1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
"""
plotPosition.py
plot_position(navSolutions)
Graph Latitude-Longitude and X-Y-X as a function of Transmit Time
Args:
navSolutions - A dictionary with the processed information in lists
plot_oneVStime(navSolutions, name)
Graph of a variable as a function of transmission time
Args:
navSolutions - A dictionary with the processed information in lists
name - navSolutions variable name that we want to plot
calcularCEFP(percentil, navSolutions, m_lat, m_long)
Calculate CEFP radio [m] for n percentil.
Args:
percentil - Number of measures that will be inside the circumference
navSolutions - A dictionary with the processed information in lists
m_lat - Mean latitude measures [º]
m_long - Mean longitude measures [º]
Modifiable in the file:
fig_path - Path where plots will be save
fig_path_maps - Path where the maps will be save
filename_map - Path where map will be save
filename_map_t - Path where terrain map will be save
Irene Pérez Riega, 2023. iperrie@inta.es
-----------------------------------------------------------------------------
GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
This file is part of GNSS-SDR.
Copyright (C) 2022 (see AUTHORS file for a list of contributors)
SPDX-License-Identifier: GPL-3.0-or-later
-----------------------------------------------------------------------------
"""
import math
import os.path
import webbrowser
import numpy as np
import matplotlib.pyplot as plt
import folium
def plot_position(navSolutions):
# ---------- CHANGE HERE:
fig_path = '/home/labnav/Desktop/TEST_IRENE/PLOTS/PlotPosition/'
fig_path_maps = fig_path + 'maps/'
filename_map = 'mapPlotPosition.html'
filename_map_t = 'mapTerrainPotPosition.html'
if not os.path.exists(fig_path_maps):
os.mkdir(fig_path_maps)
# Statics Positions:
m_lat = sum(navSolutions['latitude']) / len(navSolutions['latitude'])
m_long = sum(navSolutions['longitude']) / len(navSolutions['longitude'])
# CEFP_n -> Include the n% of the dots in the circle
r_CEFP_95 = calcularCEFP(95, navSolutions, m_lat, m_long)
r_CEFP_50 = calcularCEFP(50, navSolutions, m_lat, m_long)
# Generate and save html with the positions
m = folium.Map(location=[navSolutions['latitude'][0],
navSolutions['longitude'][0]], zoom_start=100)
c_CEFP95 = folium.Circle(location=[m_lat, m_long],
radius=r_CEFP_95, color='green', fill=True,
fill_color='green', fill_opacity=0.5)
c_CEFP50 = folium.Circle(location=[m_lat, m_long], radius=r_CEFP_50,
color='red', fill=True, fill_color='red',
fill_opacity=0.5)
# POP-UPs
popup95 = folium.Popup("(Green)CEFP95 diameter: {} "
"metres".format(2 * r_CEFP_95))
popup95.add_to(c_CEFP95)
popup50 = folium.Popup("(Red)CEFP50 diameter: {} "
"metres".format(2 * r_CEFP_50))
popup50.add_to(c_CEFP50)
c_CEFP95.add_to(m)
c_CEFP50.add_to(m)
# Optional: Plot each point ->
"""
for i in range(len(navSolutions['latitude'])):
folium.Marker(location=[navSolutions['latitude'][i],
navSolutions['longitude'][i]],
icon=folium.Icon(color='red')).add_to(m)
"""
m.save(fig_path_maps + filename_map)
webbrowser.open(fig_path_maps + filename_map)
# Optional: with terrain ->
"""
n = folium.Map(location=[navSolutions['latitude'][0],
navSolutions['longitude'][0]], zoom_start=100,
tiles='Stamen Terrain')
c_CEFP95.add_to(n)
c_CEFP50.add_to(n)
n.save(fig_path_maps + filename_map_t)
webbrowser.open(fig_path_maps + filename_map_t)
"""
# Plot ->
time = []
for i in range(len(navSolutions['TransmitTime'])):
time.append(round(navSolutions['TransmitTime'][i] -
min(navSolutions['TransmitTime']), 3))
plt.figure(figsize=(1920 / 120, 1080 / 120))
plt.clf()
plt.suptitle(f'Plot file PVT process data results')
# Latitude and Longitude
plt.subplot(1, 2, 1)
scatter = plt.scatter(navSolutions['latitude'], navSolutions['longitude'],
c=time, marker='.')
plt.grid()
plt.ticklabel_format(style='plain', axis='both', useOffset=False)
plt.title('Positions latitud-longitud')
plt.xlabel('Latitude º')
plt.ylabel('Longitude º')
plt.axis('tight')
# Colors
cmap = plt.get_cmap('viridis')
norm = plt.Normalize(vmin=min(time), vmax=max(time))
scatter.set_cmap(cmap)
scatter.set_norm(norm)
colors = plt.colorbar(scatter)
colors.set_label('TransmitTime [s]')
# X, Y, Z
ax = plt.subplot(1, 2, 2, projection='3d')
plt.ticklabel_format(style='plain', axis='both', useOffset=False)
ax.scatter(navSolutions['X'], navSolutions['Y'], navSolutions['Z'],
c=time, marker='.')
ax.set_xlabel('Eje X [m]')
ax.set_ylabel('Eje Y [m]')
ax.set_zlabel('Eje Z [m]')
ax.set_title('Positions x-y-z')
plt.tight_layout()
plt.savefig(os.path.join(fig_path, f'PVT_ProcessDataResults.png'))
plt.show()
def plot_oneVStime(navSolutions, name):
# ---------- CHANGE HERE:
fig_path = '/home/labnav/Desktop/TEST_IRENE/PLOTS/PlotPosition/'
if not os.path.exists(fig_path):
os.mkdir(fig_path)
time = []
for i in range(len(navSolutions['TransmitTime'])):
time.append(round(navSolutions['TransmitTime'][i] -
min(navSolutions['TransmitTime']), 3))
plt.clf()
plt.scatter(time, navSolutions[name], marker='.')
plt.grid()
plt.title(f'{name} vs Time')
plt.xlabel('Time [s]')
plt.ylabel(name)
plt.axis('tight')
plt.ticklabel_format(style='plain', axis='both', useOffset=False)
plt.tight_layout()
plt.savefig(os.path.join(fig_path, f'{name}VSTime.png'))
plt.show()
def calcularCEFP(percentil, navSolutions, m_lat, m_long):
r_earth = 6371000
lat = []
long = []
dlat = []
dlong = []
dist = []
m_lat = math.radians(m_lat)
m_long = math.radians(m_long)
for i in range(len(navSolutions['latitude'])):
lat.append(math.radians(navSolutions['latitude'][i]))
long.append(math.radians(navSolutions['longitude'][i]))
for i in range(len(lat)):
dlat.append(m_lat - lat[i])
dlong.append(m_long - long[i])
# Haversine:
a = (math.sin(dlat[i] / 2) ** 2 +
math.cos(lat[i]) * math.cos(m_lat) * math.sin(dlong[i] / 2) ** 2)
c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a))
dist.append(r_earth * c)
# Radio CEFP
radio_CEFP_p = np.percentile(dist, percentil)
return radio_CEFP_p
|