := Expr_Rep_Value (Type_High_Bound (Ancest));
HiSet := True;
exit when LoSet;
end if;
end if;
Ancest := Ancestor_Subtype (Ancest);
if No (Ancest) then
Ancest := Base_Type (T);
if Is_Generic_Type (Ancest) then
return 0;
end if;
end if;
end loop;
-- Fixed-point types. We can't simply use Expr_Value to get the
-- Corresponding_Integer_Value values of the bounds, since these
-- do not get set till the type is frozen, and this routine can
-- be called before the type is frozen. Similarly the test for
-- bounds being static needs to include the case where we have
-- unanalyzed real literals for the same reason.
elsif Is_Fixed_Point_Type (T) then
-- The following loop is looking for the nearest compile time
-- known bounds following the ancestor subtype chain. The idea
-- is to find the most restrictive known bounds information.
Ancest := T;
loop
if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
return 0;
end if;
if not LoSet then
if Nkind (Type_Low_Bound (Ancest)) = N_Real_Literal
or else Compile_Time_Known_Value (Type_Low_Bound (Ancest))
then
LoR := Expr_Value_R (Type_Low_Bound (Ancest));
LoSet := True;
exit when HiSet;
end if;
end if;
if not HiSet then
if Nkind (Type_High_Bound (Ancest)) = N_Real_Literal
or else Compile_Time_Known_Value (Type_High_Bound (Ancest))
then
HiR := Expr_Value_R (Type_High_Bound (Ancest));
HiSet := True;
exit when LoSet;
end if;
end if;
Ancest := Ancestor_Subtype (Ancest);
if No (Ancest) then
Ancest := Base_Type (T);
if Is_Generic_Type (Ancest) then
return 0;
end if;
end if;
end loop;
Lo := UR_To_Uint (LoR / Small_Value (T));
Hi := UR_To_Uint (HiR / Small_Value (T));
-- No other types allowed
else
pragma Assert (False);
raise Program_Error;
end if;
-- Fall through with Hi and Lo set. Deal with biased case.
if (Biased and then not Is_Fixed_Point_Type (T))
or else Has_Biased_Representation (T)
then
Hi := Hi - Lo;
Lo := Uint_0;
end if;
-- Signed case. Note that we consider types like range 1 .. -1 to be
-- signed for the purpose of computing the size, since the bounds
-- have to be accomodated in the base type.
if Lo < 0 or else Hi < 0 then
S := 1;
B := Uint_1;
-- S = size, B = 2 ** (size - 1) (can accomodate -B .. +(B - 1))
-- Note that we accomodate the case where the bounds cross. This
-- can happen either because of the way the bounds are declared
-- or because of the algorithm in Freeze_Fixed_Point_Type.
while Lo < -B
or else Hi < -B
or else Lo >= B
or else Hi >= B
loop
B := Uint_2 ** S;
S := S + 1;
end loop;
-- Unsigned case
else
-- If both bounds are positive, make sure that both are represen-
-- table in the case where the bounds are crossed. This can happen
-- either because of the way the bounds are declared, or because of
-- the algorithm in Freeze_Fixed_Point_Type.
if Lo > Hi then
Hi := Lo;
end if;
-- S = size, (can accomodate 0 .. (2**size - 1))
S := 0;
while Hi >= Uint_2 ** S loop
S := S + 1;
end loop;
end if;
return S;
end Minimum_Size;
-------------------------
-- New_Stream_Function --
-------------------------
procedure New_Stream_Function
(N : Node_Id;
Ent : Entity_Id;
Subp : Entity_Id;
Nam : Name_Id)
is
Loc : constant Source_Ptr := Sloc (N);
Subp_Id : Entity_Id := Make_Defining_Identifier (Loc, Nam);
Subp_Decl : Node_Id;
F : Entity_Id;
Etyp : Entity_Id;
begin
F := First_Formal (Subp);
Etyp := Etype (Subp);
Subp_Decl :=
Make_Subprogram_Renaming_Declaration (Loc,
Specification =>
Make_Function_Specification (Loc,
Defining_Unit_Name => Subp_Id,
Parameter_Specifications =>
New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_S),
Parameter_Type =>
Make_Access_Definition (Loc,
Subtype_Mark =>
New_Reference_To (
Designated_Type (Etype (F)), Loc)))),
Subtype_Mark =>
New_Reference_To (Etyp, Loc)),
Name => New_Reference_To (Subp, Loc));
if Is_Tagged_Type (Ent) and then not Is_Limited_Type (Ent) then
Set_TSS (Base_Type (Ent), Subp_Id);
else
Insert_Action (N, Subp_Decl);
Copy_TSS (Subp_Id, Base_Type (Ent));
end if;
end New_Stream_Function;
--------------------------
-- New_Stream_Procedure --
--------------------------
procedure New_Stream_Procedure
(N : Node_Id;
