File: plotVEMLTracking.py

package info (click to toggle)
gnss-sdr 0.0.20-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 27,564 kB
  • sloc: cpp: 218,512; ansic: 36,754; python: 2,423; xml: 1,479; sh: 459; makefile: 8
file content (171 lines) | stat: -rw-r--r-- 6,314 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
"""
 plotVEMLTracking.py

   This function plots the tracking results for the given channel list.

 Irene Pérez Riega, 2023. iperrie@inta.es

 plotVEMLTracking(channelNr, trackResults, settings)

   Args:
       channelList     - list of channels to be plotted.
       trackResults    - tracking results from the tracking function.
       settings        - receiver settings.

   Modifiable in the file:
       fig_path        - Path where plots will be save

 -----------------------------------------------------------------------------

 GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
 This file is part of GNSS-SDR.

 Copyright (C) 2022  (see AUTHORS file for a list of contributors)
 SPDX-License-Identifier: GPL-3.0-or-later

 -----------------------------------------------------------------------------
"""

import matplotlib.pyplot as plt
import numpy as np
import os


def plotVEMLTracking(channelNr, trackResults, settings):

    # ---------- CHANGE HERE:
    fig_path = '/home/labnav/Desktop/TEST_IRENE/PLOTS/VEMLTracking'
    if not os.path.exists(fig_path):
        os.makedirs(fig_path)

    # Protection - if the list contains incorrect channel numbers
    if channelNr in list(range(1,settings["numberOfChannels"]+1)):

        plt.figure(figsize=(1920 / 120, 1080 / 120))
        plt.clf()
        plt.gcf().canvas.set_window_title(
            f'Channel {channelNr} (PRN '
            f'{trackResults[channelNr-1]["PRN"][0]}) results')
        plt.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.1,
                            hspace=0.4, wspace=0.4)

        # Extract timeAxis and time_label
        if 'prn_start_time_s' in trackResults[channelNr-1]:
            timeAxis = trackResults[channelNr-1]['prn_start_time_s']
            time_label = 'RX Time (s)'
        else:
            timeAxis = np.arange(1, len(trackResults[channelNr-1]['PRN']) + 1)
            time_label = 'Epoch'

        len_dataI = len (trackResults[channelNr-1]["data_I"])
        len_dataQ = len (trackResults[channelNr-1]["data_Q"])

        if len_dataI < len_dataQ:
            dif = len_dataQ - len_dataI
            trackResults[channelNr-1]["data_I"] = np.pad(
                trackResults[channelNr-1]["data_I"], pad_width=(0,dif),
                mode="constant", constant_values=0)
        elif len_dataQ < len_dataI:
            dif = len_dataI - len_dataQ
            trackResults[channelNr-1]["data_Q"] = np.pad(
                trackResults[channelNr-1]["data_Q"], pad_width=(0,dif),
                mode="constant", constant_values=0 )

        # Discrete-Time Scatter Plot
        plt.subplot(3, 3, 1)
        plt.plot(trackResults[channelNr-1]['data_I'],
                 trackResults[channelNr-1]['data_Q'], marker='.',
                 markersize=1, linestyle=' ')
        plt.grid()
        plt.axis('equal')
        plt.title('Discrete-Time Scatter Plot', fontweight='bold')
        plt.xlabel('I prompt')
        plt.ylabel('Q prompt')

        # Nav bits
        plt.subplot(3, 3, (2, 3))
        plt.plot(timeAxis, trackResults[channelNr-1]['data_I'],
                 linewidth=1)
        plt.grid()
        plt.title('Bits of the navigation message', fontweight='bold')
        plt.xlabel(time_label)
        plt.axis('tight')

        # Raw PLL discriminator unfiltered
        plt.subplot(3, 3, 4)
        plt.plot(timeAxis, trackResults[channelNr-1]['pllDiscr'],
                 color='r', linewidth=1)
        plt.grid()
        plt.axis('tight')
        plt.xlabel(time_label)
        plt.ylabel('Amplitude')
        plt.title('Raw PLL discriminator', fontweight='bold')

        # Correlation results
        plt.subplot(3, 3, (5, 6))
        corr_data = [
            np.sqrt(trackResults[channelNr-1]['I_VE'] ** 2 +
                    trackResults[channelNr-1]['Q_VE'] ** 2),
            np.sqrt(trackResults[channelNr-1]['I_E'] ** 2 +
                    trackResults[channelNr-1]['Q_E'] ** 2),
            np.sqrt(trackResults[channelNr-1]['I_P'] ** 2 +
                    trackResults[channelNr-1]['Q_P'] ** 2),
            np.sqrt(trackResults[channelNr-1]['I_L'] ** 2 +
                    trackResults[channelNr-1]['Q_L'] ** 2),
            np.sqrt(trackResults[channelNr-1]['I_VL'] ** 2 +
                    trackResults[channelNr-1]['Q_VL'] ** 2)
        ]

        line = []
        colors = ['b','#FF6600','#FFD700','purple','g']

        for i, data in enumerate(corr_data):
            line.append(plt.plot(timeAxis, data, label=f'Data {i+1}',
                                 color=colors[i], marker='*', linestyle=' ',
                                 linewidth=1))

        plt.grid()
        plt.title('Correlation results',fontweight='bold')
        plt.xlabel(time_label)
        plt.axis('tight')
        plt.legend([r'$\sqrt{I_{VE}^2 + Q_{VE}^2}$',
                    r'$\sqrt{I_{E}^2 + Q_{E}^2}$',
                    r'$\sqrt{I_{P}^2 + Q_{P}^2}$',
                    r'$\sqrt{I_{L}^2 + Q_{L}^2}$',
                    r'$\sqrt{I_{VL}^2 + Q_{VL}^2}$'], loc='best')

        # Filtered PLL discriminator
        plt.subplot(3, 3, 7)
        plt.plot(timeAxis, trackResults[channelNr-1]['pllDiscrFilt'],
                 'b', linewidth=1)
        plt.grid()
        plt.axis('tight')
        plt.xlabel(time_label)
        plt.ylabel('Amplitude')
        plt.title('Filtered PLL discriminator', fontweight='bold')

        # Raw DLL discriminator unfiltered
        plt.subplot(3, 3, 8)
        plt.plot(timeAxis, trackResults[channelNr-1]['dllDiscr'], 'r',
                 linewidth=1)
        plt.grid()
        plt.axis('tight')
        plt.xlabel(time_label)
        plt.ylabel('Amplitude')
        plt.title('Raw DLL discriminator',fontweight='bold')

        # Filtered DLL discriminator
        plt.subplot(3, 3, 9)
        plt.plot(timeAxis, trackResults[channelNr-1]['dllDiscrFilt'],
                 'b', linewidth=1)
        plt.grid()
        plt.axis('tight')
        plt.xlabel(time_label)
        plt.ylabel('Amplitude')
        plt.title('Filtered DLL discriminator',fontweight='bold')

    plt.savefig(os.path.join(fig_path,
                             f'Ch{channelNr}_PRN'
                             f'{trackResults[channelNr-1]["PRN"][0]}'
                             f'_results'))
    plt.show()