File: plot_acq_grid.py

package info (click to toggle)
gnss-sdr 0.0.20-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 27,564 kB
  • sloc: cpp: 218,512; ansic: 36,754; python: 2,423; xml: 1,479; sh: 459; makefile: 8
file content (262 lines) | stat: -rw-r--r-- 9,515 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
"""
 plot_acq_grid.py

 Reads GNSS-SDR Acquisition dump .mat file using the provided function and
 plots acquisition grid of acquisition statistic of PRN sat

 Irene Pérez Riega, 2023. iperrie@inta.es

 Modifiable in the file:
   sampling_freq        - Sampling frequency [Hz]
   channels             - Number of channels to check if they exist
   path                 - Path to folder which contains raw file
   fig_path             - Path where plots will be save
   plot_all_files       - Plot all the files in a folder (True/False)
   ----
   file                 - Fixed part in files names. In our case: acq_dump
   sat                  - Satellite. In our case: 1
   channel              - Channel. In our case: 1
   execution            - In our case: 0
   signal_type          - In our case: 1
   ----
   lite_view            - True for light grid representation

 File format:
   {path}/{file}_ch_{system}_{signal}_ch_{channel}_{execution}_sat_{sat}.mat
 -----------------------------------------------------------------------------

 GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
 This file is part of GNSS-SDR.

 Copyright (C) 2022  (see AUTHORS file for a list of contributors)
 SPDX-License-Identifier: GPL-3.0-or-later

 -----------------------------------------------------------------------------
"""

import os
import sys
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import CubicSpline
import h5py

# ---------- CHANGE HERE:
path = '/home/labnav/Desktop/TEST_IRENE/acquisition/'
fig_path = '/home/labnav/Desktop/TEST_IRENE/PLOTS/Acquisition/'
plot_all_files = False

if not os.path.exists(fig_path):
    os.makedirs(fig_path)

if not plot_all_files:

    # ---------- CHANGE HERE:
    file = 'acq_dump'
    sat = 1
    channel = 0
    execution = 1
    signal_type = 1
    lite_view = True

    # If lite_view -> sets the number of samples per chip in the graphical
    # representation
    n_samples_per_chip = 3
    d_samples_per_code = 25000

    signal_types = {
        1: ('G', '1C', 1023), # GPS L1
        2: ('G', '2S', 10230), # GPS L2M
        3: ('G', 'L5', 10230), # GPS L5
        4: ('E', '1B', 4092), # Galileo E1B
        5: ('E', '5X', 10230), # Galileo E5
        6: ('R', '1G', 511), # Glonass 1G
        7: ('R', '2G', 511), # Glonass 2G
        8: ('C', 'B1', 2048), # Beidou B1
        9: ('C', 'B3', 10230), # Beidou B3
        10: ('C', '5C', 10230) # Beidou B2a
    }
    system, signal, n_chips = signal_types.get(signal_type)

    # Load data
    filename = (f'{path}{file}_ch_{system}_{signal}_ch_{channel}_{execution}'
                f'_sat_{sat}.mat')
    img_name_root = (f'{fig_path}{file}_ch_{system}_{signal}_ch_{channel}_'
                   f'{execution}_sat_{sat}')

    with h5py.File(filename, 'r') as data:
        acq_grid = data['acq_grid'][:]
        n_fft, n_dop_bins = acq_grid.shape
        d_max, f_max = np.unravel_index(np.argmax(acq_grid), acq_grid.shape)
        doppler_step = data['doppler_step'][0]
        doppler_max = data['doppler_max'][0]
        freq = np.arange(n_dop_bins) * doppler_step - doppler_max
        delay = np.arange(n_fft) / n_fft * n_chips

    # Plot data
    # --- Acquisition grid (3D)
    fig = plt.figure()
    plt.gcf().canvas.manager.set_window_title(filename)
    if not lite_view:
        ax = fig.add_subplot(111, projection='3d')
        X, Y = np.meshgrid(freq, delay)
        ax.plot_surface(X, Y, acq_grid, cmap='viridis')
        ax.set_ylim([min(delay), max(delay)])
    else:
        delay_interp = (np.arange(n_samples_per_chip * n_chips)
                        / n_samples_per_chip)
        spline = CubicSpline(delay, acq_grid)
        grid_interp = spline(delay_interp)
        ax = fig.add_subplot(111, projection='3d')
        X, Y = np.meshgrid(freq, delay_interp)
        ax.plot_surface(X, Y, grid_interp, cmap='inferno')
        ax.set_ylim([min(delay_interp), max(delay_interp)])

    ax.set_xlabel('Doppler shift (Hz)')
    ax.set_xlim([min(freq), max(freq)])
    ax.set_ylabel('Code delay (chips)')
    ax.set_zlabel('Test Statistics')

    plt.tight_layout()
    plt.savefig(img_name_root + '_sample_3D.png')
    plt.show()