Ent : Entity_Id;
Subp : Entity_Id;
Nam : Name_Id;
Out_P : Boolean := False)
is
Loc : constant Source_Ptr := Sloc (N);
Subp_Id : Entity_Id := Make_Defining_Identifier (Loc, Nam);
Subp_Decl : Node_Id;
F : Entity_Id;
Etyp : Entity_Id;
begin
F := First_Formal (Subp);
Etyp := Etype (Next_Formal (F));
Subp_Decl :=
Make_Subprogram_Renaming_Declaration (Loc,
Specification =>
Make_Procedure_Specification (Loc,
Defining_Unit_Name => Subp_Id,
Parameter_Specifications =>
New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_S),
Parameter_Type =>
Make_Access_Definition (Loc,
Subtype_Mark =>
New_Reference_To (
Designated_Type (Etype (F)), Loc))),
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_V),
Out_Present => Out_P,
Parameter_Type =>
New_Reference_To (Etyp, Loc)))),
Name => New_Reference_To (Subp, Loc));
if Is_Tagged_Type (Ent) and then not Is_Limited_Type (Ent) then
Set_TSS (Base_Type (Ent), Subp_Id);
else
Insert_Action (N, Subp_Decl);
Copy_TSS (Subp_Id, Base_Type (Ent));
end if;
end New_Stream_Procedure;
---------------------
-- Record_Rep_Item --
---------------------
procedure Record_Rep_Item (T : Entity_Id; N : Node_Id) is
begin
Set_Next_Rep_Item (N, First_Rep_Item (T));
Set_First_Rep_Item (T, N);
end Record_Rep_Item;
------------------------
-- Rep_Item_Too_Early --
------------------------
function Rep_Item_Too_Early
(T : Entity_Id;
N : Node_Id)
return Boolean
is
begin
-- Cannot apply rep items to generic types
if Is_Type (T)
and then Is_Generic_Type (Root_Type (T))
then
Error_Msg_N
("representation item not allowed for generic type", N);
return True;
end if;
-- Otherwise check for incompleted type
if Is_Incomplete_Or_Private_Type (T)
and then No (Underlying_Type (T))
then
Error_Msg_N
("representation item must be after full type declaration", N);
return True;
-- If the type has incompleted components, a representation clause is
-- illegal but stream attributes and Convention pragmas are correct.
elsif Has_Private_Component (T) then
if (Nkind (N) = N_Pragma or else Is_Operational_Item (N)) then
return False;
else
Error_Msg_N
("representation item must appear after type is fully defined",
N);
return True;
end if;
else
return False;
end if;
end Rep_Item_Too_Early;
-----------------------
-- Rep_Item_Too_Late --
-----------------------
function Rep_Item_Too_Late
(T : Entity_Id;
N : Node_Id;
FOnly : Boolean := False)
return Boolean
is
S : Entity_Id;
Parent_Type : Entity_Id;
procedure Too_Late;
-- Output the too late message
procedure Too_Late is
begin
Error_Msg_N ("representation item appears too late!", N);
end Too_Late;
-- Start of processing for Rep_Item_Too_Late
begin
-- First make sure entity is not frozen (RM 13.1(9))
if Is_Frozen (T) then
Too_Late;
S := First_Subtype (T);
if Present (Freeze_Node (S)) then
Error_Msg_NE
("?no more representation items for }!", Freeze_Node (S), S);
end if;
return True;
-- Check for case of non-tagged derived type whose parent either has
-- primitive operations, or is a by reference type (RM 13.1(10)).
elsif Is_Type (T)
and then not FOnly
and then Is_Derived_Type (T)
and then not Is_Tagged_Type (T)
then
Parent_Type := Etype (Base_Type (T));
if Has_Primitive_Operations (Parent_Type) then
Too_Late;
Error_Msg_NE
("primitive operations already defined for&!", N, Parent_Type);
return True;
elsif Is_By_Reference_Type (Parent_Type) then
Too_Late;
Error_Msg_NE
("parent type & is a by reference type!", N, Parent_Type);
return True;
end if;
end if;
-- No error, link item into head of chain of rep items for the entity
Record_Rep_Item (T, N);
return False;
end Rep_Item_Too_Late;
-------------------------
-- Same_Representation --
-------------------------
function Same_Representation (Typ1, Typ2 : Entity_Id) return Boolean is
T1 : constant Entity_Id := Underlying_Type (Typ1);
T2 : constant Entity_Id := Underlying_Type (Typ2);
begin
-- A quick check, if base types are the same, then we definitely have
-- the same representation, because the subtype specific representation
-- attributes (Size and Alignment) do not affect representation from
-- the point of view of this test.
