File: hybrid_observables_plot_sample.py

package info (click to toggle)
gnss-sdr 0.0.20-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 27,564 kB
  • sloc: cpp: 218,512; ansic: 36,754; python: 2,423; xml: 1,479; sh: 459; makefile: 8
file content (139 lines) | stat: -rw-r--r-- 4,433 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
"""
 hybrid_observables_plot_sample.py

 Reads GNSS-SDR observables raw dump binary file using the provided function
 and plots some internal variables

 Irene Pérez Riega, 2023. iperrie@inta.es

 Modifiable in the file:
   sampling_freq        - Sampling frequency [Hz]
   channels             - Number of channels to check if they exist
   path                 - Path to folder which contains raw file
   fig_path             - Path where plots will be save
   observables_log_path - Completed path to observables raw data file

 -----------------------------------------------------------------------------

 GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
 This file is part of GNSS-SDR.

 Copyright (C) 2022  (see AUTHORS file for a list of contributors)
 SPDX-License-Identifier: GPL-3.0-or-later

 -----------------------------------------------------------------------------
"""

import numpy as np
import matplotlib.pyplot as plt
from lib.read_hybrid_observables_dump import read_hybrid_observables_dump
import os

observables = {}
double_size_bytes = 8
bytes_shift = 0

# ---------- CHANGE HERE:
samplingFreq = 2000000
channels = 5
path = '/home/labnav/Desktop/TEST_IRENE/'
fig_path = '/home/labnav/Desktop/TEST_IRENE/PLOTS/HybridObservables/'
observables_log_path = path + 'observables.dat'

if not os.path.exists(fig_path):
    os.makedirs(fig_path)

GNSS_observables = read_hybrid_observables_dump(channels,observables_log_path)

# Plot data
# --- optional: plot since it detect the first satellite connected
min_tow_idx = 1
obs_idx = 1

for n in range(0, channels):

    idx = np.where(np.array(GNSS_observables['valid'][n])>0)[0][0]
    # Find the index from the first satellite connected
    if n == 0:
        min_tow_idx = idx
    if min_tow_idx > idx:
        min_tow_idx = idx
        obs_idx = n

# Plot observables from that index
# First plot
plt.figure()
plt.title('Pseudorange')
for i in range(channels):
    plt.scatter(GNSS_observables['RX_time'][i][min_tow_idx:],
                GNSS_observables['Pseudorange_m'][i][min_tow_idx:],s=1,
                label=f'Channel {i}')
plt.xlim(GNSS_observables['RX_time'][obs_idx][min_tow_idx]-100,
         GNSS_observables['RX_time'][obs_idx][-1]+100)
plt.grid(True)
plt.xlabel('TOW [s]')
plt.ylabel('Pseudorange [m]')
plt.legend()
plt.gcf().canvas.manager.set_window_title('Pseudorange.png')
plt.tight_layout()
plt.savefig(os.path.join(fig_path, 'Pseudorange.png'))
plt.show()

# Second plot
plt.figure()
plt.title('Carrier Phase')
for i in range(channels):
    plt.scatter(GNSS_observables['RX_time'][i][min_tow_idx:],
                GNSS_observables['Carrier_phase_hz'][i][min_tow_idx:],s=1,
                label=f'Channel {i}')
plt.xlim(GNSS_observables['RX_time'][obs_idx][min_tow_idx]-100,
         GNSS_observables['RX_time'][obs_idx][-1]+100)
plt.xlabel('TOW [s]')
plt.ylabel('Accumulated Carrier Phase [cycles]')
plt.grid(True)
plt.legend()
plt.gcf().canvas.manager.set_window_title('AccumulatedCarrierPhase.png')
plt.tight_layout()
plt.savefig(os.path.join(fig_path, 'AccumulatedCarrierPhase.png'))
plt.show()

# Third plot
plt.figure()
plt.title('Doppler Effect')
for i in range(channels):
    plt.scatter(GNSS_observables['RX_time'][i][min_tow_idx:],
                GNSS_observables['Carrier_Doppler_hz'][i][min_tow_idx:],s=1,
                label=f'Channel {i}')
plt.xlim(GNSS_observables['RX_time'][obs_idx][min_tow_idx]-100,
         GNSS_observables['RX_time'][obs_idx][-1]+100)
plt.xlabel('TOW [s]')
plt.ylabel('Doppler Frequency [Hz]')
plt.grid(True)
plt.legend()
plt.gcf().canvas.manager.set_window_title('DopplerFrequency.png')
plt.tight_layout()
plt.savefig(os.path.join(fig_path, 'DopplerFrequency.png'))
plt.show()

# Fourth plot
plt.figure()
plt.title('GNSS Channels captured')
for i in range(channels):
    lab = 0
    a = 0
    while lab == 0:
        lab = int(GNSS_observables["PRN"][i][min_tow_idx+a])
        a += 1
    plt.scatter(GNSS_observables['RX_time'][i][min_tow_idx:],
                GNSS_observables['PRN'][i][min_tow_idx:], s=1,
                label=f'PRN {i} = {lab}')
plt.xlim(GNSS_observables['RX_time'][obs_idx][min_tow_idx]-100,
         GNSS_observables['RX_time'][obs_idx][-1]+100)
plt.xlabel('TOW [s]')
plt.ylabel('PRN')
plt.grid(True)
plt.legend()
plt.gcf().canvas.manager.set_window_title('PRNs.png')
plt.tight_layout()
plt.savefig(os.path.join(fig_path, 'PRNs.png'))
plt.show()