    # --- Acquisition grid (2D)
    input_power = 100 # Change Test statistics in Doppler wipe-off plot

    fig2, axes = plt.subplots(2, 1, figsize=(8, 6))
    plt.gcf().canvas.manager.set_window_title(filename)
    axes[0].plot(freq, acq_grid[d_max, :])
    axes[0].set_xlim([min(freq), max(freq)])
    axes[0].set_xlabel('Doppler shift (Hz)')
    axes[0].set_ylabel('Test statistics')
    axes[0].set_title(f'Fixed code delay to {(d_max - 1) / n_fft * n_chips} '
                      f'chips')

    normalization = (d_samples_per_code**4) * input_power
    axes[1].plot(delay, acq_grid[:, f_max] / normalization)
    axes[1].set_xlim([min(delay), max(delay)])
    axes[1].set_xlabel('Code delay (chips)')
    axes[1].set_ylabel('Test statistics')
    axes[1].set_title(f'Doppler wipe-off = '
                      f'{str((f_max-1) * doppler_step - doppler_max)} Hz')

    plt.tight_layout()
    plt.savefig(img_name_root + '_sample_2D.png')
    plt.show()

else:
    # ---------- CHANGE HERE:
    lite_view = True
    # If lite_view -> sets the number of samples per chip in the graphical
    # representation
    n_samples_per_chip = 3
    d_samples_per_code = 25000

    filenames = os.listdir(path)
    for filename in filenames:
        sat = 1
        channel = 0
        execution = 1

        system = filename[12]
        signal = filename[14:16]
        if system == "G":
            if signal == "1C":
                n_chips = 1023
            elif signal == "2S" or "L5":
                n_chips = 10230
            else:
                print("Incorrect files format. Change the code or the "
                      "filenames.")
                sys.exit()
        elif system == "E":
            if signal == "1B":
                n_chips = 4092
            elif signal == "5X":
                n_chips = 10230
            else:
                print("Incorrect files format. Change the code or the "
                      "filenames.")
                sys.exit()
        elif system == "R":
            if signal == "1G" or "2G":
                n_chips = 511
            else:
                print("Incorrect files format. Change the code or the "
                      "filenames.")
                sys.exit()
        elif system == "C":
            if signal == "B1":
                n_chips = 2048
            elif signal == "B3" or "5C":
                n_chips = 10230
            else:
                print("Incorrect files format. Change the code or the "
                      "filenames.")
                sys.exit()

        complete_path = path + filename
        with h5py.File(complete_path, 'r') as data:
            acq_grid = data['acq_grid'][:]
            n_fft, n_dop_bins = acq_grid.shape
            d_max, f_max = np.unravel_index(np.argmax(acq_grid),
                                            acq_grid.shape)
            doppler_step = data['doppler_step'][0]
            doppler_max = data['doppler_max'][0]
            freq = np.arange(n_dop_bins) * doppler_step - doppler_max
            delay = np.arange(n_fft) / n_fft * n_chips

        # Plot data
        # --- Acquisition grid (3D)
        fig = plt.figure()
        plt.gcf().canvas.manager.set_window_title(filename)
        if not lite_view:
            ax = fig.add_subplot(111, projection='3d')
            X, Y = np.meshgrid(freq, delay)
            ax.plot_surface(X, Y, acq_grid, cmap='viridis')
            ax.set_ylim([min(delay), max(delay)])
        else:
            delay_interp = (np.arange(n_samples_per_chip * n_chips)
                            / n_samples_per_chip)
            spline = CubicSpline(delay, acq_grid)
            grid_interp = spline(delay_interp)
            ax = fig.add_subplot(111, projection='3d')
            X, Y = np.meshgrid(freq, delay_interp)
            ax.plot_surface(X, Y, grid_interp, cmap='inferno')
            ax.set_ylim([min(delay_interp), max(delay_interp)])

        ax.set_xlabel('Doppler shift (Hz)')
        ax.set_xlim([min(freq), max(freq)])
        ax.set_ylabel('Code delay (chips)')
        ax.set_zlabel('Test Statistics')

        plt.savefig(os.path.join(fig_path, filename[:-4]) + '_3D.png')

        plt.close()

        # --- Acquisition grid (2D)
        input_power = 100  # Change Test statistics in Doppler wipe-off plot

        fig2, axes = plt.subplots(2, 1, figsize=(8, 6))
        plt.gcf().canvas.manager.set_window_title(filename)
        axes[0].plot(freq, acq_grid[d_max, :])
        axes[0].set_xlim([min(freq), max(freq)])
        axes[0].set_xlabel('Doppler shift (Hz)')
        axes[0].set_ylabel('Test statistics')
        axes[0].set_title(f'Fixed code delay to '
                          f'{(d_max - 1) / n_fft * n_chips} chips')

        normalization = (d_samples_per_code ** 4) * input_power
        axes[1].plot(delay, acq_grid[:, f_max] / normalization)
        axes[1].set_xlim([min(delay), max(delay)])
        axes[1].set_xlabel('Code delay (chips)')
        axes[1].set_ylabel('Test statistics')
        axes[1].set_title(f'Doppler wipe-off = '
                          f'{str((f_max - 1) * doppler_step - doppler_max)} '
                          f'Hz')

        plt.tight_layout()
        plt.savefig(os.path.join(fig_path, filename[:-4]) + '_2D.png')
        # plt.show()
        plt.close()