if Base_Type (T1) = Base_Type (T2) then
return True;
elsif Is_Private_Type (Base_Type (T2))
and then Base_Type (T1) = Full_View (Base_Type (T2))
then
return True;
end if;
-- Tagged types never have differing representations
if Is_Tagged_Type (T1) then
return True;
end if;
-- Representations are definitely different if conventions differ
if Convention (T1) /= Convention (T2) then
return False;
end if;
-- Representations are different if component alignments differ
if (Is_Record_Type (T1) or else Is_Array_Type (T1))
and then
(Is_Record_Type (T2) or else Is_Array_Type (T2))
and then Component_Alignment (T1) /= Component_Alignment (T2)
then
return False;
end if;
-- For arrays, the only real issue is component size. If we know the
-- component size for both arrays, and it is the same, then that's
-- good enough to know we don't have a change of representation.
if Is_Array_Type (T1) then
if Known_Component_Size (T1)
and then Known_Component_Size (T2)
and then Component_Size (T1) = Component_Size (T2)
then
return True;
end if;
end if;
-- Types definitely have same representation if neither has non-standard
-- representation since default representations are always consistent.
-- If only one has non-standard representation, and the other does not,
-- then we consider that they do not have the same representation. They
-- might, but there is no way of telling early enough.
if Has_Non_Standard_Rep (T1) then
if not Has_Non_Standard_Rep (T2) then
return False;
end if;
else
return not Has_Non_Standard_Rep (T2);
end if;
-- Here the two types both have non-standard representation, and we
-- need to determine if they have the same non-standard representation
-- For arrays, we simply need to test if the component sizes are the
-- same. Pragma Pack is reflected in modified component sizes, so this
-- check also deals with pragma Pack.
if Is_Array_Type (T1) then
return Component_Size (T1) = Component_Size (T2);
-- Tagged types always have the same representation, because it is not
-- possible to specify different representations for common fields.
elsif Is_Tagged_Type (T1) then
return True;
-- Case of record types
elsif Is_Record_Type (T1) then
-- Packed status must conform
if Is_Packed (T1) /= Is_Packed (T2) then
return False;
-- Otherwise we must check components. Typ2 maybe a constrained
-- subtype with fewer components, so we compare the components
-- of the base types.
else
Record_Case : declare
CD1, CD2 : Entity_Id;
function Same_Rep return Boolean;
-- CD1 and CD2 are either components or discriminants. This
-- function tests whether the two have the same representation
function Same_Rep return Boolean is
begin
if No (Component_Clause (CD1)) then
return No (Component_Clause (CD2));
else
return
Present (Component_Clause (CD2))
and then
Component_First_Bit (CD1) = Component_First_Bit (CD2)
and then
Esize (CD1) = Esize (CD2);
end if;
end Same_Rep;
-- Start processing for Record_Case
begin
if Has_Discriminants (T1) then
CD1 := First_Discriminant (T1);
CD2 := First_Discriminant (T2);
while Present (CD1) loop
if not Same_Rep then
return False;
else
Next_Discriminant (CD1);
Next_Discriminant (CD2);
end if;
end loop;
end if;
CD1 := First_Component (Underlying_Type (Base_Type (T1)));
CD2 := First_Component (Underlying_Type (Base_Type (T2)));
while Present (CD1) loop
if not Same_Rep then
return False;
else
Next_Component (CD1);
Next_Component (CD2);
end if;
end loop;
return True;
end Record_Case;
end if;
-- For enumeration types, we must check each literal to see if the
-- representation is the same. Note that we do not permit enumeration
-- reprsentation clauses for Character and Wide_Character, so these
-- cases were already dealt with.
elsif Is_Enumeration_Type (T1) then
Enumeration_Case : declare
L1, L2 : Entity_Id;
begin
L1 := First_Literal (T1);
L2 := First_Literal (T2);
while Present (L1) loop
if Enumeration_Rep (L1) /= Enumeration_Rep (L2) then
return False;
else
Next_Literal (L1);
Next_Literal (L2);
end if;
end loop;
return True;
end Enumeration_Case;
-- Any other types have the same representation for these purposes
else
return True;
end if;
end Same_Representation;
--------------------
-- Set_Enum_Esize --
--------------------
procedure Set_Enum_Esize (T : Entity_Id) is
Lo : Uint;
Hi : Uint;
Sz : Nat;
begin
Init_Alignment (T);
-- Find the minimum standard size (8,16,32,64) that fits
Lo := Enumeration_Rep (Entity (Type_Low_Bound (T)));
Hi := Enumeration_Rep (Entity (Type_High_Bound (T)));
if Lo < 0 then
if Lo >= -Uint_2**07 and then Hi < Uint_2**07 then
Sz := 8;
elsif Lo >= -Uint_2**15 and then Hi < Uint_2**15 then
Sz := 16;
elsif Lo >= -Uint_2**31 and then Hi < Uint_2**31 then
Sz := 32;
elsif Lo >= -Uint_2**63 and then Hi < Uint_2**63 then
Sz := 64;
else
pragma Assert (False);
raise Program_Error;
end if;
else
if Hi < Uint_2**08 then
Sz := 8;
elsif Hi < Uint_2**16 then
Sz := 16;
elsif Hi < Uint_2**32 then
Sz := 32;
elsif Hi < Uint_2**63 then
Sz := 64;
else
pragma Assert (False);
raise Program_Error;
end if;
end if;
-- That minimum is the proper size unless we have a foreign convention
-- and the size required is 32 or less, in which case we bump the size
-- up to 32. This is required for C and C++ and seems reasonable for
-- all other foreign conventions.
if Has_Foreign_Convention (T)
and then Esize (T) < Standard_Integer_Size
then
Init_Esize (T, Standard_Integer_Size);
else
Init_Esize (T, Sz);
end if;
end Set_Enum_Esize;
-----------------------------------
-- Validate_Unchecked_Conversion --
-----------------------------------
procedure Validate_Unchecked_Conversion
(N : Node_Id;
Act_Unit : Entity_Id)
is
Source : Entity_Id;
Target : Entity_Id;
begin
-- Obtain source and target types. Note that we call Ancestor_Subtype
-- here because the processing for generic instantiation always makes
-- subtypes, and we want the original frozen actual types.
-- If we are dealing with private types, then do the check on their
-- fully declared counterparts if the full declarations have been
-- encountered (they don't have to be visible, but they must exist!)
Source := Ancestor_Subtype (Etype (First_Formal (Act_Unit)));
if Is_Private_Type (Source)
and then Present (Underlying_Type (Source))
then
Source := Underlying_Type (Source);
end if;
Target := Ancestor_Subtype (Etype (Act_Unit));
-- If either type is generic, the instantiation happens within a
-- generic unit, and there is nothing to check. The proper check
-- will happen when the enclosing generic is instantiated.
if Is_Generic_Type (Source) or else Is_Generic_Type (Target) then
return;
end if;
if Is_Private_Type (Target)
and then Present (Underlying_Type (Target))
then
Target := Underlying_Type (Target);
end if;
-- Source may be unconstrained array, but not target
if Is_Array_Type (Target)
and then not Is_Constrained (Target)
then
Error_Msg_N
("unchecked conversion to unconstrained array not allowed", N);
return;
end if;
-- Check unequal sizes or converting access types of stricter alignment
declare
Source_Siz : Uint;
Target_Siz : Uint;
Vnode : Node_Id;
Size_Checked : Boolean := False;
Align_Checked : Boolean := False;
begin
-- This validation check, which warns if we have unequal sizes
-- for unchecked conversion, and thus potentially implementation
-- dependent semantics, is one of the few occasions on which we
-- use the official RM size instead of Esize. See description
-- in Einfo "Handling of Type'Size Values" for details.
Source_Siz := RM_Size (Source);
Target_Siz := RM_Size (Target);
-- If both sizes are known by the front end, then we can do
-- the validation of matching sizes in the front end. We
-- had better not do this test when other errors have been
-- detected because the RM_Size may not have been computed
-- in that case
if Errors_Detected = 0
and then Source_Siz /= 0
and then Target_Siz /= 0
then
Size_Checked := True;
if Source_Siz /= Target_Siz then
Warn_On_Instance := True;
Error_Msg_N
("types for unchecked conversion have different sizes?", N);
if All_Errors_Mode then
Error_Msg_Name_1 := Chars (Source);
Error_Msg_Uint_1 := Source_Siz;
Error_Msg_Name_2 := Chars (Target);
Error_Msg_Uint_2 := Target_Siz;
Error_Msg_N ("\size of % is ^, size of % is ^?", N);
end if;
Warn_On_Instance := False;
end if;
end if;
-- If both types are access types, we need to check the alignment.
-- If the alignment of both is specified, we can do it here.
if Ekind (Source) in Access_Kind
and then Ekind (Target) in Access_Kind
and then Target_Strict_Alignment
then
if Present (Designated_Type (Source))
and then Present (Alignment_Clause (Designated_Type (Source)))
and then Present (Designated_Type (Target))
and then Present (Alignment_Clause (Designated_Type (Target)))
then
declare
Source_Align : constant Uint :=
Expr_Value
(Expression (Alignment_Clause
(Designated_Type (Source))));
Target_Align : constant Uint :=
Expr_Value
(Expression (Alignment_Clause
(Designated_Type (Target))));
begin
Align_Checked := True;
if Source_Align < Target_Align
and then not Is_Tagged_Type (Designated_Type (Source))
then
Warn_On_Instance := True;
Error_Msg_Uint_1 := Target_Align;
Error_Msg_Uint_2 := Source_Align;
Error_Msg_Node_2 := Designated_Type (Source);
Error_Msg_NE
("alignment of & (^) is stricter than alignment " &
"of & (^)?",
N, Designated_Type (Target));
Warn_On_Instance := False;
end if;
end;
end if;
-- If the types are not access types or strict alignment is
-- not needed on this machine, we don't need to check alignment.
else
Align_Checked := True;
end if;
-- Always create an N_Validate_Unchecked_Conversion node in the
-- case of the JVM, since it's undesirable to have to check the
-- JVM's specialized restrictions in the front end.
if not Size_Checked or else not Align_Checked or else Java_VM then
-- ??? We need to put this after the freeze points of
-- both designated types somehow
Vnode :=
Make_Validate_Unchecked_Conversion (Sloc (N));
Set_Source_Type (Vnode, Source);
Set_Target_Type (Vnode, Target);
Insert_After (N, Vnode);
end if;
end;
end Validate_Unchecked_Conversion;
------------------
-- Warn_Overlay --
------------------
procedure Warn_Overlay
(Expr : Node_Id;
Typ : Entity_Id;
Nam : Node_Id)
is
Old : Entity_Id := Empty;
Decl : Node_Id;
begin
if not Address_Clause_Overlay_Warnings then
return;
end if;
if Present (Expr)
and then (Present (Base_Init_Proc (Typ))
or else Is_Access_Type (Typ))
and then not Is_Imported (Entity (Nam))
then
if Nkind (Expr) = N_Attribute_Reference
and then Is_Entity_Name (Prefix (Expr))
then
Old := Entity (Prefix (Expr));
elsif Is_Entity_Name (Expr)
and then Ekind (Entity (Expr)) = E_Constant
then
Decl := Declaration_Node (Entity (Expr));
if Nkind (Decl) = N_Object_Declaration
and then Present (Expression (Decl))
and then Nkind (Expression (Decl)) = N_Attribute_Reference
and then Is_Entity_Name (Prefix (Expression (Decl)))
then
Old := Entity (Prefix (Expression (Decl)));
elsif Nkind (Expr) = N_Function_Call then
return;
end if;
-- A function call (most likely to To_Address) is probably not
-- an overlay, so skip warning. Ditto if the function call was
-- inlined and transformed into an entity.
elsif Nkind (Original_Node (Expr)) = N_Function_Call then
return;
end if;
Decl := Next (Parent (Expr));
-- If a pragma Import follows, we assume that it is for the current
-- target of the address clause, and skip the warning.
if Present (Decl)
and then Nkind (Decl) = N_Pragma
and then Chars (Decl) = Name_Import
then
return;
end if;
if Present (Old) then
Error_Msg_Node_2 := Old;
Error_Msg_N
("default initialization of & may modify &?",
Nam);
else
Error_Msg_N
("default initialization of & may modify overlaid storage?",
Nam);
end if;
-- Add friendly warning if initialization comes from a packed array
-- component.
if Is_Record_Type (Typ) then
declare
Comp : Entity_Id;
begin
Comp := First_Component (Typ);
while Present (Comp) loop
if Nkind (Parent (Comp)) = N_Component_Declaration
and then Present (Expression (Parent (Comp)))
then
exit;
elsif Is_Array_Type (Etype (Comp))
and then Present (Packed_Array_Type (Etype (Comp)))
then
Error_Msg_NE
("packed array component& will be initialized to zero?",
Nam, Comp);
exit;
else
Next_Component (Comp);
end if;
end loop;
end;
end if;
Error_Msg_N
("use pragma Import for & to " &
"suppress initialization ('R'M B.1(24))?",
Nam);
end if;
end Warn_Overlay;
end Sem_Ch13;
|